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Abstract—This work considers tracking of multiple targets
using the sensor-cloud infrastructure. As targets enter the cov-
erage zone of multiple sensors, it becomes crucial to schedule
sensors and generate distinct clusters of sensors for each target.
It becomes challenging to correctly map sensors to targets, in
presence of overlapping coverage, to maintain their privacy
and correctness of sensed information about the targets. We
propose the Dynamic Mapping Algorithm (S-DMA) based on
the Theory of Social Choice for ensuring a ‘fair’ and unbiased
mapping of sensors to targets. The distribution of summation
of the preference values of sensors allocated to targets exhibit
a standard deviation of 0.71 within 99% confidence interval.
This implies that S-DMA maintains uniformity while scheduling
sensors for every target.

Index Terms—Sensor-cloud, Social Choice, Target Tracking

I. INTRODUCTION

Existing target tracking applications using Wireless Sensor
Networks (WSNs) are generally single-user centric, and are
configured for a single application [1]. The renderability of
customized WSN-based tracking applications is infeasible in
traditional WSNs. Organizations which do not own sensor
nodes are deprived of access to applications of WSNs deployed
in the field. Sensor-cloud is conceived as a potential solution
to the sensor management problem of such applications [2].

The cardinal enabling technology behind sensor-cloud is
sensor virtualization. The physical sensor nodes are dynam-
ically grouped into virtual clusters. An organization requests
and obtains sensing service while being unaware of the physi-
cal locations of the sensors [3]. The sensed data are transmitted
to the end-users over virtual groups, which are then fed to
the concerned tracking application. Thus, sensor nodes can be
used for tracking targets as an on-demand service, rather than
as a typical hardware. Such a service can be implemented in
real-life such as for surveillance in the military and civilian
sectors, traffic control, and health care applications.

A. Motivation

In this paper, we look into the specific issue of multiple
target tracking in sensor-cloud, when the mobile targets,
belonging to different organizations may come so close that
they might fall under the sensing range of one or more
physical sensor nodes, thereby leading to overlapping coverage
of the targets by the sensor nodes. It is important to generate
distinct clusters of sensor-nodes corresponding to each of the

targets. The difficulty in addressing the problem is that in a
conventional WSN, the sensor nodes are typically equipped
with some basic analytical and decision-making abilities, and
algorithmic processing of data occurs within each sensor node
followed by transmission of the target-specific aggregated
data. Whereas, in a sensor-cloud environment, sensor nodes
are treated as mere sensing units with minimal network
management and end user supervision. The raw sensed data
are directly transmitted to the sensor-cloud environment. The
sensor-cloud service provider aggregates the received data in
a target specific manner, before transmitting the aggregated
data to the end-users. This introduces the challenge to manage
distinct sensor clusters for each target. In such a scenario, the
problem of sensor-target mapping induces research interest.

B. Contribution

The proposed work is not a trivial extension of the existing
works as prior related works are implemented on conventional
WSNs. The contribution of this work is to address the above-
mentioned issues within sensor-cloud by correctly mapping
sensors to their corresponding targets, assuming that a sensor
node covers one (Fig 1(a)) or more (Fig 1(b)) targets, at a
particular time instant. It is required to perform a primary
mapping of the physical sensor nodes to targets followed by a
secondary mapping of physical sensor nodes to virtual sensor
groups. The work performs a utility-based primary mapping
within the sensor-cloud environment, simply from the raw
sensed data and the previous knowledge about the targets.

(a) Distinct cluster (b) Non-distinct cluster

Figure 1: Local cluster formation

We use the Theory of Social Choice [4] to overcome
the difficulty in the problem by applying “fairness” based
strategic voting on the society of sensor nodes. We propose and
implement Social-choice based Dynamic Mapping Algorithm
(S-DMA) within a sensor-cloud environment.
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II. S-DMA: SOCIAL CHOICE BASED DYNAMIC MAPPING
ALGORITHM

We assume that every sensor node is capable of estimating
the target coordinates from its sensor reading. We have two
symmetric distance matrices X(1..N) and Y (1..N), which
contain the global coordinates of every node, i, represented
as C(i) = (X[i], Y [i]). We need to detect the presence
of overlapping sensor coverage area involving two or more
targets. The proposed architecture is depicted in Fig. 2.

Figure 2: Sensor-cloud based Target Tracking

A. Detection of Overlapping Coverage

We assume that nt is the total number of targets tracked
within a sensor-cloud environment. We denote the location
coordinates of a detected target ti at time t by (xti ,yti ).
The sensor-cloud infrastructure uses the sensed data (xti ,yti )
at time t − 1 and predicts (x′ti ,y

′
ti ) at time t using stan-

dard location estimation algorithms. Nodes that are within
d distance from the target ti are activated, where the value
of the distance parameter d is predetermined. Thus, we
have ξ((x′ti , y

′
ti), C(j)) ≤ d, for each j, where ξ denotes

the Euclidean metric in a 2D plane. The metric ξ(p, q)
between two points p and q is expressed as ξ(p, q) =√

(xp − xq)2 + (yp − yq)2. Thus, we obtain an array of active
sensor nodes from the above relation. To determine the for-
mation of overlapping regions, we need to examine, for every
selected node si, such that ξ(C(si), tk) > d, k = nt − 1. In
other words, only for a single target tj , the inequality must
hold true to ensure non-overlapping sensor coverage. However,
if an overlap is detected, the scheduling of sensor nodes needs
to be governed and steered, accordingly. We assume that a total
of ns overlapped sensor nodes are detected for nt targets.

Calculation of ‘eligibility’ factor of a sensor node: Initially,
for every possible sensor-target combination, we define a
boolean parameter, named ‘eligibility’ factor. It is the output of
a binary function u(·, ·), referred to as the ‘eligibility’ function.
The function is expressed as a mapping u : S X T → [0,1],
where S is the set of overlapping sensor nodes selected for
the current set of targets, and T is the current set of targets to
be tracked. If ρsi is the sensing radius of a node, the mapping
u is defined as:

u(si, tj) =

{
0 , ξ(si, tj) > ρsi
1 , otherwise (1)

B. Computation of nodal preference

Prior to computing the nodal preferences, we introduce a
new metric termed Coverage Contraction Factor (CCF).

Coverage Contraction Factor (αsi ): CCF is introduced to
examine a node’s energy content. It computes the residual
battery status of a sensor node. If Ecur and Eact are the current
and initial energy levels of a node, we have,

αsi = (Eact,si − Ecur,si)/Eact,si (2)

where 0 ≤ αsi ≤ 1. As we base our approach on the Theory
of Social Choice [4], every active sensor node has its own
preference of targets, articulated by means of a linear ordering.
Preference Pi and indifference Ii of a node i are the symmetric
and asymmetric components of the relation, respectively [4].
Thus, taPitb 6⇒ tbPita. Also, taIitb ⇒ tbIita ⇒ ta ≡ tb.

We now focus on evaluating a node’s ordering of prefer-
ences for each target of interest at time t. After the data from
the physical sensor nodes are transmitted, nodal preferences
are evaluated on servers of the sensor-cloud infrastructure. We
design a utility function Ψ for every sensor-target pair. We
have,

Ψ(si, tj) =

{
λ1

αsi
+ λ2

ρsi
ξ(si,tj)

: αsi 6= 0

B + λ2
ρsi

ξ(si,tj)
: αsi = 0

(3)

where B is a large integral value, and λ1, λ2 (when λ1 < λ2)
are the weighted system-modeled coefficients. Nodal ordering
of preferences of targets are based on a preference value Θ,
which is defined as:

Θ(si, tj) = Ψ(si, tj)× u(si, tj) (4)

If a node is not eligible for tracking a particular target,
the preference value is zero. Having calculated the preference
value for every sensor-target pair, each sensor node then
creates its own ordering of choices. For a sensor node si,
Θ(si, ta) > Θ(si, tb) ⇒ taPsitb,Θ(si, ta) = Θ(si, tb) ⇒
taIsitb. However, the preference ordering for every sensor
node should be complete and transitive [4]. Hence, it implies,

(tjPsitk) ∨ (tjIsitk), ∀j, k ∈ T (5)
(tjXsitk) ∧ (tkXsitl)⇒ tjXsitl, ∀j, k, l ∈ T (6)

where Xsi = {Psi , Isi}. Equations (5) and (6) ensure the com-
pleteness and transitivity axioms, respectively. After obtaining
the preferences of every node at time t, we obtain a matrix
Θnet[1..ns][1..nt] for the entire network. We now define some
relevant terms.

Definition 1. A preference ordering Rti for a particular target
ti is the set of preference values of the different sensor nodes
casted for ti, i.e., Rti = {Θs1,ti ,Θs2,ti , ..,Θsns ,ti

}.

Definition 2. A preference profile P is the set of potential
preferences, i.e., P = {Rt1 , Rt2 , .., Rtnt

}.

C. Social Choice Aggregation

Once the preference profile is established, we embark on
the Social Aggregation Function (SAF) and Social Choice
Function (SCF). The SAF is defined as a mapping F : Pns! →
Rnt×nth , i.e., F maps a preference domain to a mapping
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matrix M , M [i][j] denotes the allocation of the jth sensor
node to target ti, nth is the threshold value for the maximum
number of sensor nodes that can be allocated to a target. SCF
f is defined as a mapping f : P × T → S, i.e., given a
preference profile and a particular target, a particular sensor
node or the social choice winner swin can be mapped to the
target based on the choice of the society.

F (P) = F (Rt1 , Rt2 , .., Rtnt
) = M,f(Rti) = swin (7)

In this work, we have assumed nt � ns. Multiple iterations
are performed on random ordering of targets till all sensor
nodes are allocated. For the selection of a ‘fair’ winner, as
per Arrow’s Impossibility Theorem [5], we merge the positive
effects of Plurality Voting [4] and Borda’s algorithm [4] with
the proposed algorithm, as presented in Algorithm 1. For ti,
we initially formulate the society mean µsoc, expressed as,

µsoc =

∑
∀sj∈S βsj ×Θ(sj , ti)∑

∀sj∈S βsj
(8)

where {βsj × Θ(sj , ti)} denotes the is the social preference
order. r(sj , Rti) is the positional value∗ of a voter in the
profile of a target, expressed as, βsj = ns − r(sj , Rti). The
winner node swin is obtained by,

swin = M [i][win] = min
∀sj∈S

|(µsoc −Θsj ,ti)| (9)

The winner node swin can be considered as the Plurality
winner, as its score for ti is the closest to the society mean,
thereby earning the highest ability to win the target.

Algorithm 1 S-DMA
Inputs:
• Set of mobile targets: T .
• Set of sensor nodes with overlapping coverage: S.

Output: A mapping matrix M [1..nt][1..nth].
1: ∀si ∈ S, ∀tj ∈ T , Compute Θnet

2: while (∃si ∈ S) ∧ (si 6= M [p][q]), ∀p ∈ T, ∀q ∈ S do
3: Generate a random ordering of targets T̂
4: for j = 1 to nt do
5: M [j][win] = swin = f(RT̂j

)
6: Remove swin from S, P
7: end for
8: end while

III. ANALYTICAL RESULTS

Proposition 1. The worst case asymptotic computational
complexity of S-DMA and communicational complexity for a
single target are O(ns × nt) and O(n2s), respectively.

Proof: For nt number of mobile targets, step 1 of S-DMA
is computed in ns×nt time. Steps 3, 5, and 6 of Algorithm 1
is executed in constant time c1. Steps 4 through 7 takes O(nt).
Thus, we have,

∗Positional significance of a node can be viewed as its Borda score.
However, it is not explicitly termed as ‘Borda’ score, as the Borda score
is ideally applicable to candidates instead of voters.

T (nt) = nsnt + T (ns − 1) + c1nt, T (1) = c2

Simplifying, we get, T (nt) = O(ns×nt). For communica-
tion load, every node, si, communicates with the sensor-cloud
through multi-hop route. The number of hops is O(i − 1).
Communication load C for a single target involving ns over-
lapping sensors can be expressed as C(1) = Θ(1), C(ns) =
ns∑
i=2

O(i− 1) ' O(n2s). This completes the proof.

Lemma 1. S-DMA satisfies non-dictatorship.

Proof: An SCF is dictatorial if ∃si : taPsitb ⇒
taPsj tb,∀sj ∈ S [5]. But in S-DMA, ∀si ∈ S, we have, Θsi,·.
Also, 6 ∃si : taPsitb ⇒ taPsj tb, ∀sj ∈ S. For any target
ti, if f(Rti) = swin, 6 ∃si, such that, f(Rti) = sj , where
S = S − {si}, or S = S + {si}, si 6= sj . Thus, S-DMA is
non-dictatorial.

Figure 3: Projection of S-DMA against HMTT

Lemma 2. S-DMA satisfies the Independence of Irrelevant
Alternatives.

Proof: Independence of Irrelevant Alternatives (IIA)
claims that the internal ranking between two alternatives is
independent of a third alternative [5]. In S-DMA, let P1 and P2

be two preference sub-profiles containing Ŝ sensor nodes, and
let ti an tj be two target alternatives, such that Ŝ ⊂ S, ti �P1

tj and, ti �P2
tj . Then, S-DMA concludes that ∀si ∈ Ŝ. Thus,

Θsi,ti ≥ Θsi,tj ⇒
∑
∀si∈Ŝ

Θsi,ti ≥
∑
∀si∈Ŝ

Θsi,tj ⇒ ti �Ŝ tj . This

concludes the proof.

Corollary 1. S-DMA dissatisfies the Pareto Axiom (P).

Explanation: From Arrow’s Impossibility Theorem [5], we
obtain that no aggregation function can simultaneously satisfy
non-dictatorship, IIA and P. Thus, from Lemma III.1 and III.2
we infer that S-DMA dissatisfies P.

Theorem 1. S-DMA tends to select the Condorcet winner.

Proof: We assume the sensor node preferences as (ta,
tb, tc), (tb, ta, tc), (tb, tc, ta), (tc, tb, ta), (tc, ta, tb),
and (ta, tc, tb). Let ta be the Condorcet winner (through
pairwise voting) for some sensor node si. We must have,
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Θs2 +Θs3 +Θs4 +Θs5 ≤ Θs1 +Θs6 . Assuming the correctness
of a Condorcet winner, we consider a hyper-plane divided
into distinct sensor node regions. The normal to the correct
side is obtained as N1 = (1,−1,−1,−1,−1, 1). In S-DMA
let the positional significance be (2,γ,0). From Equation 9,
we get, γΘs2 + γΘs5 ≤ 2Θs1 + 2Θs6 . We obtain N2 =
(2k,−γk, 0, 0,−γk, 2k), assuming Θsi,ta = k, ∀si ∈ S. If
φ is the angle between N1 and N2, cos(φ) = N1.N2

|N1||N2| =
2γ+4√

6
√

2γ2+16
= h(γ). Thus,

dh(γ)

dγ
=

1√
6

2
√

2γ2 + 16− 4(2γ2 + 16)−
1
2 (2γ + 4)

(2γ2 + 16)
(10)

The angle between the normals should be minimized to obey
Condorcet criterion. Evaluating, dh(γ)

dγ = 0, we get γ → 1.
Thus, correct positional value is assigned by following S-DMA.
This concludes the proof.

Proposition 2. S-DMA respects Plurality voting.

Proof: Plurality voting selects a winner agent, which
obtains the highest score of the society. From Equation 9, we
find that the winner node swin satisfies |(µsoc−Θswin,ti)| →
0 ⇒ Θswin,ti → µsoc. Thus, Θswin

respects µsoc, which is a
society parameter. Hence, swin is also the Plurality winner.

We now present some of the experimental results. To vali-
date the correctness of S-DMA, we assume a uniform random
deployment of 250 sensor nodes (ρsi = 200 m, Csi ≥ 2ρsi )
in an area of 1 km x 1 km, Csi being the communication
range. Fig. 3 shows that two targets enter the zone, and move
close to each other. S-DMA clearly outperforms the existing
algorithm —Hierarchical Markov Decision Process (HMDP)
for target tracking (HMTT) [6], in terms of tracking accuracy.
Unlike [6], S-DMA proposes a “fair” sensor-target mapping,
which improves the tracking accuracy especially in situations
of overlapping coverage of sensors. Assuming the commu-
nication and processing energy as 40 nJ/bit and 10 nJ/bit,
respectively, and subjecting the algorithms to identical sensing
phenomenon, Fig. 4 clearly shows that, unlike Probability-
based Prediction and Sleep Scheduling protocol (PPSS) [7],
S-DMA exhibits a low energy consumption for computation
as the processing and evaluation is mainly executed at the
sensor-cloud end. Further, in PPSS, multi-hop communication
within the network and data transmission to a data center
contributes for the overall communication energy. On the

contrary, inter node communication is negligible in S-DMA,
multi-hop transmission being the main component for energy
consumption. This conserves the total energy appreciably. To
enhance the understandability, Fig. 5 depicts the combined
impact of positional significance and the preference values on
the collective preferences of a target for 10 sensor nodes. The
preference profile curve is aligned to the secondary y axis.
Fig. 6 demonstrates the difference of magnitude of the normal
mean from the social mean. The experiment is executed to
compute the standard deviation of the summation of preference
values for the sensors assigned to each target. The mean of
the standard deviations over 100 iterations was found close
to 0.71 with a 99% confidence interval. This suggests that
the proposed algorithm is unbiased to targets and maintains
uniformity while mapping.

IV. CONCLUSION

The proposed algorithm, S-DMA, ensures the best possible
allocation of sensors to targets. However, there can be chal-
lenges if two adjacent sensor nodes are heterogeneous with
respect to their sensing types as multi-hop communication in
such scenario will require protocol standardization. Our future
work will focus on extending the current problem in context
of such heterogeneous sensor nodes.
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