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Abstract. In this paper, we propose a Quality-of-Service (QoS)-aware
sensor node selection scheme, QSens, for sensor-cloud architecture. In
this architecture, a Sensor-Cloud Service Provider (SCSP) provisions
Sensors-as-a-Service (Se-aaS) to the registered end-users. On the other
hand, the end-users pay the charges for their availed services. This work
has twofold objectives – first, we define the Service-Level Agreements
(SLAs) in sensor-cloud to bind sensor owners, SCSP, and end-users to-
gether with certain contracts, and second, with the help of these SLAs,
the proposed scheme provisions to select a suitable set of sensor nodes,
based on the QoS value, to serve an application. The SLA between sensor
owner and SCSP enforces the former to share the detailed specifications
of his/her sensor nodes to the SCSP. On the other hand, the SLA between
SCSP and the end-users enforces the SCSP to determine the optimal QoS
of different available sets of sensor nodes and share with the end-users.
We formulate the QoS of a sensor node with its specifications shared
by the sensor owner. Further, we apply Karush-Kuhn-Tucker (KKT )
conditions to obtain an optimal sensor node, based on the QoS value.
Extensive experimental results depict that the total payable service price
varies in the range 77.69 – 86.97% with the increase in the service price
of SCSP from 500 – 1000 units. On the other hand, with the change in
the price of sensor nodes from 500–1000 units, the total payable service
price varies from 35.79 – 54.6%.

Keywords: Service-Level Agreements (SLAs), sensor-cloud, Sensors-as-
a-Service (Se-aaS), Quality-of-Service (QoS), Sensor Node Selection

1 Introduction

Sensor-cloud is based on the service-oriented architecture (SOA), which consists
of multiple actors such as sensor owners, end-users, and SCSP [1,3]. This archi-
tecture provisions Sensors-as-a-Service (Se-aaS) for end-users using the concept
of sensor virtualization. A sensor owner leases his/her sensor nodes and earns
profit, depending upon the usage of the respective sensor nodes. On the other
hand, an end-user pays rent to the SCSP for the services availed by him/her [2].
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2 Roy et al.

The SCSP acts as a centralized actor, who manages the sensor-cloud architec-
ture along with the cash inflow and outflow in the system. As an end-user pays
a significant amount of price for certain application, s/he expects for desirable
Quality-of-Service (QoS). The proposed scheme, QSens, allows an end-user to
select a sensor node for an application, based on its QoS. The Service-Level
Agreement (SLA) plays a crucial role in sensor-cloud for selecting a sensor node,
depending upon its QoS, by the end-users. In sensor-cloud, SLAs are in the form
of a certain commitment of services among SCSP, end-users, and sensor own-
ers. The proposed scheme, QSens, comprises two SLAs – SLASS and SLASE .
The SLA between SCSP and sensor owner is termed as SLASS , while the SLA
between SCSP and end-users is known as SLASE . However, these SLAs may
contain other service agreement, as per their requirement. The primary aim of
this work is to minimize the price charged from an end-user and maximize the
QoS of the sensor nodes.

In the existing literature of sensor-cloud, there is no such scheme which fa-
cilitates the end-users to select the sensor nodes, as per their requirements. This
motivate us to propose a scheme, QSens, for allowing the end-users to select a
suitable set of sensor nodes for serving an application. The specific contributions
of this work are:

– The authors in the existing literature do not propose any work on SLA
for the sensor-cloud architecture. Therefore, in this work, we introduce two
different SLAs – SLASS and SLASE , which are specifically designed for the
sensor-cloud. These SLAs bind sensor owners, SCSP, and end-users, legally
with certain contracts.

– QSens allows the end-users to know the optimal value of QoS of the sensor
nodes. On the other hand, the end-users are capable of selecting a suitable
set of sensor nodes within their financial budget, considering the optimal
QoS. In this work, we derive a function for computing an optimal QoS of
the sensor nodes with the help of SLAs.

– We solve the problem by optimization function and proving it as convex. Fur-
ther, we apply the Langragian Multiplier [4] and the Karush-Kuhn-Tucker
(KKT) [5] conditions to derive the optimal value of QoS. Additionally, we
analyze QSens with rigorous simulation.

2 Related Work

Existing literature reveals different research works on SLA for the traditional
cloud architecture. On the other hand, in the literature, the authors explored
the concept of sensor-cloud architecture, which replace the traditional WSNs.
Considering all these aspects, we categorized the related works in two parts –
SLA and sensor-cloud architecture.

For a SOA-based system, SLA plays an important role to bind the service
providers and consumers. In the existing literature, the authors proposed sev-
eral SLA-enabled schemes for different technologies and applications. Gaillard
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Fig. 1: Architecture of QSens

Fig. 2: Flow diagram of QSens

et al. [6] implemented SLA for WSNs. The authors discuss few important mech-
anisms – SLA Observer, Service Registry, SLA Admitter, SLA Manager, and
SLA Enforcer – for ensuring QoS, in the context of WSNs. Similarly, Chieng
et al. [7] proposed an SLA-driven scheme to facilitate the dynamic and flex-
ible bandwidth reservation for a QoS-aware Internet. In order to discuss an
SLA broker scenario, the authors used Fujitsu’s Phoenix Open Agent Mediator
(OAM ). Garcia et al. [8] modeled an SLA with Linked Unified Service Descrip-
tion Language (USDL) agreement. The authors utilized the benefit of the Web
principle for incorporating the technical and business aspects in the SLA. The
proposed model offers the necessary facilities for capturing the semantics of the
agreements. Typically, for a cloud service, the SLA is proactive and difficult to
dynamically modify. Considering the dynamic modification of SLA, Paputungan
et al. [9] proposed a scheme for enabling dynamic negotiation in SLA for cloud
architecture.
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4 Roy et al.

In the existing literature, the authors explored different works in the domain
of sensor-cloud architecture. Yuriyama et al. [1, 10] proposed the concept of
virtualization of sensor nodes. Further, Madira et al. [11] presented the Sensing-
as-a-Service (Se-aaS) paradigm to offer a common service platform for multiple
end-user. In this work, the authors also discussed the formation of the virtual sen-
sor (VS) considering the resource-constrained environment of traditional WSNs.
A VS comprises multiple physical sensor nodes and provisions multiple end-users
to receive services, simultaneously. However, the composition of VS changes with
time and the types of applications. In order to form the dynamic VSs, Roy et
al. [12] designed a scheme for the sensor-cloud architecture. Typically, a sensor-
cloud architecture is based on pay-per-use model, in which different actors are
involved to receive certain benefits. Therefore, Chakraborty et al. [3] proposed a
pricing scheme to manage the financial transactions among the actors of sensor-
cloud while enforcing the trust among SCSPs.

3 Problem Scenario

We consider a sensor-cloud architecture, where sensor owners procure multiple
heterogeneous sensor nodes and rent them to serve the end-user applications.
The rent of these sensor nodes varies with application type and duration of their
usage. Additionally, the rent of a sensor node depends on its QoS. However, the
specification of the sensor node decides the QoS. The SLA plays a crucial role
to provide the QoS of the sensor nodes to the end-user. We define two SLAs,
which legally bind the sensor-owners with SCSPs and SCSPs with end-users,
respectively.

Definition 1 The sensor owners are enforced, through a SLA, to share the
detailed specifications of their respective sensor nodes to the SCSPs, such a SLA
is known as SLASS.

Definition 2 The SCSPs are enforced, through a SLA, to share correct QoS of
the sensor nodes with the total payable service price of the service to the end-
users, such a SLA is known as SLASE.

The QoS of the sensor nodes is computed with the sensor node specifications,
shared by the sensor owners, whereas the total payable service price of the service
is derived using the service cost of SCSP, sensor node, and their QoS. SLASS
and SLASE are the key enablers for providing the specifications of sensor nodes
in sensor-cloud architecture. In this work, we propose a mechanism to compute
the QoS and derive the total payable service price for the end-users.

Let SO = {SO1, SO2, SO3, · · · , SOp} denote the set of sensor owners, where
SOi ∈ SO represents any sensor owner and 1 ≤ i ≤ p, such that p is maximum
number of sensor owner present in the set. Any SOi leases his/her respective sen-
sor node to the sensor-cloud architecture and receives the rent as per the usage
of the sensor nodes. The sensor node, j, owned by the ith sensor owner is denoted
as sij . Further, we define the set of sensor nodes belonging to the ith sensor owner
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as Si = {si1, si2, si3, · · · , siq}. The maximum number of sensor nodes belonging to
SOi is denoted as q. In a sensor-cloud architecture, multiple SCSPs are present
to provision Se-aaS to multiple end-users. Let S = {S1,S2,S3, · · · ,Sr} repre-
sent the set of available SCSPs in the system. The ith sensor owner is legally
binded to the kth SCSP with a SLA, SLAikss. Also, we define the set of end-users
as EU = {EU1, EU2, EU3, · · · , EUs}. Any SCSP, k, is legally binded with an
end-user EUl using a SLA, SLAklSE . Fig. 1 depicts the architecture of QSens.
Additionally, we observe that Fig. 1 possesses a set of available sensor nodes
with corresponding sensor owners. Among the available sensor nodes, a set of
nodes are serves the end-user application. Using QSens, we facilitate the end
user to choose the available set of nodes based on the QoS and its price. Fig.
2 depicts the process flow of the proposed architecture of QSens. It shows the
communications between three entities – sensor owner, SCSP and the end-user
– to offer the sensor node with an optimal QoS at a minimized price.

4 QSens: The Proposed Scheme

In this Section, we discuss the statistical variable used to categorize the various
sensor nodes and formulation of QoS of these nodes.

4.1 Statistical Variables for Sensor Node Specifications

SLASS enables the SCSP to receive different specifications of the sensor nodes.
We compute the QoS of the sensor nodes using their respective specifications.
However, depending on the types of sensor node, the specifications vary from one
another. Further, we draw an analogy of the statistical variables – dichotomous,
continuous interval, and discrete ratio [13] and map the specifications of sensor
nodes to these variables.
Justification for using the statistical variables: Let there be a sensor owner
(SOi), owning a sensor node, sij . The node, sij consists of a set of specifications
such as technology support, sensor range, processing speed, energy consump-
tion, temperature support, ADC resolution, interface support, debug support
JTAG-SWD, Minimum Energy Performance Standard (MEPS), ISO security
compliance. We denote security and MEPS as dichotomous variable. Dichoto-
mous variables are binary, i.e., they attain a value of 0 or 1. In our context,
security and MEPS are either compliant or non-compliant with the sensor node.
Therefore, if the sensor node is compliant with security and MEPS, we map
these to the dichotomous variable with value 1; otherwise, with value 0. Simi-
larly, the temperature of a sensor node varying within a minimum and maximum
range. The minimum and the maximum temperature values are considered as
range set. This minimum and sets of maximum range are brought under a prede-
fined range of [01]. These new sets obtained contribute towards the specification,
which has an interval range. We map it as continuous interval variable. The spec-
ifications such as communication technology support, sensor range, processing
speed, energy consumption, ADC Resolution, interface support, debug support
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6 Roy et al.

JTAG-SWD are provided with a sensor node. These technologies are provided
corresponding to any sensor node, which are countable in nature and possess dis-
crete countable values. Therefore, we categorize these specifications as discrete
ratio variables.

4.2 QoS Formulation

Let the sets of dichotomous, continuous interval, and discrete ratio variables
of a sensor node are denoted as D = {d1, d2, d3, · · · , dt}, I = {i1, i2, i3, · · · , iu}
and R = {r1, r2, r3, · · · , dv}, respectively. We compute the QoS, Qj , of the jth

sensor node with the help of these Statistical variables. Moreover, Qj , depends
on the effective dichotomous variable, effective continuous interval variable, and
effective discrete ratio variable of sensor node, j. Therefore,

dij =

{
1, if a particular specification is present

0, otherwise
(1)

Definition 3 The effective dichotomous variable, EDj , of a sensor node, j, is
the sum of all the dichotomous variables shared by its respective owner to the
kth SCSP, through SLAikss.

We compute the effective dichotomous variable EDj , as:

EDj =

t∑
i=1

di (2)

The value of continuous intervals and discrete ratio variables lies in a range
minimum and maximum ranges. However, the ranges of these variables are dif-
ferent from one another. Therefore, for both interval and ratio variables, we use
min-max normalization technique [14] and bring them between in the range of
{σmin, σmax}. For simplicity, we consider σmin = 0 and σmax = 1. Then, any
mth element, im of the set of interval variables consist of its minimum value, iminm

and maximum value, imaxm , respectively. Therefore, the set of interval variables
is represented as I = {(imin1 , imax1 ), (imin2 , imax2 ), (imin3 , imax3 ), · · · , (iminu , imaxu )}

Let the minimum and maximum values in set I are denoted as εmin and εmax,
respectively. Therefore, εmin = Min(I) and εmax = Max(I).

Also, ε denotes any values in set I. The min-max normalization technique for
the interval variable is represented as:

M =

((
ε− εmin

εmax − εmin

)
× (σmin − σmax)

)
+ σmax (3)

whereM is the normalized value of im, such that σmin ≤M ≤ σmax. Therefore,
we define the set of minimum and the maximum normalized value of the interval
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QSens 7

variables, for node j as:

Iminj =

{
imin(j,1), i

min
(j,2), i

min
(j,3), · · · , i

min
(j,u)

}
(4a)

Imaxj =

{
imax(j,1), i

max
(j,2), i

max
(j,3), · · · , i

max
(j,u)

}
(4b)

We use Equation (4) to define a parameter, effective normalized interval
variable for deriving the QoS of any sensor node.

Definition 4 The effective normalized interval variable, E Ij of a sensor node,

j, is the total sum of all the elements in sets Iminj and Imaxj .

We derive the effective interval variable E Ij , as:

E Ij =

u∑
m=1

imin(j,m) +

u∑
m=1

imax(j,m) (5)

The set of discrete ratio variables is denoted as R = {r1j , r2j , r3j , · · · , rvj }, such that

an element rij represents the number of supporting technologies for a particular
variable by a sensor node, j.

Definition 5 The effective ratio variable, ERj of a sensor node, j, is the total
sum of all the elements in set R.
The effective ratio variable is derived ERj as:

ERj =

v∑
p=1

rpj (6)

We derive the QoS, Qj , of a sensor node, j using Equations (2), (5), and (6). On
the other hand, energy consumption is a crucial factor for a sensor node. Let the
maximum energy consumption of any sensor node, among the available ones, be
Emax. Therefore the effective energy consumption, Eeff , of the jth sensor node

is computed as Eeff =
Ej

Emax
.

Also, we consider the effective energy, Ej , of the jth sensor node for deter-
mining its Qj as:

Qj =
(EDj + E Ij + ERj )

Eeff
(7)

Similarly, we calculate the QoS of all the sensor nodes, available with the SCSP
for certain application. The price of the jth sensor node is denoted as, pj , which
depends on the QoS. Further, the effective energy, Eeff of a sensor node, j,
influences the QoS, Qj . However, Qj must not dominate the total price, Pj .
Therefore, the total service price of the jth sensor node is mathematically repre-
sented as PSj = {Qj}1/γ×pj , where γ is a scaling factor with a positive constant
value.

In Equation (7), we notice that the effective energy Eeff influences the QoS
of the sensor node. Let a value of effective energy be denoted as Y. The value of
Y affects the QoS, Qj . We say that Y can affect the QoS as:

(Qj) > 1,∃, if {Eeff > Y} (Qj) ≤ 1,∃, if {Eeff < Y} (8)
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8 Roy et al.

Proposition 1 If n is the number of sensor nodes and the total effective energy
of these nodes denoted as Eeffj , then

n∑
j=1

(Qj) ≥

{
n∑n
j=1 Y

}
(9)

Justification: Let us assume that,

n∑
j=1

Qj <
n∑n

j=1E
eff
j

(10)

Also, we observe that 0 < Eeffj ≤ 1. On the other hand, from Equation (7) we
get:

n∑
j=1

Qj =

n∑
j=1

(EDj + E Ij + ERj )

Eeffj

(11)

Therefore, from Equations (10) and (11), we obtain:

n∑
j=1

(EDj + E Ij + ERj )

Eeffj

<
n∑n

j=1E
eff
j

(12)

The maximum possible effective energy, Eeffj for all the nodes are 1. Therefore,
the maximum value of R.H.S. in Equation (12) gives 1. On the other hand, the
minimum value of L.H.S. is 1, which infer a contradiction to our assumption, as
mentioned in Equation (10). This concludes the justification of the proposition.

Further, the SCSP charges a certain amount from the end-users, which in-
cludes the maintenance charges of the sensor-cloud infrastructure for offering
the Se-aaS, considering per unit price of the sensor node and the price charged
by the sensor owner. We denote the charge of SCSP as PSCSP . Price, pj , of the
jth sensor node consists of a maximum value, pmaxj . Similarly, maximum service

price of the jth sensor node is, PSCSPmaxj . Thus,

∀j ∈ {j = 1, · · · , n} ∃ PSCSPj ≤ PSCSPmaxj (13a)

∀j ∈ {j = 1, · · · , n} ∃ pj ≤ pmaxj (13b)

Further, the total payable service price, P, to an end-user for the jth sensor node
is represented as: P = PSCSPj +PSj . We compute the total payable service price,
Ptot, for a set of sensor nodes, which are eligible to serve the application, as:

Ptot =

n∑
j=1

PSCSP j +

n∑
j=1

{
(Qj)1/γ × pj

}
(14)

The main aim of QSens is to minimize Ptot, while obtaining an optimal QoS.
In order to achieve the minimum payable service price, we use argminPtot, for
an optimal value of total QoS, Q. Therefore, we represent Equation (14) as:

argmin
Q

(
n∑
j=1

PSCSP j +

n∑
j=1

{
(Qj)1/γ × pj

})
(15)
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Theorem 1. The proposed function in Equation (14) is convex, iff for each
payable service price, P1

tot, P2
tot ∈ Z, where Z is a non-empty open convex set.

Proof. Two service prices are denoted as P1
tot and P2

tot, such that:

P1
tot =

n∑
j=1

P1
SCSP j +

n∑
j=1

{
(Q1

j )
1/γ × p1j

}
andP2

tot =

n∑
j=1

P2
SCSP j +

n∑
j=1

{
(Q2

j )
1/γ × p2j

}
(16)

The respective first order partial derivatives of P1
tot with respect to Qtot,1 is:

∂P1
tot

∂(Qtot,1)
=
{ 1

γ
(Qtot,1)

1−γ
γ ×

n∑
j=1

p1j
}

(17)

where,
∑n
j=1Q1

j = Qtot,1. Similarly, we obtain the first order partial derivative

of P2
tot. From Equation (17), we obtain:[

∂P1
tot

∂(Qtot,1)
− ∂P2

tot

∂(Qtot,2)

](
Qtot,1 −Qtot,2

)
≥ 0 (18)

Therefore, from Equation (17), we infer that Equation (14) is convex [5].

Corollary 1 If the function for payable service price, in Equation (14), Ptot, is
convex, then the function attains a minimum value.

Proof. In Theorem 1, we proved that the function derived in Equation (14) is
convex. We apply the second order partial derivatives on Equations (17) to attain
minimum P1

tot. Therefore, we obtain partial derivative of P1
tot, as:

∂2P1
tot

∂2(Qtot)
=

{
1

γ
× 1− γ

γ
(Qtot)

1−γ
γ −1 ×

n∑
j=1

pj

}
(19)

Further, Equation (19) is equated to 0 and we get:

1

γ
× (1− γ)

γ
× ((Qtot)

1
γ−1−1)×

n∑
j=1

pj = 0 (20)

As the value of γ is positive, Qtot > 0, and pj > 0, Equation (20) gives us a
positive value. Therefore, we conclude that Ptot attain a minimum value.

We apply the Langragian multiplier technique [4] on Equation (15), using
Equations (9) and (13):

Lj =

{
n∑
j=1

PSCSPj +

n∑
j=1

((Qj)1/γ)×
n∑
j=1

pj − µ1(PSCSPmaxj − PSCSPj )− µ2(pmaxj − pj)

+µ3[ (
n

Y )− (

n∑
j=1

(Qj)1/γ)]

}
(21)
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10 Roy et al.

Further, we apply the Karush-Kuhn-Tucker (KKT ) [5] conditions to solve
Equation (21). We obtain the dual feasibility and complementary slackness con-
ditions as follows:

µi ≥ 0,∀i = {1, 2, 3} and µiXi = 0 (22)

where Xi are the constraints as mentioned in Equations (9) and (13). To
obtain the optimal value of Qtot, we use partial derivative on Equation (21)
with respect to Qtot and equate to 0. Therefore,

∂Li
∂Qtot

=
1

γ
× ((Qtot)

1
γ
−1

)×
n∑
j=1

pj − µ3and
1

γ
× ((Qtot)

1
γ
−1

)×
n∑
j=1

pj − µ3 = 0 (23)

Theorem 2. The function proposed by in Equation (23) is convex and attains
a minimum on domain Z.

Proof. Let the variables of function, f(x), be in domain Z, which are subset
of real numbers Rn, and is twice differentiable over a domain, Z. We say that
function f is convex, if its double differentiation, f

′′
(x) > 0,∀x ∈ Z. Equation

(23) represents Langragian function, the variable of the function are real numbers
and are in domain Z. We apply double differentiation on Equation (23) and
obtain:

∂2Li
∂2Qtot

=
1

γ
× (1− γ)

γ
× ((Qtot)

1
γ−1−1)×

n∑
j=1

pj (24)

From, Equation (24) as we know that our domain Z conditions are γ is

positive, ((Qtot)
1
γ−1−1) > 0 and

∑n
j=1 pj > 0. The double differentiation on the

Langrangian function gives a positive value and therefore, the function is convex.

Finally, we obtained optimal (Qtot)∗, as:

(Qtot)∗ = (
µ3 × γ∑n
j=1 pj

)
γ

1−γ (25)

The multiple sets of sensor nodes are able to participate in serving an end-
user application. However, the service charge depends on the quality of the sensor
nodes. Therefore, the SCSP offers an optimal QoS for the sets of sensor node with
the corresponding total payable service price to the end-users. Further, as per
the requirement, the end-user selects one of the sets of sensor nodes, depending
on the optimal QoS and total payable service price among the available ones.

5 Performance Analysis

In this Section, we analyze the performance of our proposed scheme, QSens,
with a detailed explanation of the results. In order to simulate the performance
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12 Roy et al.

Table 1: Simulation Parameters

Parameter Value

Number of sensor nodes 100-1000

Deployment Uniform random

Effective dichotomous variables (ED) 0-10

Effective normalized interval variable (E I) 0-10

Effective ratio variable (ER) 1-10

Effective energy (Eeff ) 0-1

Scaling factor (γ) 1-5

Price for sensor nodes 200-1000

Service charges for SCSP 200-1000

of QSens, we consider the presence of 100− 1000 sensor nodes with a simulation
area of 10 × 10 km2. The value of different simulation parameters are listed in
Table 1. Fig. 3 represents the change in the value of QoS with the variations of
different parameters such as ED, E I, ER, and Eeff . Fig. 3(a) depicts the effect on
QoS for increasing value of the dichotomous variables from 2 to 10. We observe
that the general trend of the plot is increasing with the increase in the number
of dichotomous variables. However, we also observe that the average QoS does
not depend on the variation of the number of sensor nodes. Similarly, Fig. 3(b)
depicts the variations in the QoS with a change in effective interval variables.
Interestingly, we observe that the average QoS is lesser, when the total number
of sensor nodes is 500, than that in the presence of 1000 nodes. We observe
in Fig. 3(c) that with the increasing value of the effective ratio variables, the
general trend of QoS is increasing. However, the presence of the number of
nodes in the network does not affect the variations of QoS. We also evaluate the
variations in the QoS with the change in effective energy consumption. In Fig.
3(d) we notice a smooth decreasing pattern in the QoS with increasing value
of effective energy consumption. We also observed for all the values of effective
energy consumption that the average QoS value is higher when the total number
of nodes in the network is 1000 as compared to that of 500. We also examine
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the total payable service price for an end-user in Fig. 4. Fig. 4(a) depicts the
variations in the total payable service price with the price of the sensor nodes
(pj), considering the price of SCSP as 500 units. In this figure, we observe an
increasing trend in the total payable service price with the increment in the price
of the sensor nodes in the presence of 500 and 1000 sensor nodes. Similarly, in
Fig. 4(b), we consider the price of the SCSP as 1000 and evaluate the effect on
the total payable service price. In this figure, we notice an increasing trend in
the total payable service price with the increment of price of the sensor node
from 200-1000. From Figs. 4(a) and 4(b), we infer that the total payable service
price increases with the increase of the price of the sensor nodes, irrespective of
the number of sensor nodes present in the network. We also evaluate the effect
on total payable service price with the variation in the service charges of SCSP
as depicted in Figs. 4(c) and 4(c). In Fig. 4(c), we vary the service charges of the
SCSP from 200-1000 units and the price of the sensor nodes is fixed at 500 units.
Similarly, Fig. 4(d) depicts the variations in the total payable service price with
the increasing value of service charges of the SCSP from 200-1000 and the price
of the sensor nodes is fixed at 1000 units. However, in both the Figs. 4(c) and
4(d), we do not find any specific standard trend in the plots. Therefore, we infer
that the price of the sensor nodes has the primary effects on the total payable
service price.

In Equation (15), we use a variable γ as a scaling factor, which has significant
effect on the total payable service price. Therefore, we analyze the variations in
the total payable service price with change in the value of γ, as shown in Fig.
5(a). For this analysis, we consider the presence of 200 nodes in the network. We
observe that when the value of γ is 1, the total payable service price attains the
maximum value and decreases with the increasing value of γ. Fig. 5(b) depicts
the change in average QoS with the number of nodes in the networks in the
presence of two applications. For this evaluation, we fixed the number of nodes
to be 4 and 6 for the applications 1 and 2, respectively. We observe the average
QoS of application 2 is higher as compared application 1. Therefore, we infer
that the average QoS also depends on the total number of nodes used in an
application.

6 Conclusion

In this work, we introduced the concept of SLAs for the sensor-cloud architecture
for selecting a set of sensor nodes by the end-users. These SLAs provision the
end-users to access the QoS of all the available sets of sensor nodes, which are
suitable to serve an end-user application. We also designed a scheme, QSens,
which enables the end-users to select a suitable set of sensor nodes, based on the
optimal QoS and the total payable service price, for serving their applications.

In future, we plan to extend the work by proposing a scheme for the QoS-
based optimal resource allocation in sensor-cloud architecture and include as a
component of SLASS . Further, we plan to design a data authentication scheme
for the sensor-cloud architecture and include the same in SLASE .
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