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Abstract—In this paper, we study the problem of dynamic mapping of virtual sensors in sensor-cloud for provisioning high quality
of Sensors-as-a-Service (Se-aaS) in the presence of multiple sensor-owners and heterogeneous sensor nodes. We divide this
problem into two subproblems — optimal dispersed node selection and optimal data-rate distribution, and analyze that these
problems are NP-complete. Hence, we propose a game theory-based online scheme, named QADMAP, to solve these two
problems in polynomial time. For the optimal node selection problem, we design a dynamic coalition-formation game-based
online scheme, while maximizing the dispersion index of the selected nodes. On the other hand, we propose an evolutionary
game theory-based scheme for distributing the data-rate requirements of the services among the selected nodes, optimally.
As per our knowledge, none of the existing works on dynamic mapping of virtual sensors considers the stochastic behavior
of sensor-cloud for provisioning Se-aaS. From simulations, we observe that, using QADMAP, the energy consumption of the
network reduces by 29.88-31.73%, thereby improving the QoS in terms of service availability by 11% and increasing the profit of
the SCSP by 3.63-9.82%, compared to the existing benchmark schemes.

Index Terms—Sensor-Cloud, Game Theory, p-Dispersion, Virtual Sensors, Se-aaS

F

1 INTRODUCTION
Sensor-Cloud is an emerging service-oriented architec-
ture based on Wireless Sensor Networks (WSNs).
This model extends the applicability of WSNs by
combining it with cloud infrastructure. Thus, sensor-
cloud emerges as a highly scalable and easily ac-
cessible system, which is capable of serving a huge
number of users [1], [2]. Essentially, the Sensor-Cloud
Infrastructure is built on the concept of virtualisa-
tion of hardware resources of cloud computing [3],
thereby enabling the same physical sensor nodes to
be used for serving multiple end-user applications
simultaneously. Similar to other cloud-based infras-
tructures, a centralized Sensor Cloud Service Provider
(SCSP) obtains physical wireless sensor nodes from
their respective sensor-owners. With the help of cloud
infrastructure, virtualized instances of these sensor
nodes are created by the SCSP and provisioned to the
end-users in the form of ready-to-use service, popularly
known as “Sensors-as-a-Service” (Se-aaS) [4].

Thus, in sensor-cloud, there is a clear demarcation
of the responsibilities of the various actors involved.
The sensor-owners purchase, deploy and maintain
their sensor nodes and register their information with
SCSPs. The SCSPs maintain the necessary cloud in-
frastructure to virtualize these resources and provi-
sion Se-aaS to the end-users. On the other hand, the
end-users register their service requirements with the
SCSPs and utilize Se-aaS for running their WSN-based
applications. Additionally, these three actors also earn
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financial benefits [5] from the system — the end-users
only pay for the amount of service consumed based
on pay-per-use model, while the sensor-owners and the
SCSP earn revenue by providing the services.

In the existing literature, sensor-cloud is envisioned
as a potential solution to the problem of remote
management of a large number of WSNs. Misra et
al. [4] justified the necessity of the paradigm shift
from traditional WSNs to sensor-cloud by showing
decreased resource consumption, and increased cost-
effectiveness. Evidently, from the point of view of
SCSP, the profitability of such a highly scaled infras-
tructure as sensor-cloud is largely dependent on the
availability and efficient utilization of resources. In
several existing works, researchers aimed to improve
the resource utilization in terms of energy efficiency
and the network lifetime of sensor-cloud, viz., dy-
namic duty scheduling [6], optimal gateway node
selection [7], bridge node selection [8], optimal virtual
sensor formation [9] and optimal cache selection [10].
However, to increase the availability of sensor nodes,
the SCSP must try to increase the participation of
sensor-owners in the sensor-cloud market by giving
each sensor-owner equal chances to earn profit [11].

On the other hand, from the point of view of end-
users, it is also essential that the high quality of
seamless and uninterrupted Se-aaS is provided by the
SCSP [12]. Since physical sensor nodes are highly con-
strained in terms of energy, computation and storage
capabilities, the SCSP must ensure that the selected
set of physical sensor nodes for a service request are
capable of serving it. Additionally, the SCSP must also
ensure that the service load is optimally distributed
among the sensor nodes to prevent unwanted failures
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due to overburdening of nodes. However, as per our
knowledge, none of the existing works considered
the problem of optimal mapping of virtual sensors
in sensor-cloud, while maintaining a high quality
of delivered service and ensuring that the physical
sensor nodes are not over-burdened.

In this paper, we propose a QoS-aware dynamic
scheme, named QADMAP, for the mapping of virtual
sensors to physical sensor nodes in sensor cloud. The
major contributions of this work are listed as follows:

a) We address the problem of dynamic optimal
mapping of virtual sensors to physical sensor nodes
for ensuring high QoS of Se-aaS in terms of service
availability and reduction in service disruptions.

b) We divide the aforementioned problem into two
sub-problems — optimal sensor node selection and
optimal data-rate distribution. Thereafter, we reduce
these sub-problems from well-known NP-complete
problems and show that these are NP-complete.

c) We model the two sub-problems using dynamic
coalition formation game and evolutionary game the-
oretic approaches, respectively, and provide an online
scheme to solve these in polynomial time.

d) Finally, we present the performance evaluation of
the proposed scheme, QADMAP, in terms of certain
parameters, viz., network lifetime, total energy con-
sumption, bandwidth utilization, and network over-
head while comparing with existing schemes.

2 RELATED WORKS

In this section, we discuss some of the works pre-
sented in the existing literature related to the mapping
of virtual sensors in sensor-cloud. We divide the
related works into two categories. First, we discuss the
works related to the optimal selection of sensor nodes.
Thereafter, the works related to the optimal data-rate
distribution among sensor nodes are discussed.

There exist several works in the existing literature
which propose schemes for the selection of physi-
cal sensor nodes for the creation of virtual sensors.
Misra et al. [4] proposed the selection of the maximal
subset of compatible nodes based on type, QoS level
and location requirements of the services. However,
this scheme is highly resource consuming and hence,
an improvement of this scheme was proposed by
Chatterjee et al. [9]. In [9], the authors proposed
two schemes – COV-I and COV II – for the optimal
composition of virtual sensors, while considering the
resource-constrained behavior of the nodes and the
geographical locations of the nodes. However, the
economic aspects of the sensor-cloud market are not
considered by the authors. Roy et al. [11] proposed
another scheme for the dynamic mapping of virtual
sensors in the presence of multiple sensor-owners
having overlapping deployment region. The authors
attempted to increase the participation of sensor-
owners by giving them equal opportunities to earn

profits. However, this work does not consider the
possibility of multiple virtual sensors being served
using the same sensor node. Kim et al. [13] proposed
another game theoretic algorithm for sensor node
selection in sensor-cloud while considering the pos-
sibility of untruthful behavior of the sensor owners.
Ojha et al. [14] proposed another sensor node selection
scheme for sensor-cloud while considering the energy
consumption of the network and the profit of the
SCSP and the sensor-owners. However, these works
do not consider the capacity of the sensor nodes
for service provisioning. In the existing literature,
researchers proposed a few schemes for the optimal
selection of physical sensor nodes in WSNs, viz., [15]–
[17] and Internet-of-Things devices [18], [19]. How-
ever, these schemes are designed with the aim of
solving specific issues such as coverage and event-
detection. For example, Delicato et al. [16] proposed a
scheme for the selection of an optimal subset of sensor
nodes for serving a particular application. Based on
the QoS requirement of the application, the duty cycle
of the nodes in the network is varied to obtain energy
savings. Bajović et al. [17] proposed a scheme for the
selection of p optimal sensor nodes for increasing the
probability of event detection. However, none of these
schemes are suitable for sensor-cloud because these
schemes consider that the WSN supports only a single
application, which is not the case for sensor-cloud.

Fig. 1: Schematic Diagram of QADMAP

On the other hand, in existing literature, a few
resource allocation schemes are proposed by the re-
searchers for sensor-cloud. Delgado et al. [20] pro-
posed an optimal resource allocation algorithm for
sensor-cloud for maximizing the number of appli-
cations that can be served using the same sensor
node while considering the limitations of the WSNs.
Another heuristics-based hybrid resource allocation
scheme for sensor-cloud was proposed by Santos et
al. [21] which aims to reduce resource consumption
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by executing tasks common to multiple applications
exactly once and share their results. However, these
works neither consider the reduction of the number of
activated nodes nor consider the presence of sensor-
owners. In WSNs, there exist some works which
propose schemes for optimal load distribution [22].
For example, clustering schemes proposed by Wajgi
and Thakur [23] and Yournis and Fahmi [24] ensure
distribution of load among the sensor nodes in the
network by electing cluster heads and replacing them
based on their energy level. However, these schemes
are also not suitable for sensor-cloud as it comprises
multiple WSNs where each WSN is owned and de-
ployed by different sensor-owners. Additionally, in
sensor-cloud, a single sensor node is used to serve
multiple services, unlike traditional WSNs.

3 SYSTEM MODEL

We consider a sensor-cloud infrastructure involving
a single Sensor-Cloud Service Provider (SCSP) with
multiple registered end-users and sensor-owners as
shown in Figure 1. Each end-user u ∈ U(t) can request
services from the SCSP at any time instant T , where
U(t) is the set of registered end-users at time t and
T ≥ t. The set of services requested by end-user u is
denoted by Su(t) such that Su(t) = {su1 , su2 , · · · , suk},
where k is the total number of services requested
by end-user u. For each service s ∈ S(t), where
S(t) =

⋃
u
Su(t), the corresponding end-user spec-

ifies the service requirements using the 5-tuple <
τs, as, rs, ηs, ts >, where τs is the type of service
requested, i.e., type of the sensed data, as is the
region of interest, rs is the required data-rate, ηs is
the number of physical sensor nodes required, and ts
is the start time of service s. Moreover, each end-user
needs to ensure that ηs ≥ ηmins , where ηmins , which is
decided by the SCSP, denotes the minimum number of
physical sensor nodes needed for ensuring complete
sensing coverage of the region of interest.

Based on these requirements, the SCSP provisions
virtual sensors for the requested services. We consider
that the SCSP serves each service request using a sin-
gle virtual sensor. Thus, the set of virtual sensors pro-
visioned by the SCSP for each end-user u is denoted
by Vu(t) = {vu1 , vu2 , · · · , vuk} where k = |Su(t)|. Thus,
each virtual sensor vss ∈ V(t), where V(t) =

⋃
u
Vu(t),

needs to satisfy the requirements of service s. Due
to this one-to-one correspondence between services
and virtual sensors, we use the two terminologies
interchangeably in the rest of the paper.

On the other hand, we consider that each sensor-
owner o ∈ O(t), where O(t) is the set of registered
sensor-owners at time t, owns no number of phys-
ical sensor nodes which are rendered to the SCSP
for provisioning Se-aaS. The set of physical sensor
nodes associated with sensor-owner o is represented

as Po(t) =
{
po1, p

o
2, · · · , pono

}
. Each physical sensor

node p ∈ P(t), where P(t) =
⋃
o
Po(t), serves Vp(t) ⊆

V(t) set of virtual sensors. Here, |Vp(t)| ≥ 0. Hence,
each physical sensor p is denoted using the tuple
< idp, locp, {(τs, rs)|vss ∈ Vp(t)} >. Moreover, each
virtual sensor vss needs to be mapped to ηs number
of physical sensor nodes. We define an association
parameter xs,p as follows:

xs,p =

{
1, if service s is served by sensor node p
0, otherwise

(1)
Therefore, we get — |Vp(t)| =

∑
s∈S(t) xs,p. Addi-

tionally, the following condition holds:

ηs ≤
∑

p∈P(t)

xs,p (2)

From the above discussion, it follows that, in order
to increase the resource utilization of the sensor-cloud
infrastructure and earn high profits, it is necessary
for an SCSP to determine the optimal mapping of
end-user service requests with the physical sensor
nodes. However, to sustain in the sensor-cloud mar-
ket, the SCSP must simultaneously ensure that the
high quality of seamless Se-aaS, in terms of service
availability and reduced service failures, is delivered
to the end-users as per their requirements and that the
registered sensor owner is given equal opportunity to
earn a profit. Hence, to achieve these objectives, the
SCSP must choose and distribute the service requests
among the physical sensor nodes in such a way that
— (a) Nodes are not overburdened, (b) Minimum
number of nodes are activated in the network at each
time and (c) Each node is given equal opportunity to
participate in provisioning Se-aaS. Therefore, in this
work, we propose a dynamic mapping scheme for
sensor-cloud to address the aforementioned problems.
We divide our principal objective into two subparts:

Objective 1: Choose an optimal set of physical sen-
sor nodes for serving the virtual sensors such that the
requirements of the end-users are fulfilled and each
sensor node, as well as each sensor-owner, obtains a
fair chance to participate in Se-aaS provisioning.

Objective 2: Distribute the service load optimally
among the chosen set of sensor nodes such that none
of the sensor nodes are overburdened and the QoS of
Se-aaS in terms of service availability is ensured.

4 PROBLEM FORMULATION

In this section, we study and formulate the aforemen-
tioned problems, mathematically, while introducing
two optimization problems — (1) Optimal node se-
lection and (2) Optimal data-rate distribution. We dis-
cuss these two problems elaborately in the following
sections.
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4.1 Optimal Node Selection

Given the number of sensor nodes, B, to be activated
for serving a given set of services, the SCSP needs
to decide the optimal set of nodes to be selected
such that each sensor node, as well as each sensor-
owner, obtains a fair chance to participate in Se-aaS
provisioning. Thereby, the SCSP must ensure that
the selected sensor nodes — (1) are not concentrated
within a small part of the region of interest, (2) do
not belong to the same owner, and (3) cover most
part of the region of interest. In other words, the
SCSP needs to ensure that the selected nodes are
dispersed in terms of location, ownership, and hop
count, respectively. To quantify the dispersion of the
sensor nodes, we define the dispersion index dpi,pj of
two nodes pi and pj as defined in Definition 1.

Definition 1. The dispersion index Ipi,pj of two nodes pi
and pj is defined as the Euclidean distance between the
two points, i.e., pi and pj , in a three-dimensional space,
in which X-axis represents the magnitude δpi,pj of the
normalized physical distance vector, Y-axis represents the
dissimilarity in ownership θpi,pj , and Z-axis represents the
normalized hop-count difference hpi,pj between nodes pi
and pj . Mathematically,

Ipi,pj =
√
δ2
pi,pj + θ2

pi,pj + h2
pi,pj (3)

where δpi,pj =
dpi,pj

max{dpi,pj |1≤i<j≤|
⋃
t
P(t)|} , dpi,pj is the Eu-

clidean distance between sensor nodes pi and pj , hpi,pj =
hpi
−hpj

max{hpn |1≤n≤|
⋃
t
P(t)|} , hpi is the hop-count of node pi from

the base-station and θpi,pj is a binary variable and defined
as follows:

θpi,pj =

{
1, if pi ∈ Po(t), pj ∈ Põ(t), and o 6= õ
0, otherwise

(4)

The objective of the SCSP is to select the optimal
set of nodes P ⊆

⋃
t
P(t) having cardinality B while

maximizing the minimum dispersion index between
any two pair of nodes. Mathematically, we have:

max f(P ) (5)

where f(P ) = min{Ipi,pj : 1 ≤ i < j ≤ |
⋃
t
P(t)|}.

Equation (5) needs to satisfy the following constraints:

P ⊆
⋃
t

P(t) and |P | = B (6)

We observe that the aforementioned problem is an
NP-complete problem as discussed in Theorem 1.

Theorem 1. The problem of selecting the optimal dispersed
subset of sensor nodes in sensor-cloud is NP-complete.

Proof: Refer to the supplementary file.

4.2 Optimal Data-Rate Distribution
We consider that the sequence of service requests of
the end-users are known to the SCSP a priori. The set
of registered sensor-nodes available to the SCSP for
service provisioning also remains fixed and known to
the SCSP. We denote the state of each sensor node p
using a variable yp, which is defined as follows:

yp =


1, if sensor node p is in active state,
i.e., {s|xs,p = 1 & ∀s ∈

⋃
t
S(t)} 6= {∅}

0, otherwise
(7)

Hence, the SCSP tries to minimize the number of
activated nodes in the system to serve the given set
of service requests. Mathematically,

B = min
∑
p

yp (8)

while satisfying the following constraints along with
the constraints given in Equations (1) and (7):

∑
p

yp
∑
s

rsxs,p =
∑
s

ηsrs (9)∑
s

rsxs,p ≤ Rmax and
∑
p

xs,p = ηs (10)

where Rmax is the maximum data-rate supported by
each node. Using Equation (9), the SCSP ensures that
the data-rate requirement of each service-request is
satisfied. We observe that the problem of optimal
data-rate distribution is an NP-complete problem as
discussed in Theorem 2.

Theorem 2. The problem of optimal data-rate distribution
among sensor nodes in sensor-cloud is NP-complete.

Proof: Refer to the supplementary file.
In addition to the NP-completeness of the problems

discussed in this work, it is not feasible for an SCSP
to obtain the prior knowledge of the service request
sequence in the sensor-cloud scenario. Hence, we
propose a cooperative game theory-based online scheme
to reduce the complexity of the optimal data-rate
distribution and node selection problems and solve
these in polynomial time, as discussed in Section 5.

5 PROPOSED QADMAP SCHEME

In this work, we model the problem of optimal dy-
namic mapping of virtual sensors in sensor-cloud
using cooperative game theory and propose an online
scheme, named QADMAP, to ensure high quality
of Se-aaS in terms of increased service availability
and reduced service failures. To achieve the overall
objective of optimal mapping of virtual sensors in
polynomial time, we address Objective 1 mentioned
in Section 3 first, followed by Objective 2. Thus, using
the proposed scheme, the SCSP receives the service
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requests from the end-users and forms the candidate
set of the nodes to be selected using dynamic coalition
formation game as discussed in Section 5.1. Thereafter,
SCSP distributes the data-rate among the selected
dispersed set of sensor nodes using an evolutionary
game as discussed in Section 5.2.

5.1 Optimal Node Selection Game

We model the problem of optimal sensor node se-
lection for service provisioning in sensor-cloud us-
ing a dynamic coalition formation cooperative game with
transferable utility [25]. Based on the incoming service
requests of the end-users, the SCSP decides the num-
ber of sensor nodes that need to be activated while
satisfying the following constraint:

|P(t)| ≥ max{max{ηs|∀s}, d(
∑
s

rsηs)/Rmaxe} (11)

where s ∈ S(t) and P(t) is the set of nodes to be
activated. The components of the proposed game are
discussed as follows:

Players and Strategies: The set of available phys-
ical sensor nodes are considered to be the players of
this game. The sensor nodes which are used to serve
the end-user service requests form a coalition set P(t).
Each player has two different strategies — either to
join the coalition or to remain in the sleep state.

5.1.1 Utility Function of Players

The utility function Uj,i(t) of each player or physical
sensor node, pj , signifies the dispersion index of the
sensor node with respect to another sensor node pi ∈
P(t) in the coalition. The payoff of the utility function
Uj,i(t) is considered to be same as the dispersion index
mentioned in Definition 1. Therefore, we get:

Uj,i = Ipj ,pi

Thereby, each sensor node pj calculates a utility
vector Uj(t) having length |P(t)|. Therefore, we define
Uj(t) as follows:

Uj(t) = [· · · Uj,i · · · ], ∀pi ∈ P(t) (12)

5.1.2 Utility Function of Coalition

The utility function C(pj , t) of the coalition of physical
sensor nodes signifies the transferable payoff value
of the players, i.e., sensor nodes, in the coalition,
while adding sensor node pj into the coalition. C(pj , t)
is calculated as the cumulative dispersion value of
the set of sensor nodes belonging to the coalition.
Therefore, we define the utility function C(pj , t) as
a function of the utility vector of |P(t)|+1P2 pairs of
elements from the set (P(t)

⋃
{pj}) of sensor nodes in

the coalition. Hence, we define C(pj , t) as follows:

C(pj , t) =
∑

pk∈(P(t)
⋃
{pj})

||Uk(t)|| (13)

where ||Uk(t)|| is the Manhattan Norm [26] of utility
vector Uk(t). We argue that high payoff of C(pj , t) im-
plies that the sensor nodes belonging to the coalition
having sensor node pj have high cumulative disper-
sion value. Therefore, the SCSP tries to maximize the
payoff of the utility function C(pj , t) of the coalition
based on a preference relation among the possible
coalitions as defined in Definition 2.

Definition 2. Given a set of physical sensor nodes P(t)
and an existing coalition P(t), the preference relation
among two possible coalitions A = (P(t)

⋃
{pj}) and

B = (P(t)
⋃
{pk}) follows A B B, if and only if the

following inequality holds:

C(pj , t) ≥ C(pk, t) (14)

where pj , pk ∈ P(t) and j 6= k. Hence, pj has a higher
chance of merging into the coalition P(t) compared to pk.

Using this optimal node selection game, SCSP en-
sures that an optimal set of dispersed nodes are
activated while satisfying the constraints given in
Equation (11).

5.2 Optimal Data-Rate Distribution Game

We use an evolutionary game theoretic approach to
formulate the problem of optimal data-rate distribu-
tion in QADMAP. The different components of this
game are discussed as follows.

Players: In QADMAP, each virtual sensor vsk
needs to be mapped to at least ηk number of sensor
nodes. We consider that the SCSP creates ηk instances
for virtual sensor vsk. Each virtual sensor instance
vski of virtual sensor vsk is considered as a player in
QADMAP. Hence, the total number of players in the
proposed scheme is

∑
vsk∈V(t) ηk.

Strategies: The strategy of a virtual sensor in-
stance in the evolutionary game is to choose a par-
ticular sensor node pj ∈ P(t) for being served. We
consider that no two instances of the same virtual
sensor can be mapped to the same sensor node.

Population and Population Share: The set of
virtual sensor instances determines the population in
this evolutionary game. One or more instances of
the different virtual sensors may choose the same
physical sensor node for serving them. Such a group
of virtual sensor instances choosing the same physical
sensor node form the population share of that node.
Moreover, in sensor-cloud, the virtual sensors have
varied data rate requirements. Hence, we define the
population share wj of each sensor node pj ∈ P(t)
in terms of the data-rate supported by the node as
follows:
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wj(t) = (
∑
s∈S(t)

rsxs,j)/(
∑
j

∑
s∈S(t)

rsxs,j) (15)

At any time instant, the state of the entire popula-
tion of virtual sensor instances is specified completely
using the vector W(t), defined as follows:

W(t) = [ · · · wj(t) · · · ] (16)

The population share given in Equation (15) must
satisfy the following constraint:∑

pj∈P(t)

wj(t) = 1 (17)

5.2.1 Fitness Function of each Strategy in QADMAP

In QADMAP, we define the fitness function of each
strategy, i.e., physical sensor node, as the payoff ob-
tained by each player, i.e, virtual sensor instance, for
selecting that particular strategy. It is calculated as
the difference between the utility yield and the cost
incurred for choosing a particular strategy. Hence, the
fitness function of strategy j, i.e, mapping of physical
sensor node pj to virtual sensor instance, vski of virtual
sensor vsk, is expressed as follows:

πj(·) = Uj(·)− Cj(·) (18)

where Uj(·) is the utility function, and Cj(·) is the cost
function for selecting physical sensor node pj .

We define the parameters to be used for the calcu-
lation of the fitness function in the following sections.

5.2.1.1 Average Duration of Service (τ̄(t)): We cal-
culate the mean service time τ̄(t) based on the service
duration of the incoming applications over past h time
instants. Therefore, we define τ̄(t) as follows:

τ̄(t) =



∑
vsi∈Θ1(t)

τi∑
vsi∈Θ1(t)

1 ,Θ1(t) =
t⋃

t′=(t−h)

V(t) and t ≥ h∑
vsi∈Θ2(t)

τi∑
vsi∈Θ2(t)

1 ,Θ2(t) =
t⋃

t′=0

V(t′) and t < h

(19)
where τi is the time duration of virtual sensor vsi is
served by the SCSP. We consider that the sensor-cloud
follows the pay-per-user model [5], and the duration
of services are not specified beforehand by the end-
user. Hence, the SCSP uses mean service time τ̄(t) to
estimate the average cost of serving a virtual sensor
using a particular physical sensor node.

5.2.1.2 Effective Data-Rate (Reffj (t)): In sensor-
cloud, each physical sensor node pj serves multiple
virtual sensors, having different data-rate require-
ments. Thus, each sensor node sources multiple inde-
pendent streams [27] of data to serve multiple virtual
sensors. Hence, we define the effective data stream
rate Reffj (t) of each physical sensor node pj as the

summation of the data-rates of the streams supported
by it. Mathematically, we have:

Reffj (t) =
∑
s

rsxs,j (20)

where
∑

s∈S(t)

rs,jxs,j = wj(t)
∑
j

∑
s∈S(t)

rs,jxs,j .

5.2.1.3 Data-Rate Utilization Factor (ζj(t)): The
data-rate utilization factor ζj(t) of a physical sensor
node pj is defined as the fraction of the maximum
data-rate supported by pj , Rmax, used for serving the
set of virtual sensors Vj(t). Mathematically,

ζj(t) =
Reffj (t)

Rmax
(21)

In QADMAP, we ensure high value of ζj(t) for
active nodes. Therefore, in sensor-cloud, active node
consolidation is achieved using QADMAP. Thereby
the efficiency of the sensor-cloud is improved.

5.2.1.4 Average Energy Consumption (∆Ej(t)):
Physical sensor nodes are energy constrained devices.
Hence, energy consumption plays an important role
in determining the number of applications that can
be served by a node. We define the average energy
consumption of a node pj as the amount of energy
consumed by the node for serving the set of virtual
sensors Vj(t) for average service duration τ̄(t). The
total energy consumed by a node is decomposed into
several components, described as follows:

a. Sensing Energy (Esn): We define Esn the amount
of energy consumed per unit time for sensing data at
a constant rate by a sensor node. Here, we assume
that the sensor nodes, which are in the active state,
since data at the same rate irrespective of the end-
user applications. Hence, Esn is considered to be the
same for the active sensor nodes.

b. Transmission Energy (Etx): It is the amount of
energy spent by a sensor node for transmitting each
data packet, and is assumed to be constant.

c. Computation Energy (Epc): Epc is defined as the
amount of energy consumed for each packet by a
sensor node for performing computations and aggre-
gation, on the raw sensed data to generate a processed
data to be transmitted to the base station.

Thus, we define the average energy consumption of
a physical sensor node pj for serving the set of virtual
sensors, Vj(t), as follows:

∆Ej(t) =
(
Esn + EtxReff

j (t) + EpcRS
)
τ̄(t) (22)

where, RS is the sensing rate. For providing uninter-
rupted service, the SCSP needs to ensure that:

∆Ej(t) ≤ Ejres(t) (23)

where Ejres(t) is the residual energy of node pj .
5.2.1.5 Average Buffer Usage (∆Mj(t)): The

amount of buffer memory that must be possessed by
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a physical sensor node, pj in order to serve the set
of virtual sensors vsj successfully for average service
duration, τ̄(t) is defined as the average memory re-
quirement of the node. Considering the amount of
data generated per sensing to be µ, we have:

∆Mj(t) = (µRS)/(Reffj (t)) (24)

To reduce the chances of loss of data, the SCSP
needs to satisfy the following constraint:

∆Mj(t) ≤M j
max (25)

where M j
max is the maximum buffer size of sensor

node pj .
5.2.1.6 Utility Function (Uj(·)): The utility func-

tion of a virtual sensor for selecting a particular
physical sensor node is defined in terms of the data-
rate utilization factor of the node. We define the utility
function as follows:

Uj (·) = γ1ζj(t) (26)

Hence, with the increase in the value of the data-
rate utilization factor, the value of the utility function
also increases.

5.2.1.7 Cost Function (Cj(·)): We define the cost
incurred for selecting physical sensor node pj in terms
of the average energy consumption and the average
memory requirement of the node, as follows:

Cj (·) = γ2
∆Ej(t)

Ejres
(t)− γ3

M j
max

∆Mj
(t) (27)

Hence, we evaluate the fitness function of the strat-
egy pj for being selected by player vski , as follows:

πj(·) = αj(t)wj(t)− βj(t) (28)

where βj(t) = γ2[
(EpcRS+Esn)τ̄(t)

Ej
res(t)

], αj(t) =

γ1[
λj

Rmax
] − γ2[Etxτ̄(t)

Ej
res(t)

]λj + γ3 ≤ [
λjM

j
max

µRS ], and
λj =

∑
j

∑
s∈S(t) rsxs,j .

5.2.2 Replicator Dynamics and Evolutionary Equilib-
rium
The evolution of the state of the population over time
in an evolutionary game is modeled using the repli-
cator dynamics equation. In an evolutionary game,
the population share of the various strategies changes
based on the value of the corresponding fitness func-
tion. The strategies having a higher value of fitness
function compared to others are replicated at a faster
rate, resulting in higher population share. This prop-
erty is very similar to that of biological evolution, in
which individuals having traits more fit for survival
compared to others, reproduce or replicate and in-
crease in number. On the other hand, the replication
rate of the fewer fit individuals decreases eventually
leading them to become extinct.

In order to define the replicator dynamics, we first
calculate the average fitness value π̄(·) of the entire
population, as follows:

π̄(·) =
∑
j

wj(t)πj(·) =
∑
j

[
αj(t)w

2
j (t)− βj(t)wj(t)

]
We define the replicator dynamics of the evolution-

ary game considered in QADMAP as follows:

ẇj(t) = σwj(t) (πj(·)− π̄(·)) (29)

where σ is a constant signifying the evolution con-
trolling parameter. It is evident from Equation (29)
that a high value of πj(·) results in a greater change
in the value of wj(t) and the change is positive,
if πj(·) > π̄(·). It is also evident that the popula-
tion dynamics cease to change, when the value of
ẇj(t) becomes equal to zero. At this time instant, the
state of the population becomes fixed and the system
reaches evolutionary equilibrium. For the solution of
the evolutionary equilibrium of QADMAP using the
replicator dynamics, the reader is requested to refer
to the supplementary file.

5.3 Proposed Algorithms
As mentioned earlier, the proposed QADMAP scheme
is composed of two parts — optimal node selection
and optimal data-rate distribution. Initially, the SCSP
calculates the dispersion index between each pair of
available nodes and stores these values in a matrix.
This matrix is updated whenever a new node is regis-
tered with the SCSP or a node leaves the network. On
receiving each service request, the SCSP determines
the set of available sensor nodes for service provi-
sioning, while considering that the residual energy of
each sensor node is above a threshold value. Then,
the SCSP decides whether the requirement of the
end-users can be fulfilled using the set of already
active sensor nodes using a greedy approach. If the
total data-rate requirement of the received service
requests exceeds the total data-rate capacity of the
active sensor nodes, at least n new nodes are activated
where n = (total data-rate requirement - total data-
rate capacity of the active sensor nodes)/(max capac-
ity of each node). In addition to that, we consider that
the SCSP activates δ number of new nodes, where
δ ≥ 0, such that the SCSP can accommodate sudden
changes in the requirements of the service requests.
Thereafter, the SCSP determines the set of nodes to
be selected using Algorithm 1. The optimal service
load distribution among the set of selected nodes,
i.e., the population share of each node, is obtained
using Algorithm 2. Then, using a general brute-force
algorithm, the SCSP decides the mapping of the vir-
tual sensors with the physical sensor nodes, while
ensuring that the maximum data-rate allocated to a
node does not exceed its calculated population share.
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Complexity Analysis
We present the asymptotic complexity analysis of
Algorithms 1 and 2 in this section. As QADMAP is an
online scheme, these two algorithms are performed by
the SCSP whenever a new service request is received.
Based on the service requirements, the value of n is
determined and Algorithm 1 is performed. The while
loop (Lines 3-10) in Algorithm 1 is executed θ(n) and
O(|P(t)|) times. The inner for loop (Lines 4-7) needs to
be computed for all idle nodes, i.e., O(|P(t)| − |P(t−
1)|) ≡ O(|P(t)|) times. The computational complex-
ity to execute Line 9 of Algorithm 1 is O(ln |P(t)|).
Hence, the overall time complexity of Algorithm 1 is
computed as O(n|P(t)|) +O(n ln |P(t)|) = O(n|P(t)|),
where n ≤ |P(t)|. Additionally, the space complexity
of Algorithm 1 is O((|P(t)|)2), which is required to
store the matrix of the dispersion indices of the nodes.
On the other hand, each of the for loops (Lines 1-3,
5-7, and 9-12) of Algorithm 2 are executed O(|P(t)|)
times. The do-while loop (Lines 4-13) is iterated K
times in order to reach evolutionary equilibrium state.
Therefore, the overall time complexity of Algorithm 2
is O(K|P(t)|).

6 PERFORMANCE EVALUATION

In this work, we attempt to increase the profit of SCSP
by reducing the resource consumption of sensor-cloud
and increasing the number of services that it can
support while ensuring high quality of delivered ser-
vice. To evaluate the performance of our proposed
scheme QADMAP, we conduct extensive simulations
and present our results in this section.

6.1 Simulation Parameters

We perform the simulation experiments in MATLAB.
We consider that wireless sensor nodes are deployed
by multiple sensor-owners in a 500× 500 m2 terrain,
randomly. The base station is located at the center of
the terrain. The sensor-owners are registered with the

TABLE 1: Simulation Parameters

Parameter Value
Simulation area 500 m×500 m
Number of sensor owners 5

Number of sensor nodes 50− 250

Communication protocol IEEE 802.15.4
Initial energy of each node 20 J [28]
Communication range 100 m
Packet Header size 6 bytes
Packet Payload size 128 bytes
Maximum data-rate 250 kbps/node
Tx-Rx energy 50 nJ/bit [29]
Amplifier energy 100pJ/bit-m2 [29]
Processing energy 70 nJ/bit [9]
State-transition energy 30 nJ/bit [9]
Sensing energy 10 nJ/bit-m2 [9]
Number of service requests 10-30
Maximum data-rate/service 20 packets/sec

SCSP having multiple registered end-users. The SCSP
receives service requests having varied requirements
from the end-users. Without loss of generality, we con-
sider that the service requests arrive at the SCSP after
τ seconds and have a fixed requirement of 10 physical
sensor nodes. For simplicity, we consider that each
sensor node is equipped with multiple sensors and
supports all types of service requests. Additionally,
we consider that maximum data-rate supported by
each sensor node is 250 kbps and each data packet
has a payload of 128 bytes. Thereafter, we varied the
total number of physical sensor nodes from 50 to
150 and the number of virtual sensors from 10 to
30 to study the performance of QADMAP. Motivated
by the works [9], [28]–[30] in the existing literature,
the values of the various parameters considered for
simulations are shown in Table 1.
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6.2 Benchmarks

The performance of the proposed QADMAP scheme
is evaluated through comparisons with three existing
benchmark schemes. Two of these schemes, viz., op-
timal composition of virtual sensors (COV) by Chat-
terjee et al. [9] and dynamic virtual sensor formation
in the overlapping region (DIVISOR) by Roy et al.
[11], are proposed in the context of sensor-cloud for
addressing the problem of virtual sensor composition,
i.e., mapping of virtual sensors to physical sensor
nodes. The third one, i.e., sensor selection for event
detection (SSED) by Bajovic et al. [17], is designed
for event-driven WSNs for addressing the problem of
selecting the optimal subset of physical sensor nodes
for event detection.

In COV, the authors proposed an optimal virtual
sensor formation scheme, COV-I, which is concerned
with sensor nodes deployed over a single region of
interest. In the proposed scheme, the authors deter-
mine the goodness of each node based on its physical
parameters and optimize the quality-of-information
based on requirements of end-users. In DIVISOR, the
authors proposed a dynamic scheme for the composi-
tion of virtual sensors while taking into consideration
the number of times each sensor node is rented. This
scheme is designed to ensure that each sensor-owner
gets equal opportunity to earn a profit. In SSED, the
authors proposed a scheme for the selection of an
optimal subset from a given set of sensor nodes for

event detection using WSNs. However, none of the
afore-mentioned schemes consider the possibility of
selection of a single sensor node for serving more
than one applications, which is an inherent advantage
of sensor-cloud. Additionally, in these schemes, the
authors did not consider the optimal distribution of
service load among the sensor nodes for reducing
energy consumption and ensuring high profit of SCSP.

6.3 Performance Metrics

We evaluate the performance of QADMAP based on
the following performance metrics:

Number of Activated Nodes: For a fixed number
of services, lower value of activated nodes indicates
improved resource utilization and hence, increased
profit of SCSP. We calculate the number of activated
nodes, Nact, as — Nact = | ∪ P(t)|.

Network Energy Consumption: The total energy
consumption of the network for serving a fixed num-
ber of services is measured by the difference of the
cumulative initial energy of the nodes and the cumu-
lative residual energy of the nodes after serving the
services. In addition to the components mentioned
earlier, it also includes the energy required for the
activation of the sensor nodes. Mathematically, we
have — Enwcons =

∑
pj

(Ejinit − Ejres) ∀pj ∈ ∪P(t).
Lesser values of energy consumption imply lesser
chances of node failure and higher QoS.
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Profit of Sensor-Owners: Profit earned by each
sensor-owner is directly proportional to the number
of times the sensor nodes belonging to the sensor-
owner are utilized by the SCSP for providing ser-
vices. We estimate the profit of each sensor-owner as
— Profitoi = ρ

∑
∪Poi

(t)

∑
s∈∪S(t) xs,j , where ρ is the

per unit profit earned by a sensor-owner per service
per active sensor node and Poi(t) is the set of activated
nodes belonging to sensor-owner oi. Higher profits
earned by sensor-owners induce more participation
of sensor-owners in the sensor-cloud market, which,
in turn, improves service availability for end-users.

Unserved Service Requests: When the compatible
sensor nodes are completely utilized or are busy
serving other allocated virtual sensors, and no sensor
nodes are available to the SCSP for provisioning
services, the service requests of the end-users are
dropped due to service unavailability. This directly
affects the QoS of Se-aaS delivered by the SCSP,
thereby resulting in losses for the SCSP. Therefore, the
number of unserved service requests is considered to
be indirectly proportional to the service availability,
i.e., QoS of Se-aaS, and directly proportional to the
loss of the SCSP.

Profit of SCSP: The profit earned by an SCSP,
Profitscsp, is calculated as the difference of the rev-
enue earned by the SCSP, Ps, for providing Se-aaS to
the end-users and the cost borne by the SCSP for ser-
vice provisioning. We calculate the profit of the SCSP
as — Profitscsp =

∑
s∈∪S(t)(Ps−Cvss −Cpsns

∑
p xs,p),

where, Cvss and Cpsns are the costs for virtual sensor
creation and maintenance and price paid to sensor-
owners for physical sensor nodes, respectively. With
the increase in the number of services served, the
profit of the SCSP also increases.

6.4 Results and Discussions

To study the evolution of load distribution among
sensor-nodes, we simulated with 20 virtual sensors
and 4 selected physical sensor nodes. From Figures

2(a) and 2(b), we observe that the population share
and the utility of each of the selected nodes converge
to the same value after 6 − 7 iterations and the
evolutionary equilibrium is reached. Thus, even dis-
tribution of service load is achieved using QADMAP.

Figures 3(a)-(c) depict the variation in the number
of activated nodes in the network for a varying num-
ber of virtual sensors and registered sensor nodes.
We observe that, compared to the existing schemes
COV, DIVISOR, and SSED, there is 90-97.5% reduc-
tion in the number of active sensor nodes in the
network using QADMAP. This is due to that fact
that, unlike existing schemes, more than one virtual
sensors are served by the same physical sensor node
using QADMAP and hence, the requirement of the
number of active nodes reduces significantly in case of
QADMAP. Thus, using QADMAP, the same number
of physical sensor nodes can be used to serve a higher
number of services by the SCSP at any time compared
to using the existing schemes, thereby resulting in
increased service availability of Se-aaS and increased
QoS. Figures 3(d)-(f) also support the aforementioned
argument as we can see that there are no unserved
service requests in case of QADMAP, while in case
of the other three schemes, approximately 10% of
the services cannot be served by the SCSP due to
resource exhaustion. In other words, to ensure the
same level of service availability using the existing
schemes, the SCSP has to maintain a higher number of
sensor nodes as compared to using QADMAP, thereby
reducing his/her profit.

Additionally, we observe from Figures 4(a)-(c) that
the energy consumption of the network reduces by
29.88-31.73% using QADMAP, compared to using
COV, DIVISOR, and SSED, for a fixed number of
nodes and a fixed number of service requests. This
is mainly attributed to the fact that using QADMAP
since the number of activated nodes in the network is
reduced, the energy consumption for node activation
and for the node remaining in the active state also re-
duces thereby reducing the energy consumption of the
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network. Thereby, we argue that the network lifetime
is increased which, in turn, leads to the increase in
service availability and decrease in chances of service
disruptions. Figures 4(a)-(c) also depict the variation
of energy consumption with varying number of vir-
tual sensors and sensor nodes. As the number of
virtual sensors increases, the energy consumption also
increases. It is to be noted that with the increase in the
number of sensor nodes in the network, we consid-
ered that the node requirement of each virtual sensor
increases, resulting in an increase in the number of
virtual sensor instances. Thus, with the increase in
the number of nodes, the energy consumption of the
network increases.

In Figures 4(d)-(f), we observe that, for a fixed num-
ber of virtual sensors and the fixed number of sensor
nodes, the profit earned by the SCSP using QADMAP
is 3.63-9.82% higher than using COV, DIVISOR, and
SSED. This is due to the fact that, using QADMAP,
the SCSP is able to improve the network resource
utilization efficiency by serving the same number of
services using less number of nodes, compared to
existing schemes, thereby incurring less cost for ser-
vice provisioning. With the increase in the number of
physical sensor nodes in the network, the profit of the
SCSP increases due to the corresponding increase in
the number of end-user service requests being served.

The distribution of profits among the sensor owners
in the sensor-cloud market is depicted in Figure 5.
In this figure, we observe that the proposed scheme
ensures minimum sustainable profit for each sensor-
owner in sensor-cloud. For the other existing schemes,
the profits of the sensor-owners vary abruptly. Thus,
we argue that QADMAP motivates the sensor-owners
increases their participation in the sensor-cloud mar-
ket. This, in turn, increases the availability of sensor
nodes for provisioning Se-aaS, thereby increasing the
service availability of Se-aaS.

7 CONCLUSION

In this work, we proposed a dynamic scheme, named
QADMAP, for optimal mapping of virtual sensors to
physical sensor nodes in sensor-cloud, while ensuring
decreased resource consumption and increased QoS
in terms of service availability and reduced service
failures. We divided the afore-mentioned problem into

two subproblems — optimal node selection and op-
timal data-rate distribution, which were shown to be
NP-complete. Hence, we addressed the two subprob-
lems individually using dynamic coalition-formation
game theory and evolutionary game theory, respec-
tively and presented an online scheme which solves
the problem in polynomial time. To demonstrate the
performance of QADMAP, we conducted simulations
on MATLAB and compared it with three existing
benchmark schemes. Experimental results show 29.88-
31.73% decrease in energy consumption of the net-
work as compared to existing schemes. Additionally,
we observe that using QADMAP, the profits of the
SCSP and the sensor-owners also increase while en-
suring high QoS of Se-aaS.

In this work, we observed that other service pa-
rameters such as data freshness and service delay
can also impact the QoS of Se-aaS. Hence, we plan
to design an optimal virtual sensor mapping scheme
while incorporating the aforementioned parameters.
Additionally, this work can be extended to ensure
uniform load distribution among the intermediate
nodes in the network. It can also be extended to study
the dynamics of load distribution if the sensor-nodes
support only specific application types.
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