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Abstract—The work focuses on optimal formation of virtual
sensors (VSs) within a sensor-cloud infrastructure. Existing work
on sensor-cloud have considered the formation of VS with the
maximal set of compatible physical sensor nodes. However, as
these underlying nodes are highly resource constrained, ineffi-
cient and redundant utilization of the nodes takes a toll on the
entire performance of the cloud and the network. In this work,
we propose algorithms for efficient virtualization of the physical
sensor nodes and optimal composition of VSs — within the same
geographic region (CoV-I) and spanning across multiple regions
(CoV-II). Experimental results demonstrate that, compared to the
existing strategy of maximal composition of VSs, CoV-I improves
the cumulative energy consumption and the network lifetime
by 34.9% and 61.04%, respectively, and CoV-II enhances the
parameters by 68.4% and 29.59%, respectively.

Index Terms—Sensor-cloud, Virtualization, Wireless Sensor
Network

I. INTRODUCTION

Recent research has spawned the emerging concept of
sensor-cloud as a potential substitute for traditional Wireless
Sensor Networks (WSNs) [1], [2]. Sensor-cloud infrastructure
is defined as an interface between the physical and the
cyber world that functions as a platform for remote data
management, monitoring, and provisioning [3], [4]. It is a new
dimension of cloud computing that thrives on the virtualization
of physical sensor nodes [5] thereby provisioning the physical
sensor nodes as an on-demand service to remote applications
[6]. This enables the end-users to envision the physical sensors
simply as an easily obtainable, and accessible service —
Sensors-as-a-Service (Se-aaS) [7], rather than as a typical
hardware.

In sensor-cloud infrastructure, the physical sensor nodes are
allocated as per the demand of the applications at the user end,
and are accordingly grouped to form virtual sensors (VSs).
The VSs are further grouped to form the virtual sensor groups
(VSGs). Se-aaS is provisioned to the end-users through the
VSs or the VSGs [8]. In the existing work on sensor-cloud,
applications are served by a VS comprising of the maximal
set of the physical sensor nodes that satisfy the requirements
of that application. However, keeping in mind the resource
constrained behavior of the underlying sensor network, the
membership within a VS should be done optimally, and effi-
ciently. This work focuses on dynamic, optimal, and resource

efficient algorithms for selection of components of a VS, based
on the application-demand.

A. Motivation

This work is strongly motivated by the constrained behavior
of the underlying physical network in terms of the battery-
life of the individual sensor nodes, as well as the lifetime of
the network. Within the sensor-cloud infrastructure, when a
particular application requests for Se-aaS, the compatibility
of the physical sensor nodes are examined on the basis of the
type, location, Quality of Service (QoS), and other application
specific requirements. A subset of compatible sensor nodes are
chosen to make up the corresponding VS of that particular
application. As of now, all of the works on sensor-cloud
have assumed every member of the compatible subset to
account for the formation of the VS. However, allocation of
the largest subset of compatible sensor nodes effectively leads
to redundant utilization of the resources, and, consequently,
unnecessary consumption of the same.

B. Contributions

The goal of this work is to address the above-mentioned
problem of maximal allocation of sensor nodes for a particular
VS. The work focuses on an optimal selection of sensor nodes,
that are compatible to the requirements of an application, and
preserve the efficiency of resource utilization, simultaneously.
The work proposes two distinct algorithms to compose a VS
optimally — i) CoV-I - Composition of VS when the sensor
nodes bear homogeneous sensing hardware and belong to the
same geographical boundary (as shown in Figure 1(a)), and
ii) CoV-II - Composition of VS when the sensor nodes with
heterogeneous sensing hardware span across multiple geo-
graphical regions, thereby comprising of multiple VSs, which,
in turn, form a VSG (shown in Figure 1(b)). The aforesaid
algorithms are efficient in terms of preserving efficacy in the
utilization of the resources.

C. Organization of the paper

The rest of the work is organized as follows. Section II
describes the background of the research and the work done
so far. In Section III, we discuss the system model in which
Section III-A, and III-B focus to solve the problem for two
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different scenarios. In Section IV, we present the theoretical
analysis of the work. The performance evaluation of CoVs
is illustrated in Section V. Finally, Section VI concludes the
work.

II. BACKGROUND

This Section studies and analyzes the work done so far on
this aspect. Prior to the advent of sensor-cloud infrastructure,
some works focussed on the integration of traditional WSNs
to a cloud platform [9], [10]. Some of the works addressed
the problem of dynamic channelization of the sensed data to
the cloud gateways [11], [12]. In another work [13], Taleb
and Ksentini proposed the integration of federation clouds and
mobile networks. In [14], Mendes et al. addressed the issues
associated with the differences in protocols (IEEE 802.15.3
and IEEE 802.15.4) during cloud-based communication of
multimedia WSNs.

The original interpretation of sensor-cloud through virtual-
ization of physical sensor nodes was presented by Yuriyama
and Kushida [2], [3]. The dogma of the idea, the challenges,
and the benefits are discussed in [4], [5]. Few application
oriented works are also presented in [6], [15]. However, very
few works addressed the technicalities concerning sensor-
cloud infrastructure. Misra et al. theoretically modeled sensor-
cloud infrastructure [7]. In [8], Bhunia et al. mentioned the
event-driven gathering of data within sensor-cloud through
fuzzification. Nguyen and Huh [15] presented some of the
security aspects of sensor-cloud.

To the best of our knowledge, the above-mentioned works
have not focused on the efficiency of virtualization, and the
enhancement of resource utilization while doing so. As men-
tioned earlier, this paper focuses to compose a VS optimally,
thereby ensuring the efficacy of resource utilization.

III. SYSTEM MODEL

In this Section, we present the system model for the compo-
sition of the VS, and the VSG. The Section is subdivided into
two distinct subsections. We consider two distinct scenarios
as shown in Figure 1.
• Case (a):

Initially, we focus on the methodology for the efficient
composition of a VS, as shown in Figure 1(a). The Figure
analyses the formation of a VS in which the underlying
physical sensor nodes fall within the same geographic
region, and are homogeneous with respect to the sensing
hardware. Under such circumstances, the optimal forma-
tion of VS, CoV-I, is discussed in subsection III-A.

• Case (b):
The other scenario considers the presence of heteroge-
neous sensor nodes spread across different geographic
regions, as shown in Figure 1(b). Homogeneous sensor
nodes from multiple regions (R1, R2, R3, R4, R5, and
R6) together form a VS, whereas, multiple VSs (com-
prising of heterogeneous sensor nodes) combine to form
a VSG that serve a particular application, as discussed in
CoV-II, presented in subsection III-B.

(a) Formation of VS (b) Formation of VSG

Figure 1: Virtualization of the physical sensor nodes

Before we discuss the formation and optimality of a VS in
a case by case manner, we define some of the preliminaries of
our work. We assume a set of r non-overlapping finite regions,
R = {R1,R1, ...,Rr},Ri

⋂
Rj = Φ,∀1 ≤ i, j ≤ r, i 6= j,

within which the physical sensor nodes are deployed. Every
sensor node si is characterized by the center of its deployment,
(l1, l2), representing the latitude, and longitude of the absolute
position of the node, respectively, and its sensing radius at time
t, λt. Thus, the location specific nomination of sensor nodes,
for a particular application App with Rreq (Rreq ⊆ R) as the
region of interest is given by,

S = {si} | (ϕ(l1, l2, λ
si
t ) ⊆ Rreq) ∧ (si.type = App.type)

(1)
where ϕ(· · · ) computes the region equivalent of the sensing
area of a sensor node. The “type” attribute stores the type of
the sensor nodes in terms of the sensing hardware, e.g. rainfall
sensor, temperature sensor, and so on. For two sensor nodes,
si, and sj to be homogeneous, si.type = s2.type.

A. CoV-I: Composition of VS within the same region

This subsection proposes the optimum Composition of VS
(CoV-I) algorithm for the selection of homogeneous compo-
nent nodes from the same geographic region, S = {si}, where
si.type = sj .type, and Equation (1) holds. S is the largest set
of compatible sensor nodes that can serve application App. In
CoV-I, we assume K number of applications to be served by
sensor-cloud. Pi is the priority of Appi, the lowest indicating
the highest priority. The “goodness” of every physical node of
S is initially quantified. The factors affecting the goodness of
a node si are:

• Normalized Residual Energy (NRE): NRE is defined as
the ratio of the current energy level to the initial energy
level, expressed as, Qtsi =

Ecur
si

Einit
si

where, Ecur, and Einit

are the current and the initial battery level, respectively.
• Expected Received Signal Strength Intensity (ERSSI): The

ERSSI, at time t, is defined as the expected value of
the signal strength when perceived at the cloud end at t.
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ERSSI is expressed as,

υsi(t) = Ψsi

P trsi (t)

ξ(si, dj)a
(2)

where ξ computes the Euclidean distance of the node with
the Base Station (BS), dj . P trsi is the transmitted power,
and Ψ is a constant that considers the other factors such
as antenna gain and antenna height [16]. In our case,
a = 1.

• Proximity with BS: The proximity of si with the BS is
given by, χsi =

√
(si.x−BS.x)2 + (si.y −BS.y)2

−1
,

where x, and y represent the abscissa, and the ordinate,
respectively.

χsi =
√

(si.x−BS.x)2 + (si.y −BS.y)2
−1

(3)

Definition 1. The goodness G of a node si, at time t, is defined
in terms of the NRE, ERSSI, and its proximity with BS at t,
and expressed as,

Gsi(t) = Qtsi + g × χsiυsi(t) (4)

where g is the normalization constant.

Motivated by the concept for quantifying the Quality of
Information (QoI) in [17], we model the QoI of the sensor
node si, based on a the confidence of data transmission, as
defined below.

Definition 2. The transmission confidence of the data from
si to the BS at time t, fsi(t), is defined as a loss/gain factor
governed by the difference of the transmitted, and received
data. It is expressed as,

fsi(t) =

{
1
N fsi(t− 1)e(ρδ)(t), ρ = |Dsi −DBS | < ρth
1
N fsi(t− 1)e−(ρδ)(t), otherwise

(5)
ρ and N being the absolute deviation of the transmitted and
received data, and the factor for normalization, respectively.
D represents the data, and δ is the loss/gain factor [18].

We model the QoI of every component node of CoV-I as,
Θsj (t) = fsj (t)Θsj (t− 1) + Gsj (t),Θsj (1) = 1 (6)

Equation (6) can be simplified as,

Θsj (t) =

t−1∏
i=0

fsj (t− i) +

t−1∑
k=0

k∏
j=0

fsj (t− j)G(t− k − 1) (7)

= Lsj (ρ,Q, υ, χ) (8)

The total resources available is given by Ω = |S|, and ΩminAppi
is the minimum resources (in terms of the sensor nodes) to be
reserved for the VS of Appi. Thus, we design an optimization
problem of CoV-I as,

max
K∑
i=1

1

PiΩAppi

ΩAppi∑
j=1

Lj(ρ,Q, υ, χ) (9)

s.t


K∑
i=1

ΩAppi ≤ Ω

ΩAppi ≥ ΩminAppi
, i = 1, 2, ...,K

(10)

Therefore,

L1(ΩApp, ρ,Q, υ, χ) =

K∑
i=1

1

PiΩAppi

ΩAppi∑
j=1

Lj(ρ,Q, υ, χ)

−α1

( K∑
i=1

ΩAppi − Ω

)
−

K∑
i=1

β1i

(
ΩAppi − ΩminAppi

)
(11)

where α1, and β1 are the Lagrangian multipliers to the
constraints. Using the gradients of L, we obtain,

δL1

δΩAppi
=

K∑
i=1

−Lj(ρ,Q, υ, χ)

PiΩ2
Appi

− α1K −
K∑
i=1

β1i (12)

δL1

δρ
=

K∑
i=1

1

PiΩAppi

ΩAppi∑
j=1

δLj(ρ,Q, υ, χ)

δρ
(13)

δL1

δQ
=

K∑
i=1

1

PiΩAppi

ΩAppi∑
j=1

δLj(ρ,Q, υ, χ)

δQ
(14)

δL1

δυ
=

K∑
i=1

1

PiΩAppi

ΩAppi∑
j=1

δLj(ρ,Q, υ, χ)

δυ
(15)

δL1

δχ
=

K∑
i=1

1

PiΩAppi

ΩAppi∑
j=1

δLj(ρ,Q, υ, χ)

δχ
(16)

Solving Equations (12) through (16), we obtain Lmax1 , that
maximizes the QoI of a VS, and optimizes the allocation of
the component nodes for varied execution priorities of end-
user applications. Having discussed the methodology to form
a VS comprising of homogeneous components within the same
region, we now present the second case of ours.

B. CoV-II: Composition of VS, and VSG across multiple
regions

This Section proposes Composition of VS (CoV-II) al-
gorithm that considers the set of compatible sensor nodes,
S = {si}, of heterogeneous types T = {t1, , t2, ..., tF },
to span across multiple regions R. Thus, in CoV-II, for a
particular VS of type tf ∈ T , ∀sj | sj .type = tf , Equation
(9) is modified as,

max
K∑
i=1

∑
∀Rp∈R

1

PiΩAppi,Rp

ΩAppi,Rp∑
j=1

Lsj (ρ,Q, υ, χ) (17)

s.t



K∑
i=1

r∑
p=1

ΩAppi,Rp
≤ Ω

r∑
p=1

ΩAppi,Rp ≥ ΩminAppi
, i = 1, 2, ...,K

ΩAppi,· > 0, i = 1, 2, ...,K

(18)
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where ΩAppi,Rp
indicates the physical nodes to be allocated

for the VS of Appi at region Rp. Therefore, using Equations
((17)), and (18), we obtain the primal of CoV-II,

L2(ΩApp,R, ρ,Q, υ, χ) =

K∑
i=1

∑
∀Rp∈R

1

PiΩAppi,Rp

ΩAppi,Rp∑
j=1

Lsj (ρ,Q, υ, χ)

− α2

{ K∑
i=1

r∑
p=1

ΩAppi,Rp
− Ω

}
−

K∑
i=1

β2i

{ r∑
p=1

ΩAppi,Rp

− ΩminAppi

}
− γ2 ×max (ΩAppi,·, 0) (19)

where α2, β2, and γ2 are the Lagrangian multipliers. Hence,
we have,

δL2

δΩApp,R
=

K∑
i=1

∑
∀Rp∈R

−
ΩAppi,Rp∑
j=1

Lsj (ρ,Q, υ, χ)

PiΩ2
Appi,Rp

−α2Kr −
K∑
i=1

rβ2i − γ2 × sign(ΩAppi,·) (20)

where sign() returns +1 or 0 based on the positive or
negative magnitude of a quantity, respectively. Employing
Equations similar to (12) - (16), and using Equation (20), L2 is
optimized, and thus, Ω∗Appi is obtained. Using Equation (17),
the formation of the set of VSGs V for Appi, i = 1, 2, ...,K
is expressed as,

V = {V1,V2, ...,VK} = {Ω∗App1 ,Ω
∗
App2 , ...,Ω

∗
AppK} (21)

Vi = {Ω∗Appi,t1 ,Ω
∗
Appi,t2 , ...,Ω

∗
Appi,tF } (22)

such that, ∀tf ∈ T ,∑
∀Rp∈R

1

PiΩ∗Appi,Rp

Ω∗Appi,Rp∑
j=1

Ltfsj (ρ,Q, υ, χ)

is maximized where, {sj} ∈ Stf , and
⋃
tf∈T

Stf = S. Also,

Ω∗Appi,tj ⊂ S
tj . Thus, the VSGs formed in CoV-II consist of

VSs that are formed of the physical sensor nodes optimally in
terms of the resource capacity of the nodes, and considering
the priority of the applications. The theoretical analysis of the
work is presented in Section IV.

IV. THEORETICAL ANALYSIS

Theorem 1. At a particular time t, the proposed algorithms
— CoV-I, and CoV-II are loss less.

Proof: To prove the loss less nature of the proposed CoV-
I, and CoV-II, we define the metric of losslessness, as,∑

si ∈ Sopt−Appi
| ∃sj ∈ Sopt,Gsi(t) > Gsj (t) (23)

where Sopt, and S−opt are the composition of V SAppi , and the
set of the remaining nodes of the maximal subset, respectively,
Sopt

⋃
S−opt = S. We prove the statement by the method

of contradiction. We assume ∃si, sj for which Equation (23)
holds true. Thus, Lsi(· · · ) > Lsj (· · · ). Thus,

ΩAppi
−{sj}+{si}∑
j=1

Lj(ρ,Q, υ, χ) >

ΩAppi∑
j=1

Lj(ρ,Q, υ, χ) (24)

However, for CoV-I, L1(ΩApp, ρ,Q, υ, χ) is maximized. Thus,
∀sj ∈ Sopt,Appi , si ∈ S−opt,Appi ,

K∑
k=1

ΩAppk∑
j=1

Lj(ρ,Q, υ, χ)

PkΩAppk
>

K∑
k=1

Ω−Appk∑
i=1

Li(ρ,Q, υ, χ)

PkΩAppk
(25)

⇒
ΩAppk∑
j=1

Lj(ρ,Q, υ, χ) >

Ω−Appk∑
i=1

Li(ρ,Q, υ, χ)

⇒
ΩAppk∑
j=1

Θsj >

Ω−Appk∑
i=1

Θsi ⇒
ΩAppk∑
j=1

Gsj >
Ω−Appk∑
i=1

Gsi

Thus, for Appi, 6 ∃Gsj > Gsi , si ∈ S
opt−
Appi

, sj ∈ SoptAppi
thereby

disproving our assumption. Similarly, the same can be shown
for CoV-II. This concludes the proof.

Proposition 1. The asymptotic computational complexity
of CoV-I, and CoV-II are O({maxi=1,2,...,K Ni}2), and

O(
r⋃
j=1

S2
Ri

), respectively for K applications.

Proof: As CoV-I focuses on a particular region R for a
particular application,, the computational complexity of CoV-I
for K applications C(K) is expressed as,

C(K) = C1(R1) + C2(R2) + ...+ CK(RK) (26)

where Ci(Ri) is the computational complexity involved for
executing Appi over Ri. The maximal compatible set is
indicated by SAppi,Ri

. We have,

Ci(Ni) = Ci(Ni − 1) +O(Ni), Ci(1) = O(k) (27)

where Ni =| SAppi,Ri |, and k is a constant. Therefore,
Ci(Ni) = O(N2

i ). Thus, using asymptotic algebra, Equation
(26) is simplified as,

C(K) = max
i=1,2,...,K

{C(Ri)} ' O({ max
i=1,2,...,K

Ni}2) (28)

For CoV-II,

C(K) = O(

K∑
i=1

Ci(R)) = O(

K∑
i=1

Ci(

r⋃
j=1

Rj)) (29)

Thus using Master method, we have C(K) = O(
r⋃
j=1

S2
Ri

).

This concludes the proof.
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V. PERFORMANCE EVALUATION

This Section presents the results of evaluation of the per-
formance of CoV-I, and CoV-II. The details of experimental
setup are illustrated in Table I.

Table I: Experimental Setup

Parameters Values
Deployment Area 500 m × 500 m
Deployment type Uniform, random
Number of nodes 100
Communication energy (Ecomm) 70 nJ/bit
Energy due to computation (Ec) 30 nJ
Sensing energy (Es) 10 nJ/bit
Number of applications 3
Application priority (P) {1, 2, ..., 10}

For evaluation of the performance of CoV-I, and CoV-II, a
comparative study is performed in terms of cumulative energy
consumption, and network lifetime, as shown in Figure 2. The
metric for cumulative energy consumption E is evaluated as,

E(t) = hEcomm + eEs + Ec (30)

where Ecomm, Es, and Ec are the energy expended due to
communication (transmission, and reception), sensing, and
computation, respectively. h and e are respectively the hop
count and the total number of events at time t. Figure 2(a)
indicates that by using CoV-I, and CoV-II, the expenditure of
energy falls to respectively 34.9% and 68.4% of that while
using the maximal set of compatible sensor nodes. Thus, CoVs
perform better due to utilization of a reduced set of sensor
nodes. Consequently, it enhances the network lifetime as well,
as shown in Figure 2(b). The network lifetime N at t is
evaluated as,

N (t) =
Nmax − E(t)

Nmax
× 100% (31)

With the increase in the number of the physical nodes, the
network lifetime falls steeply in case of the maximal formation
of a VS, unlike CoVs in which the curve falls gradually. It is
observed that CoV-I, and CoV-II increases the network lifetime
by 61.04%, and 29.59%, respectively, in comparison to the
case of utilizing the maximum set of compatible sensor nodes.

In order to examine the optimal composition of the VS for
multiple applications, CoVs were executed with 3 running
applications (AppA, AppB , AppC). The priorities of the
applications are varied with time, and the change in Ωmin, and
Ωi, i = {A,B,C}, are observed. The provisioned resource to
the applications, as in Figure 3, is evaluated as,

SAppi =
∑
Gsi | si ∈ ΩAppi (32)

At t1 (indicated by Figure 3(a)), with the decrease in the ap-
plication priorities (the lowest indicating the highest priority),
the allocated resources, and the minimum threshold increases,
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Figure 2: Comparative study of the network parameters

as shown in Figure 3(a). At t2 (indicated by Figure 3(b)),
with the change in P , Ωmin and Ω changes accordingly. At t3
(indicated by Figure 3(c)), the priorities and Ωmin of the appli-
cations change. However, the optimality in resource allocation
is preserved. Figure 4 illustrates the optimal composition of
VS for applications AppA, AppB , and AppC under several
circumstances in terms of the resource range ϑmaxi , of each
application where,

ΩAppi = ϑmaxi − ϑmini (33)

ϑminA and ϑmaxi denote the lower and the upper limit of the
composition of VS, respectively, and are required to evaluate
the exact composition of the VS. In case 1, as shown in Figure
4(a), all the applications have high priorities, and hence, the
optimal utilization of the physical nodes is quite high. As
the priorities of AppB , and AppC fall in Figure 4(b), the
total consumption of the physical nodes is dominated by the
demand of AppA. For a situation in which all the applications
have a low priority, the resource utilization falls appreciably
by a good extent, as depicted in Figure 4(c).

VI. CONCLUSION

This work focuses on resource efficient virtualization within
sensor-cloud infrastructure. The work addresses the problem of
optimum composition of VSs both within the same geographic
region, as well as across multiple regions by proposing CoV-I,
and CoV-II, respectively. Results show that CoVs enhance the
resource utilization to a good extent, compared to the existing
techniques of maximal allocation of the physical sensor nodes.

Future scope of research will focus on extension of this
problem from an Service Level Agreement (SLA)-based per-
spective with a view to strength the Quality of Service
(QoS) of Se-aaS. An analysis of bandwidth exhaustion of this
problem may also induce research interest.
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