
Tensor-Based Rule-Space Management System in SDN

Ilora Maity, Student Member, IEEE, Ayan Mondal, Student Member, IEEE,
Sudip Misra, Senior Member, IEEE, and Chittaranjan Mandal, Senior Member, IEEE ∗

Abstract

This paper presents a tensor-based rule-space
management (TERM) system for improving the
available capacity of switches in Software Defined
Networking (SDN). Limited storage capacity of
switches is a key challenge in SDN as the switches use
Ternary Content Addressable Memories (TCAMs)
having very low capacity. Low rule storage capacity
eventually leads to high number of Packet-In mes-
sages and control plane overloading. The challenge
is to design a dynamic scheme to store a large num-
ber of heterogeneous flow-rules in SDN switches and
reduce the number of Packet-In messages. To ad-
dress this problem, we apply the concept of tensor
decomposition in order to aggregate flow-rules. In
addition, we employ a rule caching mechanism for
better throughput. Simulation results show the effi-
ciency of TERM in terms of reduction in the number
of Packet-In messages. TERM reduces the Packet-In
message count by 57.78% than the flow aggregation
approach proposed in the existing literature.

Index terms— SDN, Flow-Rule, TCAM, Tensor
Decomposition, Caching

1 Introduction

Software Defined Networking (SDN) provides a
global view of the network by separating the con-
trol plane from the data plane [1]. This simplifies
the task of network administrators and makes SDN

∗The authors are with the Department of Computer Science
and Engineering, Indian Institute of Technology Kharagpur,
India (Email: imaity@iitkgp.ac.in; ayanmondal@iitkgp.ac.in;
smisra@sit.iitkgp.ernet.in; chitta@iitkgp.ac.in)

suitable for large-scale networks [2]. In particular, re-
searchers are proposing SDN-based architectures for
Internet of Things (IoT) applications [3]. These ap-
plications involve the management of millions of het-
erogeneous flows per second [4]. However, the exi-
gency of scalable rule-space in SDN switches is ev-
ident [5]. The limited rule-space capacity increases
the event of flow-table miss and causes the switch to
send Packet-In messages to the controller for the in-
stallation of new rules. A Packet-In message contains
the header of a captured packet which has no match-
ing entry in the flow-table. The controller formulates
new flow-rule based on the contents of the Packet-
In message and installs the rule at the corresponding
switch. For IoT applications, the number of Packet-
In messages can be a bottleneck for the control plane.
Therefore, the main objective of the proposed work is
to enable the switches to store larger number of rules
and decrease the number of Packet-In messages.

1.1 Motivation

State-of-the-art SDN switches store rules in Ternary
Content Addressable Memories (TCAMs). TCAM
has limited capacity constraint due to its high manu-
facturing cost [6]. According to the latest OpenFlow
protocol version (v1.5.1) [7], each flow-rule contains
45 match fields. Although, most switch manufac-
turers still use OpenFlow version 1.0, which has 20
match fields, TCAM in these switches can store only
up to 8,000 entries [5]. This number reduces when
new OpenFlow switches with higher protocol versions
are deployed. Additionally, match fields such as the
source and destination port numbers are specified as
ranges in a typical packet classifier. Multiple flow
entries are generated for an equivalent range rule in

1

2 RELATED WORK 2

a typical packet classifier. In addition, an analysis
performed on access control list (ACL) databases of
1998 and 2004 reports that the volume of range rules
increased from 1.3% to 13.3% [8]. On the other hand,
a large number of applications today provide services
to billions of users and this number is predicted to
increase rapidly in the future [9]. For example, to
serve the users of city similar to New South Wales, an
application should be capable of handling 70 million
flows per second [4]. This high volume of flows causes
rapid and frequent updates in SDN switches, while
generating high number of Packet-In messages [10].
Therefore, there is a need for rule-space management
in large-scale networks in order to store this high vol-
ume of flow-rules.

The existing literature considers three basic ap-
proaches — flow-table aggregation [11], flow-rule par-
titioning [12] and flow aggregation [13] for handling
the capacity constraint of SDN switches. However,
the lack of uniformity in handling flow-rules, which
are generated from heterogeneous IoT applications, is
evident in these approaches. Additionally, these ap-
proaches are not flexible enough to provide rule-space
and reduce table miss according to the network de-
mand. In this paper, we propose a scheme, named
TERM, to increase the scalability of SDN switches
and reduce the Packet-In message count.

1.2 Contribution

The primary contributions of this work are listed be-
low.

1. We propose a scheme which is capable of aggre-
gating heterogeneous flow-rules having no com-
mon prefix.

2. We envision a tensor-based algorithm to com-
press rules in each switch.

3. Extensive simulation results demonstrate that
TERM significantly reduces the average number
of Packet-In messages and increases free space
for storing rules.

1.3 Paper Organization

The remainder of this paper is organized as follows.
Section 2 discusses the relevant research work. In
Section 3, we describe TERM in detail. Section 4
presents the experimental results and comparative
studies with other existing approaches. Finally, we
conclude the work in Section 5.

2 Related Work

In this section, we review prior works related to flow-
table aggregation, flow-rule partitioning and flow ag-
gregation. We also review the existing literature on
tensor and singular value decomposition (SVD) used
in our work.

Earlier, table aggregation approaches considered
only prefix entries, where do not care (∗)s do not ap-
pear in the beginning of the ternary strings. Apple-
gate et al. [14] proposed a prefix-based minimization
technique for access control lists (ACLs), which have
entries similar to TCAMs. Meiners et al. [11] pro-
posed bit weaving, which partitions the total rule-
set and permutes the bit positions for each of the
partitions to transform all non-prefix entries into
prefix entries. Finally, these transformed partitions
are merged together, after which each entry is re-
permuted to their original bit order. However, one of
the major limitations of bit weaving is high computa-
tion time for larger partition size. This is even worse
in networks where data changes frequently, because
bit weaving recomputes the whole rule-set for each
rule update.

Other related works concerns the approach of par-
titioning the flow-rules. Kanizo et al. [12] presented
a decomposition technique, which partitions a flow-
table into sub-tables and distributes the sub-tables
across the network. They proposed two techniques
— Pivot Bit Decomposition (PBD) and Cut-Based
Decomposition (CBD). PBD decomposes the table
into sub-tables by selecting a pivot bit/column. How-
ever, PBD increases the total number of rules, be-
cause two separate rules are generated for each do not
care (*) pivot bits. On the other hand, CBD repre-
sents the set of rules by a dependency graph. Moshref

3 TERM: THE PROPOSED SCHEME 3

et al. [15] proposed a virtual Cloud Rule Information
Base (vCRIB), which partitions the overlapping rules
by splitting them. Consequently, the overall number
of rules increases.

Flow aggregation approaches minimize the total
number of flows in order to reduce the number of flow-
rules. Kosugiyama et al. [13] proposed an approach
which considers end-to-end delay as a parameter of
flow aggregation. However, the authors considered
delay sensitive flows only.

A tensor [16] is a high-dimensional matrix which
represents heterogeneous data. Therefore, some of
the existing works use tensors for handling large-
scale data [17]. Liavas et al. [18] proposed a ten-
sor factorization technique for parallel processing of
large-scale data. Motivated by this work, we use
tensors for representing large flow-tables. We con-
sider a three-order tensor, where the orders denote
a single flow-rule, components of a flow-rule (match
fields, priority, and actions), and the total number of
flow-rules, respectively. Henry et al. [19] presented
a Singular Value Decomposition (SVD) technique to
extract useful data from a matrix. Schifanella et
al. [20] implemented an extension to the SVD tech-
nique, named TUCKER decomposition [21]. Acar
and Yener [22] proposed Higher-Order Singular Value
Decomposition (HOSVD), which is a generalization
of the TUCKER decomposition. HOSVD imposes
orthogonality constraint on component matrices. We
use a technique, which is similar to HOSVD, to ag-
gregate the flow-rules by extracting core data from
a single dimension which represents the number of
entries in a flow-table.

Synthesis. Therefore, we infer that there exist a
few works for handling the capacity constraint of
flow-tables. However, most of these works do not con-
sider dynamic network traffic which is usual for IoT
applications. The proposed scheme, TERM, is dis-
tinctive in this respect, because it can extract core
data from the entire rule-space, irrespective of the
original number of rules. The volume of core data
does not depend on the original number of rules.

3 TERM: The Proposed
Scheme

In this section, we discuss the network model consid-
ered for the proposed scheme, TERM. In addition,
we describe the proposed tensor-based approach for
managing the rule-space of the switches.

Figure 1: TERM architecture

3.1 Network Model

Figure 1 depicts the network model considered for
TERM. The set of switches in the data plane is de-
noted as S = {s1, s2, . . . , sD}. In the control plane,
there exist multiple sub-controllers connected with a
controller c. The set of sub-controllers is denoted
as Csub = {csub1 , csub2 , . . . , csubM }. The sub-controllers
are placed using existing controller placement algo-
rithms [4]. All the sub-controllers are connected to
c. Each switch sj is connected to a sub-controller.
Therefore, the assignment between switches and sub-
controllers is defined as a D ×M binary matrix L.
Each element of L is expressed as:

3 TERM: THE PROPOSED SCHEME 4

lij =

{
1, if si is connected to csubj .

0, otherwise.
(1)

Definition 1 (Region). A region rj is defined as:

rj =
⋃
i

si,∀lij = 1 (2)

The set of rules in switch si at time t is denoted
as:

Ri(t) = Ri
c(t) ∪Ri

a(t) ∪Ri
u(t), (3)

where Ri
c(t) is the set of cached rules, Ri

a(t) is the
set of aggregated rules, and Ri

u(t) denotes the set of
uncompressed rules in switch si at time t.

A switch si generates pi(t) number of Packet-In
messages at time t. Packet-In messages are generated
whenever incoming packets fail to match with any of
the flow-rules in Ri(t).

The objective of this work is to minimize the num-
ber of Packet-In messages by maximizing the total
number of rules stored in each switch. Mathemati-
cally,

min

|S|∑
i=1

pi(t) (4)

subject to

|Ri
c(t)| < Ni,∀si ∈ S (5)

|Ri
u(t)| < Ni,∀si ∈ S, (6)

where Ni denotes that the TCAM in a SDN switch
si is capable of storing Ni entries. Equations (5)
and (6) express that the number of cached rules and
the number of uncompressed rules are less than the
storage capacity of the TCAM.

3.2 Tensor-Based Approach for Rule-
Space Management

In this section, we describe the proposed scheme,
TERM, which includes three modules — rule aggre-
gation, rule reconstruction, and rule caching. Rule

aggregation and rule reconstruction procedures of a
region rj are performed by csubj . The rule aggrega-
tion module compresses the flow-rules in each switch
with a tensor-based approach to increase the avail-
able capacity of the flow-tables. The rule reconstruc-
tion module reconstructs the compressed rules in a
switch, whenever an incoming packet fails to match
the uncompressed rules. Additionally, each switch
has a rule caching module which caches the most fre-
quently used rules. This avoids the reconstruction of
rules every time a packet reaches a switch.

Therefore, for an incoming packet, a switch first
checks for a rule match in the cached rules, and
then the uncompressed flow-rules in each of the flow-
tables. If no match is found, it informs the sub-
controller that the reconstruction of compressed rules
is required. The sub-controller reconstructs the com-
pressed rules and checks for a possible rule match. If
a match is found in multiple rules, the higher priority
rule is selected. If no match is found even after check-
ing the compressed rules, the packet is redirected to
c, which generates the new rule as per existing Open-
Flow policy [7].

3.2.1 Rule Aggregation

The rule aggregation module includes three sub-
modules — rule restructuring, tensorization, and re-
duction.

Rule Restructuring Rule restructuring converts
the ternary string of each rule into integer value. We
consider a 4-bit ternary value for each match field and
4-bit binary value for the action field. Each ternary
string of length 2 is transformed to an integer digit
based on the transformation rules presented in Table
I.

Example 1. Consider a ternary string of two match
fields and one action value {∗11∗, 10 ∗ 0, 1101}.
Therefore, after transformation the resulting integer
string will be {35, 82, 97}.

Tensorization In this work, we use tensor to for-
malize the flow-tables in SDN switches. We trans-

3 TERM: THE PROPOSED SCHEME 5

form each modified rule-set into a three-order tensor,
as shown below:

T ∈ R1×Nf×Nt , (7)

where Nf denotes the number of fields in a TCAM
entry, which includes the priority value, match fields,
and action value. Nf depends on the OpenFlow pro-
tocol version. Nt denotes the total number of uncom-
pressed rules in the switch.

Algorithm 1 Rule Aggregation Algorithm

INPUT:
1: T ∈ R1×Nf×Nt . Initial rule tensor

OUTPUT:
1: key = {C ∈ R1×Nf×Nr , Uk} . Core data set

PROCEDURE:
1: Compute T(3) from tensor T ;
2: [USV]← SV D(T(3)) ; . Singular value

decomposition of mode-3 matrix

3: Truncate Uk ∈ RNt×Nr from U;
4: C ← T ×3 U

T
k ;

5: key ← {C,Uk};
6: return key;

Reduction Algorithm 1 transforms T to a com-
pressed tensor C ∈ R1×Nf×Nr , where Nr < Nt. Nr

is termed as the reduction factor (RF). The value of
RF at time t is selected as:

RF (t) = Nr = Nf +
⌊ (Qmax −Qcurrent)

Qmax
× 100

⌋
,

(8)

where Qmax and Qcurrent denote the queue length
and the number of packets queued at the switch, re-
spectively. When a switch has high number of queued
packets, a low Nr enables the switch to store more
number of uncompressed rules.

Therefore, the reduction coefficient is expressed as:

q =
Nt −Nr

Nt
× 100% (9)

Algorithm 1 reduces the dimensions of the initial
rule tensor T and transforms it to the reduced ten-
sor C. In Theorem 1, we discuss that this reduction
permits a switch to store more rules, than in the case
of a traditional SDN architecture. As we aim to re-
duce the rule count, we consider the mode-3 unfolded
matrix to perform the tensor decomposition method.
Mode-3 matrix of tensor T is computed in Line 1
using the procedure of Tensor Unfolding or Matri-
cization [16]. Figure 2 shows three unfolded matrices
of an initial rule tensor T ∈ R1×4×8, which represents
eight flow-rules each with one priority value and two
match fields and action value. The corresponding
unfolded matrices are T(1) ∈ R1×32, T(2) ∈ R4×8, and
T(3) ∈ R8×4.

Figure 2: Matricization of initial rule tensor

A tensor element T (a1, a2, ..., aN) for a tensor
T ∈ RI1×I2×...×IN corresponds to the matrix element
T(p)(ap, b), where

3 TERM: THE PROPOSED SCHEME 6

b = 1 +

N∑
k=1,k 6=p

(ak − 1)

k−1∏
m=1,m 6=p

Im

 (10)

In Line 2, the unfolded matrix T(3) is decomposed
using the singular value decomposition (SVD) tech-
nique. SVD factorizes matrix T(3) into the form:

T(3) = USV T , (11)

where U and V are the left and right unitary orthog-
onal matrices, respectively; S is a diagonal matrix,
whose elements are singular values of T(3) [19]. Sin-
gular values of matrix T(3) are the square roots of the
common eigen values of T(3)T

T
(3) and TT

(3)T(3). The
matrices U and V consist of column vectors, which
are transposed eigen vectors of matrices T(3)T

T
(3) and

TT
(3)T(3), respectively.

The left singular matrix U is truncated in Line 3,
which is given by:

Uk ∈ RNt×Nr (12)

The matrix Uk is needed to be stored for rule re-
construction. We store this matrix Uk in parts in the
sub-controllers based on their available memory.

Line 4 generates the compressed tensor C by com-
puting the mode-3 product of tensor T with transpose
of matrix Uk, which can be expressed with unfolded
matrices as:

C = (T ×3 U
T
k)⇔ C(3) = UT

k × T(3) (13)

Space complexity of Algorithm 1 is O(N2
t) +

O(Nt(Nr +Nf)), which decomposes to O(N2
t) as Nt

is greater than both Nf and Nr. The time complex-
ity of performing SVD on the unfolded matrix T(3)
in Line 2 is O(min{N2

t Nf , NtN
2
f }) [23]. The time

complexity of computing mode-3 product in Line 3
is O(NtNrNf). Therefore, time complexity of Al-
gorithm 1 is O(min{N2

t Nf , NtN
2
f }) + O(NtNrNf).

Figure 3 describes the computation of mode-3 prod-
uct for an order-3 tensor T ∈ R1×4×8 multiplied by
transpose of truncated orthogonal matrix Uk ∈ R8×4.

Figure 3: Mode-3 product of the initial rule tensor

The rule aggregation procedure is triggered by the
sub-controller if free memory of a switch si drops be-
low a certain threshold value th. This limit th is pre-
defined based on nature of the applications. During
an aggregation procedure at time t, all the rules in
Ri

u(t) are aggregated to form a new set of aggregated
rules.

Theorem 1. The maximum number of rules stored
in the TERM SDN architecture is greater than the
maximum number of rules stored in a traditional
SDN architecture with D OpenFlow switches, where
D > 1, N > Nf ; N is the storage capacity of each
OpenFlow switch in the traditional SDN architecture
in terms of the number of entries, and Nf is the num-
ber of fields in a TCAM entry.

Proof. The maximum number of entries stored in a
traditional SDN architecture with D switches, each
having a TCAM capable of storing N entries, is given
by:

Maxt = D ×N (14)

We denote the maximum number of entries stored
in the TERM SDN architecture as:

Maxm = D × α, (15)

3 TERM: THE PROPOSED SCHEME 7

where α is the storage capacity of each switch in
terms of the number of entries of the modified ar-
chitecture. Therefore, we need to prove that,

Maxm > Maxt, where D > 1. (16)

Let T ∈ R1×Nf×Nt be the tensor representing rules
of a switch with Nt uncompressed entries, where each
entry has Nf fields, and 0 < Nt < N . The corre-
sponding switch contains total (N −Nt) entries com-
prising of cached entries and the aggregated entries
generated from the previous aggregation phase.

The p-mode product of a tensor is the basic flow-
rule reduction operation for reducing tensor dimen-
sions. To reduce the dimension of the nth order of a
tensor T from In to Ip (In > Ip), we need to com-
pute n-mode product of tensor T by a truncated left
singular vector matrix U ∈ RIp×In .

The aim of our rule aggregation approach is to re-
duce the 3rd order of tensor T ∈ R1×Nf×Nt from
Nt to Nr, where Nr < Nt, to allow storage of
larger flow-tables. Therefore, the compressed tensor
C ∈ R1×Nf×Nr is expressed as:

C = T ×3 U
T
3 , (17)

where U3 is obtained by retaining the left Nr uni-
tary orthogonal vectors from the left singular vec-
tor matrix generated from singular value decompo-
sition of mode-3 matrix of tensor T . Figure 3 illus-
trates the operation of computing compressed ten-
sor C from an initial tensor T . From experimental
results, we observe that the minimum value for Nr

is Nf for exact reconstruction of flow-rules. There-
fore, the maximum percentage of rule reduction for a
switch is

N−Nf

N × 100 %. Nr can be chosen dynam-
ically depending on the application type. If the ap-
plication is latency sensitive, then the optimal value
of Nr should be chosen, considering the processing
time of both rule reduction and reconstruction for
approximate rule-set size.

After rule aggregation in each switch, an extra
space is available for storing maximum (Nt−Nf) en-
tries. So, L switches can support upto ((Nt−Nf)×D)
extra entries. So, Maxm can be expressed as:

Maxm = D × (N + (Nt −Nf)), (18)

where the storage capacity of each switch in TERM is
α = (N+(Nt−Nf)). The term (N+(Nt−Nf)) > 0,
as 0 < Nf 6 45, L > 0, Nt > 0, and N > Nf [7].
Hence, the statement of Equation (16) is true.

3.2.2 Rule Reconstruction

Figure 4: Rule recovery process

The corresponding sub-controller reconstructs the
aggregated rules of the switch to verify whether there
is a match. Rules in the switch do not change during
this process. The reconstructed rules are stored in
the sub-controller. After the sub-controller completes
the verification process for a possible rule match, it
releases the memory used for rule reconstruction.

Change in network policies or topology triggers
rule update or addition of new rules. To handle these
changes, the aggregated rules of selected switches are
reconstructed and then aggregated again after incor-
porating the changes.

3 TERM: THE PROPOSED SCHEME 8

Approximate Rule Tensor Generation For
rule reconstruction, initially, we generate an approx-
imate rule tensor TA ∈ R1×Nf×Nt , by computing the
mode-3 product of compressed tensor C ∈ R1×Nf×Nr

with truncated unitary orthogonal matrix Uk com-
puted using (Equation (12)) and stored. This process
is expressed as:

TA = C ×3 Uk. (19)

Equation (19) can also be expressed as:

TA(3)
= Uk × C(3), (20)

where TA(3)
and C(3) are the mode-3 unfolded ma-

trices of approximate rule and compressed rule ten-
sors, respectively [16]. The space complexity of the
rule reconstruction procedure is O(Nt(Nr + Nf)).
The time complexity of the rule reconstruction pro-
cedure is O(NtNrNf).

The absolute error of approximation between ini-
tial rule tensor T and approximated rule tensor TA is
measured as:

ε = ||T − TA|| =

√√√√ 1∑
i1=1

Nf∑
i2=1

Nt∑
i3=1

(ti1i2i3 − tAi1i2i3
)2, (21)

where ||X|| denotes the norm of a tensor X [16].
This error is introduced due to approximation of the
floating-point values in the truncated unitary orthog-
onal matrix Uk. From experimental results, it is ob-
served that ε = 0 for Nr = [Nf , Nt].

The size of the matrix Uk depends on RF which
we calculate using Equation (8). Hence, the rule re-
construction time is high for a high value of RF due
to the computation of mode-3 product in Equation
(19).

Rule Recovery After approximate rule tensor is
generated, exact rule entries are recovered. Each
mode-2 fiber [16] of tensor TA corresponds to one
row of flow-table. At this stage, the action value and
all the match fields of the flow-table entries are in
integer format. Using transformation logic described
in Table I, we transform each entry of the flow-table
back to ternary string. Figure 4 shows the process of
rule recovery.

3.2.3 Rule Caching

Each switch si caches the most frequently used rules.
Incoming packets, which match with the cached rules,
directly follow the actions mentioned in the matched
rule. For “cache miss”, the packets first search for a
match in Ri

u(t). If no match is found, then the corre-
sponding sub-controller reconstructs the aggregated
rules and checks for a match.

We used the least recently used (LRU) cache algo-
rithm. In the OpenFlow protocol version (v1.5.1) [7],
each flow-table entry contains a counters field, which
is updated when incoming packets are matched with
the corresponding flow-rule. Investigation of this
field allows us to discard the least recently used rules
and select the frequently used ones as the potential
caching candidates. The discarded rules are added

4 PERFORMANCE EVALUATION 9

to the Ri
u(t) set. If a rule in the aggregated rule-set

Ri
a(t) qualifies as a potential caching candidate, then

that rule is added to set Ri
c(t) with a flag indicat-

ing that the rule is also available in the aggregated
rule-set Ri

a(t). Therefore, when the rule is no longer
needed to be cached, it can be simply deleted from
set Ri

c(t) without adding it to set Ri
u(t).

4 Performance Evaluation

In this Section, we evaluate the efficiency of TERM,
while comparing with traditional OpenFlow-based
approach, flow-table partitioning approach — Pallet
[12], and flow aggregation approach (FAA) [13]. We
implement all the algorithms in MATLAB and con-
sider Sprint topology [24]. We generate random flow-
table entries, each with a priority value, a counter
value, 45 match fields, and an action value. The per-
formance of TERM is evaluated based on throughput,
average packet waiting time, free rule-space, Packet-
In message count, and rule aggregation and recon-
struction time.

4.1 Simulation Parameters

The simulation parameters are depicted in Table II.
The total number of switches is 11. The maximum
number of flow-entries stored in a switch is 8000 [5].
The average queue size per switch is set as 0.07 mil-
lion packets [10]. In addition, the rule matching time
is fixed to 20 µs [25]. We consider 5 µs transmission
delay per kilometer distance [26].

4.2 Result and Discussion

4.2.1 Throughput

Throughput is measured as the percentage of packets
processed per unit time. Figure 5 shows the average
throughput when the total number of flows is varied
between 20000 and 100000. The average packet ar-
rival rate and packet processing rate per switch are
0.02 mpps and 0.03 mpps, respectively. From the sim-
ulation, we observe that the average throughput for
TERM is almost similar to Pallet, traditional SDN
approach, and FAA.

Figure 8: Average Number of Packet-In Messages

4.2.2 Average Packet Waiting Time

Figure 6 depicts the average packet waiting time for
TERM, traditional SDN, Pallet, and FAA. The aver-
age packet waiting time of TERM is 14.81%, 30.30%,
and 43.90% less than traditional SDN, Pallet, and
FAA, respectively. Therefore, we yield that the av-
erage packet waiting time is short in TERM, as the
most frequently used rules are cached in each switch.

4.2.3 Free Rule-Space

The amount of free rule-space is the percentage of to-
tal rule-space available for storing new flow-rules. As
shown in Figure 7, the average free rule-space is sig-
nificantly higher in TERM, as each rule aggregation
procedure aggregates the existing rules and releases
rule-space.

5 CONCLUSION 10

4.2.4 Packet-In Message Count

Figure 8 shows the average number of Packet-In mes-
sages generated from each switch in the network. The
cached rule-space size is fixed to 10% of the total rule-
space. The average number of Packet-In messages
is 49.45%, 70.83%, and 57.78% less than traditional
SDN, Pallet, and FAA, respectively.

Figure 9 depicts the average number of Packet-
In messages generated from each switch for different
cache size. The total number of flows is 10000. As
shown in Figure 9, the number of Packet-In messages
for 20% cache size is 22.96% less than that for no
cache. Therefore, we yield that caching reduces the
Packet-In message count. In addition, we synthe-
size that after a specific size of Ri

c(t), the Packet-In
message count decreases as most of the packets are
matched in Ri

c(t).

4.2.5 Rule Aggregation and Reconstruction
Time

The rule aggregation time is the time required to
compress flow-rules of a switch into lesser number
of TCAM entries. Similarly, the rule reconstruction
time is the time needed to transform the aggregated
TCAM entries into actual flow-rules. Figure 10 and
Figure 11 depict the average rule aggregation and re-
construction time of a switch, respectively. For 8000
flow-rules, rule reconstruction phase takes 16.25%
lesser time than the rule aggregation phase.

5 Conclusion

In this work, we proposed a rule-space management
system, TERM, which aims to reduce flow-table miss
by increasing the available capacity of switches in
SDN. We used tensor decomposition technique to
compress heterogeneous flow-rules. We evaluated the
performance of the proposed scheme by comparing
it with existing approaches. Results indicate en-
hanced performance in terms of reduced packet wait-
ing time, increased free rule-space, and reduced num-
ber of Packet-In messages.

In the future, we aim to extend the proposed
scheme by optimizing the rule caching procedure and
the placement of flow-rules in SDN switches. The
future extension of this work also includes implemen-
tation of the proposed scheme in a real testbed.

References

[1] M. Hayes, B. Ng, A. Pekar, and W. K. G. Seah.
Scalable Architecture for SDN Traffic Classifi-
cation. IEEE Syst. J., pages 1–12, 2018. doi:
10.1109/JSYST.2017.2690259.

[2] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia,
D. Hock, M. Jarschel, and M. Hoffmann. Heuris-
tic Approaches to the Controller Placement
Problem in Large Scale SDN Networks. IEEE
Trans. Netw. Service Manag., 12(1):4–17, Mar.
2015.

REFERENCES 11

[3] S. Bera, S. Misra, S. K. Roy, and M. S. Obai-
dat. Soft-WSN: Software-Defined WSN Manage-
ment System for IoT Applications. IEEE Syst.
J., 12(3):2074–2081, Sep. 2018.

[4] M. T. I. ul Huque, W. Si, G. Jourjon, and
V. Gramoli. Large-Scale Dynamic Controller
Placement. IEEE Trans. Netw. Service Manag.,
14(1):63–76, Mar. 2017.

[5] D. Kreutz, F. M. V. Ramos, P. E. Verssimo,
C. E. Rothenberg, S. Azodolmolky, and S. Uhlig.
Software-Defined Networking: A Comprehensive
Survey. In Proc. of the IEEE, volume 103, pages
14–76, Jan. 2015.

[6] A. Mondal, S. Misra, and I. Maity. Buffer Size
Evaluation of OpenFlow Systems in Software-
Defined Networks. IEEE Syst. J., pages 1–8,
2018. doi: 10.1109/JSYST.2018.2820745.

[7] OpenFlow Switch Specification(Version 1.5.1):
Open Networking Foundation. Mar. 2015.

[8] O. Rottenstreich, R. Cohen, D. Raz, and
I. Keslassy. Exact Worst Case TCAM Rule
Expansion. IEEE Trans. Comput., 62(6):1127–
1140, Jun. 2013.

[9] C. Pereira, A. Pinto, D. Ferreira, and A. Aguiar.
Experimental Characterization of Mobile IoT
Application Latency. IEEE Internet Things J.,
4(4):1082–1094, Aug. 2017.

[10] I. Maity, A. Mondal, S. Misra, and C. Man-
dal. CURE: Consistent Update With Redun-
dancy Reduction in SDN. IEEE Trans. Com-
mun., 66(9):3974–3981, Sep. 2018.

[11] C. R. Meiners, A. X. Liu, and E. Torng. Bit
Weaving: A Non-Prefix Approach to Compress-
ing Packet Classifiers in TCAMs. IEEE/ACM
Trans. Netw., 20(2):488–500, Apr. 2012.

[12] Y. Kanizo, D. Hay, and I. Keslassy. Palette: Dis-
tributing tables in software-defined networks. In
Proc. of IEEE INFOCOM, pages 545–549, Apr.
2013.

[13] T. Kosugiyama, K. Tanabe, H. Nakayama,
T. Hayashi, and K. Yamaoka. A flow aggrega-
tion method based on end-to-end delay in SDN.
In Proc. of IEEE ICC, pages 1–6, May 2017.

[14] David A. Applegate, Gruia Calinescu, David S.
Johnson, Howard Karloff, Katrina Ligett, and
Jia Wang. Compressing Rectilinear Pictures and
Minimizing Access Control Lists. In Proc. of
ACM-SIAM SODA, pages 1066–1075, Philadel-
phia, PA, USA, 2007. Society for Industrial and
Applied Mathematics.

[15] Masoud Moshref, Minlan Yu, Abhishek Sharma,
and Ramesh Govindan. vCRIB: Virtualized
Rule Management in the Cloud. In Proc. Hot-
Cloud, pages 23–23, 2012.

[16] T. G. Kolda and B. W. Bader. Tensor Decom-
positions and Applications. SIAM Review, 2009.

[17] M. A. Veganzones, J. E. Cohen, R. Cabral
Farias, J. Chanussot, and P. Comon. Nonneg-
ative Tensor CP Decomposition of Hyperspec-
tral Data. IEEE Trans. Geosci. Remote Sens.,
54(5):2577–2588, May 2016.

[18] A. P. Liavas and N. D. Sidiropoulos. Parallel Al-
gorithms for Constrained Tensor Factorization
via Alternating Direction Method of Multipliers.
IEEE Trans. Signal Process., 63(20):5450–5463,
Oct. 2015.

[19] E.R. Henry and J. Hofrichter. Singular value de-
composition: Application to analysis of experi-
mental data. In Numerical Computer Methods,
volume 210, pages 129 – 192. Academic Press,
1992.

[20] Claudio Schifanella, K. Selçuk Candan, and
Maria Luisa Sapino. Multiresolution Tensor
Decompositions with Mode Hierarchies. ACM
Trans. Knowl. Discov. Data, 8(2):10:1–10:38,
Jun. 2014.

[21] L. R. Tucker. Some mathematical notes on
three-mode factor analysis. Psychometrika,
31:279–311, 1966.

REFERENCES 12

[22] E. Acar and B. Yener. Unsupervised Multi-
way Data Analysis: A Literature Survey. IEEE
Trans. Knowl. Data Eng., 21(1):6–20, Jan. 2009.

[23] T. Wu, S. A. Nezam Sarmadi, V. Venkatasub-
ramanian, A. Pothen, and A. Kalyanaraman.
Fast SVD Computations for Synchrophasor Al-
gorithms. Trans. Power Syst., 31(2):1651–1652,
Mar. 2016.

[24] S. Knight, H. X. Nguyen, N. Falkner, R. Bow-
den, and M. Roughan. The Internet Topology
Zoo. IEEE J. Sel. Areas Commun., 29(9):1765–
1775, Oct. 2011.

[25] K. Sood, S. Yu, and Y. Xiang. Performance
Analysis of Software-Defined Network Switch
Using M/Geo/1 Model. IEEE Commun. Lett.,
20(12):2522–2525, Dec. 2016.

[26] T. Mizrahi, E. Saat, and Y. Moses. Timed
Consistent Network Updates in Software-
Defined Networks. IEEE/ACM Trans. Netw.,
24(6):3412–3425, Dec. 2016.

