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Abstract—Software-defined IoT (SDIoT) is a promising ap-
proach to address the requirements of IoT, such as network
management, quality of service (QoS), and resource utilization.
The advantages of SDIoT are facilitated by the separation of
the data- and the control-planes using flow-rules, that allow fine-
grained control over individual flows. However, the number of
flow-rules that can be placed at the switches is limited, leading
to scalability issues in SDIoT. Existing approaches to flow-rule
management either do not consider the impact on quality-of-
service (QoS) or are applicable only to a particular topology.
In this paper, we propose a QoS-aware flow-rule aggregation
scheme for generic network topologies, which aims to achieve
satisfactory trade-off among flow-rule compression and its impact
on the QoS of IoT traffic flows. Specifically, the proposed scheme
adaptively aggregates flow-rules while considering different QoS
requirements of IoT applications in the network, and the flow-
rule capacity of the switches. The proposed scheme consists of
the following components — a) a path selection heuristic to
increase the total number of flow-rules that can be accommodated
in the network, and b) a multi-arm bandit based flow-rule
aggregation scheme capable of reducing the number of flow-
rules, while maintaining adequate performance in terms of QoS.
Experimental results using IoT traffic show that, on average, the
proposed scheme is capable of reducing the average end-to-end
delay and QoS-violated flows in the network by 22% and 30%,
respectively, compared to the state-of-the-art schemes.

Index Terms—Software-Defined Networking, Internet of
Things, Quality of Service, Rule-aggregation

I. INTRODUCTION

Recent advances in the Internet of Things (IoT) technologies
have shown that adopting a software-defined network (SDN)
based IoT architecture (SDIoT) offers many advantages such
as simplification of network management, improved quality-
of-service (QoS), efficient mobile-edge computing, and dy-
namic resource utilization for heterogeneous IoT resources
[1]–[4]. These benefits are facilitated by the separation of
the control from the data-plane using match-action forwarding
policies (flow-rules), allowing fine-grained control over indi-
vidual IoT traffic flows [3]. In this work, we focus on an
SDIoT network, as shown in Figure 1, where an SDN-enabled
backbone is used to carry heterogeneous traffic generated by
various IoT devices connected through different wired/wireless
access networks. Various IoT applications running on top of
the SDN controller, such as QoS routing and access-control,
express their objectives by placing appropriate flow-rules at the
switches. Fine-grained control by these applications requires
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Figure 1: SDN-based IoT architecture

specifying exact-matches on multiple header fields, leading to
the generation of a vast number of flow-rules. However, due
to cost and energy considerations, only a limited number of
flow-rules can be accommodated in the flow-table of switches
[5]. This problem is exacerbated in SDIoT networks, with a
massive number of low-volume traffic flows, many of which
require differential treatment. To address this issue, recent
works [6], [7] considered strategies in which flow-rules are
aggregated1 after flow arrival in order to reduce the number
of flow-rules. These solutions mainly focused on aggregating
a given set of flow-rules without violating the existing for-
warding policies. However, in an online scenario, flow-rules
arriving after the aggregation can be affected, as shown in
Figure 2.

From the figure, we observe that flow f5 that arrives at an
SDIoT gateway after aggregation using nw src and nw dst,
matches the existing (s2, d1, ∗, ∗) aggregated flow-rule, and is
transparently forwarded out port 2 without contacting the con-
troller (packet-in). This bypasses any IoT applications running
at the SDN controller, such as QoS routing, and may cause
sub-optimal forwarding and QoS violations. On the other hand,
from Figure 2 (right), we observe that aggregating the flow-
rules using a combination of nw src and dst port is capable
of correctly forwarding the IoT flows under consideration.
Therefore, the choice of match-fields considered for flow-
rule aggregation affects the QoS forwarding of IoT flows.
From Figure 2, it may be noted that for the flows under
consideration, aggregating them by nw src and nw dst yields
a 50% decrease in the number of flow-rules, while aggre-
gating them by nw src and dst port yields a 25% decrease.
Therefore, there is a fundamental trade-off among the flow-
rule reduction and the QoS violations, and the essence of the
problem is to determine a suitable combination of match-
fields capable of reducing the number of flow-rules, while
minimizing the impact of the QoS of newly arriving IoT flows.

1Flow-rules are aggregated by wildcarding (∗) some match-fields which
then match on any incoming packet.
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Figure 2: Example showing the impact of flow-rule aggregation on QoS forwarding of IoT flows. Flow-rules are considered in the form (nw src, nw dst,
src port, dst port, action). Correct forwarding paths are drawn solid, incorrect ones are dashed.

Therefore, in this work, we propose a QoS-aware flow-rule
aggregation scheme to address the problem described above.
The proposed scheme uses a twofold mechanism to address
the rule management problem — a) a path selection heuristic
termed Bestfit-Z, which minimizes the number of flow-rules
in the network, b) a fast flow-rule aggregation scheme based
on multi-arm bandit, which selects appropriate match-fields
to minimize the impact of aggregation on the QoS of newly
arrived flows.

The flow-rule aggregation scheme presented in this paper
extends our earlier work [8] in several aspects. In particular,
the extended flow-rule aggregation scheme relies on a multi-
arm bandit (MAB)-based approach to automatically select the
best key for aggregation, and jointly considers the number of
flow-rules present, as well as the number of QoS violations.

In summary, compared to [8], we present the following new
contributions:

• We propose the Bestfit-Z path selection heuristic that
takes into account switches with high flow-rule utilization
(bottleneck switches), to minimize the total number of
flow-rules in the network. The Bestfit-Z heuristic of-
fers 7% improved performance over our previous path-
selection approach [8].

• We propose a fast reactive flow-rule aggregation scheme,
based on a multi-arm bandit (MAB) algorithm, which
selects a suitable combination of match-fields to achieve
adequate trade-off among flow-rule reduction and impact
on QoS of online arriving IoT flows.

• We have widely strengthened the performance analysis by
including new performance metrics, different topologies
from the Internet Topology Zoo [9], and the flow-table
sharing (FTS) [10] benchmark scheme. Experimental
results on IoT traffic using the POX SDN controller
and the Mininet network emulator show that the pro-
posed scheme is capable of reducing the average end-
to-end delay and QoS-violated flows by 22% and 30%,
respectively, compared to the existing schemes, while
achieving comparable performance in terms of flow-rule
aggregation.

The rest of the paper is organized as follows. In Section II,
we analyze the relevant state-of-the-art. Section III presents an
overview of the proposed scheme as well as its applicability to
SDIoT networks. Section IV presents the proposed flow-rule
aggregation scheme in detail. In Section V, we evaluate the
performance of the proposed scheme. Finally, we conclude the
paper in Section VI and present directions for future work.

II. RELATED WORK

We classify the relevant state-of-the-art into a) compression-
based schemes, and b) routing-based schemes.

Compression-based schemes focus on aggregating a given
set of flow-rules, while maintaining consistency with the
existing forwarding policies [6], [7], [11], [12]. Rifai et al. [6]
proposed a heuristic approach for compressing flow-rules in
data-center networks (DCNs), which yields a 3-approximation
for the offline flow-rule reduction problem. Mimidis et al. [11]
proposed a flow-aggregation scheme for SDN-based backhaul
networks, where the flows are separated into different QoS
classes and the SDN controller is subsequently used to check
if recently arrived flows can be aggregated with existing
flows while maintaining the QoS requirements. A similar
scheme was proposed by Kosugiyama et al. [7], where flows
having the same source and destination are aggregated, as
long as delay requirements are satisfied. Zhang et al. [12]
considered joint path-selection and rule aggregation in SDIoT
networks using a distributed Markov approximation approach.
The authors mainly focused on maximizing network operator
revenue, and QoS parameters other than throughput were not
discussed. All of these schemes [6], [7], [11], [12] mainly fo-
cused on achieving a compressed flow-table consistent with the
existing forwarding policies. However, in an online scenario,
flows arriving after flow-rule aggregation can be affected, as
shown in Figure 2. The authors in [6] avoid this by utilizing
level-0 switches in a fat-tree topology to contact the controller
for every flow, which makes it applicable to only DCNs.
Phan et al. [13] proposed a learning-based approach to pre-
emptively determine flow-table overflow, and aggregate flow-
rules using layer 2 destination. However, neither flow-table
consistency nor impact on QoS were discussed. Singh et al.
[14] proposed a probabilistic data-structure for space-efficient
storage of flow-rules at SDN switches. This is complementary
to our work, where we focus on reducing the total number of
flow-rules.

Routing-based schemes adopt various optimization and
heuristic approaches to minimize the number of flow-rules
used to route flows, or calculate QoS routing paths under
flow-rule limits [3], [10], [15]–[17]. Huang et al. [15] con-
sidered a joint rule-placement and traffic-engineering scheme
to reduce redundant flow-rules for multiple unicast sessions
under QoS constraints. In contrast, we focus on the more
general problem of minimizing flow-rules independent of a
particular application. Nguyen et al. [16] proposed a routing
scheme to minimize the number of flow-rules in DCNs, where
existing routing paths are explicitly changed, as long as end-
point policies are maintained. This does not consider the
fine-grained forwarding required for IoT traffic flows. Several
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schemes focused on routing within flow-rule limits, rather than
minimizing an existing set of rules. Giroire et al. [17] proposed
a scheme for energy-aware routing in SDN while respecting
the capacity and flow-rule constraints. Qiao et al. [10] focused
on minimizing the control overhead when the flow-table at a
switch is full. The author proposed a routing scheme, which,
on flow-table overflow, randomly forwards a new flow to
a less utilized next-hop switch instead of sending packet-
in to the controller. This forwarding scheme causes uniform
utilization of the flow-table across all switches, leading to the
minimization of the total number of flow-rules.

Synthesis: Critical analysis of the existing literature reveals
that the existing approaches mainly focused on QoS forward-
ing without rule-aggregation, or consider rule-aggregation with
QoS, but apply to a specific topology such as fat-tree. There-
fore, we present Q-Flag, a QoS-aware flow-rule aggregation
scheme for generic network topologies, which aims to achieve
satisfactory trade-off among flow-rule compression and its
impact on the QoS of IoT traffic flows.

III. SYSTEM MODEL

In this Section, we present the system model of the proposed
QoS-aware flow-rule aggregation scheme, named Q-Flag.
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Figure 3: Overview of the proposed scheme, showing the different components
built on top of the POX SDN controller

A. System Overview

The different components of the proposed Q-Flag scheme
are presented in Figure 3. The components are built as python-
based application modules on top of the POX SDN controller2.
In the figure, the custom modules for Q-Flag are shown in
green, while the built-in core modules of the POX controller
are shown in red.

The packet-in module is responsible for generating control
messages that contain meta-data about flows which is used
by the controller to place appropriate flow-rules. For a given
flow (packet-in), the QoS routing module is used to return a
set of k paths that satisfy the QoS requirements of the flow.
This module utilizes the QoS routing scheme presented in our
earlier work [3], which uses Yen’s K-shortest paths algorithm
to select QoS forwarding paths using exact-match flow-rules.
The value of k denotes a trade-off among the number of
QoS paths returned, and the time-complexity of the algorithm
(given as O(k|S|(|L| + |S| log |S|)), where |L| denotes the
number of links). In this work, we use the value of k = 3.
Since the main focus of this work is flow-rule aggregation,

2https://github.com/noxrepo/

we limit our discussion on QoS routing for SDN. Interested
readers may refer to [3] for details. The path selection module
utilizes the proposed Bestfit-Z heuristic to select a suitable path
from the k QoS paths, in order to minimize the overall number
of flow-rules and increase in the number of successfully routed
flows. The Bestfit-Z heuristic is described further in Section
IV-A. The built-in flow-rule module of the POX controller is
used to translate the path information into appropriate exact-
match flow-rules to be placed at the switches. This module also
maintains a database of flow-rules and provides the necessary
interface between the multi-arm bandit module and flow-rule
aggregation module. The multi-arm bandit (MAB) module is
used to select a suitable match-field combination for flow-
rule aggregation in order to achieve satisfactory trade-off
between the number of flow-rules and QoS violated flows.
This module spawns a separate thread at the controller for
each switch, which is then used to run a separate instance
of the MAB algorithm. The match-field selection process is
discussed further in Section IV-B. The flow-rule aggregation
module is used to aggregate the flow-rules at the switches
according the particular match-field combination returned by
the MAB module. It is also responsible for interacting with the
flow-rule module of the SDN controller to update, modify and
delete the flow-rules as necessary. The details of the flow-rule
aggregation process are presented in Section IV-C.

B. Flow-rule Aggregation for SDIoT networks

Many of the advantages of SDIoT networks, such as per-
flow differential treatment depending on the type of IoT traffic
[3], and flow-scheduling for mixed-criticality applications in
cyber-physical systems [18], utilize the fine-grained match-
action capabilities of SDN. This generates a huge number of
flow-rules, and the limited flow-rule capacity of SDN switches
leads to scalability issues in SDIoT networks. Thus, flow-
rule aggregation plays an important part in improving the
scalability of SDIoT networks, by increasing total number of
flow-rules that can be accommodated at the switches. Many
existing flow-rule aggregation schemes considered network-
wide routing and rule-placement strategies [12], [15], [16].
Therefore, they assumed complete control over forwarding
by a single application, which is not the case for SDIoT
networks, where multiple IoT applications may be running
at the SDN controller, with their own forwarding policies.
The proposed match-field selection and flow-rule aggregation
strategy works on top of existing forwarding policies (by
different IoT applications), and is thus applicable to SDIoT
networks.

C. Flow-table Representation

Let S denote the set of SDN-enabled switches in the SDIoT
network. The switches communicate with the logically central-
ized SDN controller through the OpenFlow protocol [19], and
the traffic forwarding is controlled by placing forwarding rules
in the flow-table at the switches. Let R denote the flow-table
at a switch. A flow-rule r ∈ R is given as r = 〈Mr,Or, Cr〉,
whereMr, Or and Cr represent the set of match-fields, output
action, and flow-counters, respectively. The match-field set,
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Mr, is given as Mr = {mk
r | k = 1, 2, .., n} where n is the

number of match-fields.

IV. QOS-AWARE FLOW-RULE AGGREGATION

A. Path Selection for Minimizing Flow-table Utilization

In this Section, we present a path selection heuristic to
minimize the flow-table utilization in the network. As IoT
flows arrive sequentially in the network, multiple paths may
be present that satisfy the QoS requirements of each flow
(candidate paths). A greedy approach of picking the QoS path
with the minimum number of flow-rule insertions may lead
to faster fill-up of a switch having a high degree (bottleneck
switch) in the network graph. To address this, we propose the
Bestfit-Z heuristic, as presented in Definition 1.

Definition 1. Bestfit-Z heuristic: Given a set of candi-
date paths, {Pl}, choose the path Pbfz = argminl δ(Pl),
where δ(Pl) represents the cost of a particular path Pl
in terms of flow-rule utilization, and is given as δ(Pl) =∑
i∈Pl

θi|Ri|/|Rmax| where |Rmax| is the maximum num-
ber of flow-rules that can be placed in the flow-table, and
|Ri|/|Rmax| denotes the flow-table utilization at switch i ∈
Pl. The term θi = i−γ/

∑
j∈S j

−γ is a decreasing vector
that assigns importance (or rank) to each switch based on
its flow-table utilization, according to a Zipf distribution,
where γ represents the skewness of the distribution flow-table
utilization across all switches.

The Bestfit-Z heuristic takes into account all the bottleneck
switches ranked according to the severity of the bottleneck
(flow-table utilization), which leads to amelioration of the
bottleneck switches, and increases the number of flows suc-
cessfully routed in the network.
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Figure 4: Figure showing a) toy example illustrating the operation of the
Bestfit-Z heuristic, and b) relative performance of the Bestfit-Z heuristic with
increasing number of flows

Figure 4(a) shows an illustrative example of the Bestfit-
Z heuristic. The switch s3 lies on multiple paths, thus, its
flow-table gets filled up faster. If the bottleneck switch, s3,
is completely filled, new flows arriving at that switch will be
dropped. Consequently, all paths with s3 as an intermediate
switch will become invalid, leading to sub-optimal perfor-
mance. The greedy approach chooses path f1 with three flow-
rule insertions at s2, s3 and s6. On the other hand, the Bestfit-
Z heuristic takes into account the bottleneck switch, s3, and
chooses path f ′1 with four flow-rule insertions at s2, s4, s5 and
s6. In our earlier work [8], we presented the simpler Bestfit
heuristic, which accounted for only one bottleneck switch on a
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Figure 5: Figure showing a) trade-off between flow-rule reduction and QoS
violations for different combinations of match-fields, and b) comparison of
different bandit algorithms and exhaustive search

given path. Figure 4(b) shows the relative performance of the
Bestfit-Z heuristic with increasing number of flows. From the
figure, it is evident that the proposed BestFit-Z minimizes the
flow-table utilization of the network, and is hence able to suc-
cessfully route a larger number of flows compared to Greedy
and Bestfit. In particular, from the figure, we observe that
due to the consideration of multiple bottleneck switches, the
relative performance of Bestfit-Z improves with increase in the
number of flows. Overall, the Bestfit-Z heuristic outperforms
the Bestfit and Greedy heuristics by 7% and 20%, respectively.
For a given set of paths P , calculating δ(Pl) involves iterating
over at most maxl |Pl| switches. Assuming that there are k
candidate paths for a flow, the time-complexity for the Bestfit-
Z heuristic is given as O(kmaxl |Pl|). The Bestfit-Z heuristic
utilizes the distribution of flow-table utilization (γ) at the
switches, which may be found by periodically querying the
number of flow-rules present. In OpenVSwitch3, this can be
done using the dump-flows command.

B. Match-field Selection for Flow-rule Aggregation

Using flow-rule aggregation, the reduction in the number of
flow-rules and the number of QoS violated flows depends on
the particular combination of match-fields chosen. Given a set
of n match-fields, for each field, we can choose to either in-
clude it or not (wildcard), leading to 2n possible combinations.
However, for every combination, there exists a fundamental
trade-off between flow-rule reduction and QoS violations, as
shown in Figure 5(a). The figure shows a scatter-plot of flow-
rule reduction and QoS violated flows obtained by applying
flow-rule aggregation using the 2n different combinations of
match fields where n = 10. Thus, our goal is to choose
a particular combination of match fields which achieves a
favourable trade-off amongst these two criteria. Since n is a
constant, thus, for a fixed set of flow-rules, we can perform an
exhaustive search in polynomial time to find the optimal arm
which achieves the best (in terms of some utility) trade-off
between flow-rule aggregation and QoS violations. However,
in an online model, where IoT flows arrive sequentially, the
distribution of utility associated with a particular match-field
combination is not known in advance. Therefore, match-field
combinations have to be chosen with incomplete information
such that over time, the expected utility achieved is close to

3https://www.openvswitch.org/
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that of the optimal arm in the offline case. This problem can
be conveniently modeled as a MAB problem.

Multi-arm bandits are instances of sequential decision-
making problems that deal with the exploration-exploitation
trade-off, i.e., the balance between exploiting alternatives
(arms) that performed well in the past and arms that may yield
higher utility in the future. In the flow-rule aggregation prob-
lem, in each iteration, each of the 2n combinations of match-
fields yields some utility (in terms of flow-rule reduction and
QoS-violated flows) depending on the traffic. However, in each
iteration, only one combination of match-fields may be chosen
for flow-rule aggregation, and its utility observed. The goal is
to choose, in each iteration, the combination of match-fields,
which maximizes the cumulative sum of utility over time.

1) Design of Utility Function: Let A denote the set of
2n match-field combinations (arms)4, where n is the number
of match-fields. Let Ra and Fa denote the reduction in
the flow-table length and the number of correctly forwarded
flows, when aggregation is done with arm a ∈ A. Here, the
term correctly forwarded flows denotes the flows forwarded
by the aggregated flow-table, which are consistent with the
forwarding policies before aggregation. Since the objective
is to minimize the number of flow-rules (i.e., increase the
reduction in flow-table length) as well as to reduce the number
of QoS-violated flows (i.e., increase the number of correctly
forwarded flows), we design a utility function Ua as:

Ua = αR̂a + (1− α)F̂a; α =
e

|R|
|Rmax| − 1

e− 1
(1)

where |R|/|Rmax| denotes the flow-table utilization, and R̂a
and F̂a denotes the variables Ra and Fa normalized in [0, 1].
The parameter α in Equation (1) controls the relative impor-
tance of flow-rule reduction and number of correctly forwarded
flows. The weight parameter α is designed to take into account
the flow-table utilization at the switches. This ensures that
when flow-table utilization is low (|R|/|Rmax| → 0), greater
importance is placed on correctly forwarding flows. On the
other hand, at higher flow-table utilization, flow-rule aggrega-
tion is given priority to improve the overall performance.

Algorithm 1 Algorithm for Utility Calculation
Inputs: Flow-table R, arm a ∈ A
Output: Calculated utility Ua;

1: Initialize dictionary d to store aggregation keys;
2: for each rule r in R do
3: Extract aggregation key λ← {mk

r | k ∈ a};
4: if λ /∈ d then
5: Add λ to d and initialize array out countλ;
6: Increment out countλ[Or] by 1;
7: else
8: Increment out countλ by 1;
9: Get flow-rule reduction Ra ← |R| − |d|;

10: Get correct forwarding Fa ←
∑
λmax out countλ;

11: Calculate reward Ua from Ra and Fa using Equation (1);

4Henceforth, we use the terms arms and match-field combinations, inter-
changeably.

Algorithm 1 is used to calculate the utility Ua for a given
arm a ∈ A. Step 3 extracts an unique key λ from exact-match
rule r, where λ contains values of r in only those match-
fields given by arm a. Thus, rules having same values of λ are
essentially aggregated. Figure 6 illustrates how λ is extracted
from exact-match rule r. For each key λ, an array out countλ
keeps count of the number of times a particular port is used
for that key. Steps 5 to 8 are used to select the most used port
(max out countλ) for each key λ, as the default port. If ports
other than the default port are used, flows are forwarded sub-
optimally (i.e., output port changed due to aggregation) which
may lead to QoS-violations. Step 10 is used to calculate the
number of correctly forwarded flows.
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Figure 6: Illustrative example showing extraction of key λr and aggregation
using default port

2) Multi-Arm Bandit: MAB algorithms specify a strategy
for choosing an arm at each iteration, which maximizes the
total utility over time. We compare the results of two popu-
lar MAB algorithms — Epsilon-Greedy and Softmax, with
random aggregation, source-based aggregation [6], [7] and
exhaustive search (optimal). In the Epsilon-Greedy algorithm,
with each iteration, the algorithm keeps track of the current
average utility of each arm. It selects the arm with the highest
average utility with probability 1 − ε and does a random
exploration of the other arms with probability ε. We use an
annealing version of the Epsilon-Greedy algorithm in which
ε decreases over time [20]. In the Softmax algorithm, the
probability of choosing an arm is dependent on the utility
achieved by picking that arm, following a Boltzmann distribu-
tion. Figure 5(b) shows the expected reward achieved by the
different algorithms with an increasing number of iterations
(arm pulls). In each iteration, utility achieved is given by
Algorithm 1 using the flow-table at that instant, and the arm
selected for that iteration. From the figure, we observe that
with an increasing number of iterations, the Epsilon-Greedy
(Eps-gr) method outperforms all the other algorithms and
achieves performance close to the exhaustive search (optimal).

Using the MAB algorithms, flow-rule aggregation can be
done with the different arms chosen at each iteration, and over
time, the total utility is close to that of the offline exhaustive
search. In the experiment shown in Figure 5(b), the optimal
arm chosen by the exhaustive search is (dl dst, dl type,
dl vlan, nw dst). For our experiments, we choose the Epsilon-
Greedy algorithm due to its superior performance over other
MAB algorithms. In each iteration, Epsilon-Greedy chooses a
random arm with probability ε, and arm a = argmaxa∈A Ua
with probability 1 − ε. The MAB algorithm spawns a thread
at the controller for each switch. Iterating the MAB algorithm
too often causes high load on the controller; on the other
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hand, iterating infrequently causes greater deviation from the
optimal. In our experiments, we have found iterating every
50 ms to give good results. It is noteworthy that other MAB
algorithms can easily be used in place of Epsilon-Greedy
simply by using Algorithm 1 to calculate the utility or reward
at each iteration.

C. Flow-rule Placement and Aggregation

In this Section, we present the reactive flow-rule placement
scheme, which utilizes the match-fields (arms) yielded by the
MAB algorithm (Section IV-B), to aggregate flow-rules.

Algorithm 2 Algorithm for Flow-rule Placement
Inputs: Packet-in message, M , dictionary d, arm a ∈ A
Output: Flow-rule placed (aggregated if possible)

1: Get exact-match rule r from M ;
2: Extract key λ← {mk | k ∈ a} from r;
3: if λ /∈ d then . Exact-match absent
4: Place exact-match rule r in switch;
5: else . Exact-match present
6: Find the most used port O∗ ← max out countλ;
7: if count(O∗) ≥ 1 then . Aggregation possible
8: Create wildcard rule rw using λ and O∗;
9: Place rw in switch with higher priority than r;

10: else
11: Place exact-match rule r in switch;

Algorithm 2 presents the reactive flow-rule placement
scheme, which places flow-rules (aggregated if possible), upon
arrival of a packet-in message. Step 1 is used to get an exact-
match flow-rule r from the packet-in message M . Step 2 is
used to extract a unique key λ from exact-match rule r, as
shown in Figure 6. Steps 5 to 9 are used to aggregate the
flow-rules using the most used port (default port), when more
than one exact-match flow-rule is present for a particular key
λ. Figure 6 shows an illustrative example of the aggregation
process, where exact-match flow-rules are aggregated using a
wildcard rule rw, created from r, which wildcards5 all the
match-fields /∈ λ, and sets the output action as the most
used port O∗. In line 9, we choose to place the wildcard
rule with higher priority, so that the existing flows switch to
using the wildcard and the exact-match rules can be deleted
automatically following the idle-timeout of the OpenFlow
protocol, thereby reducing the number of flow-rules. In our
earlier work [8], we proposed a similar flow-rule aggregation
scheme. In the present work, we have updated the scheme
to aggregate flow-rules using the most used port O∗, which
leads to an overall 8% increase in utility. It is noteworthy
that aggregation using the most used port O∗ with a higher
priority may cause sub-optimal forwarding for some flows;
however, the arm a ∈ A is chosen in a way that such cases
are minimized.

In Algorithm 2, the most expensive step in terms of time-
complexity is finding the most used port O∗. In the worst case,
there may be p−1 different output actions for a key λ, before
an action is repeated, where p is the number of output ports.

5A wildcard (x) in a match-field implies that it matches all flows.

Thus, iterating p times to find the most used port O∗, leads
to a time-complexity of O(p) for Algorithm 2. Algorithm 2
can easily be extended to newer versions of OpenFlow, with
multiple pipelined flow-tables, by extending the number of
output actions to include instructions such as goto-table. With
T pipe-lined stages, there will be T−1 goto-table instructions,
which increases the time-complexity of Algorithm 2 to O(p+
T ).

V. PERFORMANCE EVALUATION

Table I: Simulation parameters

Parameter Value
Topology AttMpls , Goodnet [9]
Number of switches 25 (AttMpls), 17 (Goodnet) [9]
Number of links 57 (AttMpls), 31 (Goodnet) [9]
Avg. packet size 94− 699 bytes [21]
Active volume 142− 27, 716 bytes [21]
Mean rate 562− 516, 540 bps [21]
Active time 1− 34 s [21]
OpenFlow rule-timeout 10 s

We evaluated the performance of the proposed scheme using
the POX SDN controller6 and the Mininet network emulator7.
The experiments were carried out on a Intel i7 2.7 GHz PC
with 8 GB RAM, running Linux kernel 4.15. The different
parameters considered for the experiments are presented Table
I. For evaluation, we considered two topologies— AttMpls
topology and Goodnet topology from the Internet Topology
Zoo [9]. We used the D-ITG traffic generator to model IoT
traffic flows based on real traces in [21]. The performance
of the proposed scheme was evaluated by sending IoT traffic
though the SDN network over a period of 5 minutes with
average packet size, mean rate, active volume, and active times
as given in Table I. The flow-rules are generated by the POX
controller using the OpenFlow protocol v1.0 on sending traffic
through the network. Each experiment was repeated 30 times
and the results show the average value along with the 95%
confidence interval.

To show the effectiveness of the proposed scheme, we
compare the proposed scheme, Q-Flag, with the following
existing baselines discussed in Section II — delay-based flow-
aggregation scheme (DBA) [7] and flow-table sharing scheme
(FTS) [10]. In the DBA scheme, flows having the same QoS
path are aggregated using nw src and nw dst. In the FTS
scheme, when the flow-table is full and a table-miss occurs, the
packet is randomly forwarded to a next hop neighbor instead
being sent to the controller as a packet-in message.

We consider the following performance metrics to evaluate
the performance of the proposed scheme — a) average flow-
rule utilization across all switches (1/S

∑
i |Ri|/|Rmax|),

b) the number of packet-in messages received at the SDN
controller, c) average end-to-end delay experienced by flows
in the network, and d) the number of flows that violate QoS
requirements of IoT traffic due to sub-optimal forwarding.

A. Results and Discussion
1) Analysis of flow-rules: Figure 7 shows the variation in

flow-rule utilization with an increasing number of flows. From

6https://github.com/noxrepo/
7http://mininet.org/
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Figure 7: Variation in flow-rule utilization in the network with number of
flows (averaged across all switches)

the figure, we observe that on average, Q-Flag achieves 5%
and 30% (AttMpls), and 7% and 60% (Goodnet) reduction in
flow-rules compared to the DBA and FTS schemes, respec-
tively. FTS does not consider rule aggregation and instead
avoids bottleneck switches by using random forwarding to
achieve uniform flow-table utilization. With a large number
of low-volume IoT flows, the exact-match strategy followed
by FTS leads to higher average flow-table utilization. DBA uti-
lizes aggressive aggregation by source-destination pair, which
leads to an appreciable reduction in flow-rules. On the other
hand, Q-Flag also takes into account the impact of aggregation
on QoS of newly arrived flows and hence is not able to achieve
significant improvement over DBA. The slight improvement
is due to the combined effect of — a) suitable match-field
selection, and b) Bestfit-Z heuristic.

Flow-rule aggregation is more apparent in the Goodnet
topology than in AttMpls. Goodnet is relatively sparse com-
pared to AttMpls, providing fewer options while choosing
QoS paths, which in turn increases the opportunities for flow-
rule aggregation. Overall, in both the topologies, we see that
Q-Flag outperforms the existing schemes in terms of flow-
rule aggregation. This increases the total number of flows that
can be accommodated in the network and thus, increases the
scalability of SDIoT. Moreover, from the figure, we observe
that the proposed scheme performs well for generic network
topologies.

2) Analysis of packet-in messages: Figure 8 shows the
variation in the number of packet-in messages received at
the POX SDN controller, indicating the overall control-plane
load. From the figure, we observe that, on average, Q-Flag
achieves a reduction of 19% (AttMpls) and 34% (Goodnet)
in the number of packet-in messages compared to FTS. FTS
focuses on minimizing packet-in by circumventing the deletion
of long-lived active flows, thus preventing repeated packet-in
for an ongoing flow. Low-volume intermittent or bursty IoT
flows do not benefit as much from this strategy and incur
greater packet-in due a higher number of flows rather than
deletion of flow-rules associated with an ongoing flow. On the
other hand, Q-Flag causes a 5% increase in packet-in messages
compared to DBA. Since DBA uses aggressive aggregation by
only two match-fields, its corresponding flow-rule matches are
wider than that of Q-Flag. Therefore, more flows are directly
routed through the data-plane without arriving at the controller,
thereby reducing packet-in.

3) Analysis of average delay: Figure 9 shows the average
delay experienced by flows in the network. From the figure,
we observe that overall, Q-Flag achieves 20%, 50% (AttMpls),
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Figure 8: Variation in the number of Packet-In messages in the network with
number of flows
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Figure 9: Variation in average delay in the network with number of flows

and 24%, 57% (Goodnet) reduction in delay compared to the
DBA and FTS schemes, respectively. FTS leads to increased
packet-in for IoT traffic as discussed above (Section V-A2).
For each packet-in, a corresponding flow-rule is installed
only after which packets can be forwarded. Each flow-rule
installation incurs a flow-setup delay in the range of 3 − 8
ms [22]. Therefore, a large number of packet-in messages
leads to increased flow-setup delay, which in turn increases
the average delay in the network. On the other hand, DBA
may take sub-optimal forwarding decisions for newly arrived
flows due to aggressive aggregation using source-destination
pair, leading to increased delay in the network. Overall, Q-Flag
outperforms the existing schemes in terms of average delay,
and is thus beneficial for many emerging IoT applications
such as connected vehicles, industrial IoT, and augmented
reality, which are latency-critical. Reduction in the delay is
also beneficial for non-critical IoT applications, such as turning
on a smart-bulb, where response time should be on the order of
a few hundred milliseconds for optimal user experience [23].

4) Analysis of QoS-violated flows: Figure 10 shows the
percentage of flows that violate the QoS. From the figure, we
observe that overall, Q-Flag reduces the QoS-violated flows in
the network by 31%, 41% (AttMpls), and 29%, 38% (Goodnet)
compared to the DBA and FTS schemes, respectively. In DBA,
many newly arrived flows match with the existing source-
destination wildcards without generating packet-in messages
and contacting the controller. This condition causes sub-
optimal forwarding decisions, which leads to increased QoS
violations. FTS incurs increased QoS violations mainly due to
— a) a large number of packet-in messages causes increased
delay, and b) the randomized forwarding action in the data-
plane, causing packets to travel along sub-optimal paths. From
the figure, we note that the relative performance of Q-Flag
is better in AttMpls, where the dense topology offers many
routing alternatives, and hence greater chances to forward
traffic sub-optimally due to aggregation. However, overall, Q-
Flag reduces the total QoS violations in the network. Along
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Figure 10: Variation in QoS-violated flows in the network

with delay-constrained applications, this is also useful for
many non-critical IoT applications that use application layer
re-transmissions8. Flows that violate the QoS may need some
packets to be re-transmitted, leading to increased energy
consumption at battery-operated IoT devices.

From the analysis above, we see that the proposed scheme,
Q-Flag, reduces the average delay and QoS violations in the
network and is thus useful for both latency-critical and non-
critical IoT applications. Further, it is capable of reducing
the number of flow-rules at the switches, which helps in
accommodating more flows in the network, and thus, increases
the scalability of SDIoT.

VI. CONCLUSION

In this paper, we proposed a QoS-aware flow-rule aggre-
gation scheme for SDIoT networks to address the flow-rule
capacity problem of SDN switches. The proposed scheme
utilizes a two-fold approach to aggregate flow-rules, while
considering the QoS of heterogeneous IoT traffic. First, a
path-selection heuristic is used to increase the total number of
flow-rules that can be accommodated in the network. Second,
a multi-arm bandit (MAB)-based rule-aggregation scheme is
used to aggregate flow-rules using a suitable combination
of match-fields, while minimizing its impact on the QoS of
newly arrived IoT flows. Experimental results using IoT traffic
showed that the proposed scheme is capable of reducing the
average delay as well as the number of QoS violations in the
network, making it suitable for both delay-critical as well as
non-critical IoT applications.

The flow-rule aggregation approach considered in this work
reduces the ability of the SDN controller to effectively collect
network statistics, which may adversely affect SDN-based
schemes that deal with network security. Therefore, in the
future, we plan to extend this scheme with a suitable network
statistics collection framework.
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