
QoS-Aware Adaptive Flow-rule Aggregation in
Software-Defined IoT
Niloy Saha, Sudip Misra, and Samaresh Bera

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur, 721302, India

Email: niloysaha@ieee.org, s.bera.1989@ieee.org, smisra@sit.iitkgp.ernet.in

Abstract—In this paper, we propose a QoS-aware adaptive
flow-rule aggregation scheme in software-defined IoT (SDIoT)
network with an aim to address flow-table overflow problem
in SDN switches. The proposed scheme uses a key-based
mechanism that is capable of fast aggregation and provides
sufficient reduction in the number of flow rules, while having
minimal impact on the QoS of IoT traffic. Further, we observe
that it is necessary to adequately select a QoS path from multiple
candidate paths, while considering the flow-table utilization at
the switches. Accordingly, we present the Best-fit heuristic which
takes into account the number of flow-rule insertions along
with the bottleneck rule-capacity switch on a path, in order
to minimize the total number of flow-rules in the network.
Experimental results show that the proposed scheme is capable
of reducing the average delay and packet drop by 35% and
12%, respectively, and improving the average throughput by
20% compared to the existing delay-based flow-aggregation
scheme, while having comparable performance in terms of rule-
aggregation.

Index Terms—Software-Defined Networking, Quality of Ser-
vice, Internet of Things, OpenFlow, Rule-compression

I. INTRODUCTION

The evolution of Internet of Things (IoT) envisions a
global interconnection of billions of smart objects such as
laptops and smartphones, home appliances, and wireless
sensor devices. With the number of smart networked devices
projected to reach 27 billion by 2021 [1], sophisticated data
and control networks are required to handle the massive data
onslaught from devices that are extremely diverse in nature.
Further, IoT systems are often geographically distributed and
operate across a wide range of communication technologies.
This suggests that IoT networks should be adaptable and
flexible to changing operating conditions.

The software-defined networking (SDN) paradigm [2] pre-
cisely allows this flexibility by introducing programmability
into the network. Recent advances in software-defined IoT
(SDIoT) [3], [4] have shown the advantages of SDN in an
IoT environment — in terms of simplification of network
management, enabling diversified QoS for heterogeneous
services, and resource utilization.

In SDN, the control logic is separated from data-plane for-
warding and is relocated to a logically centralized SDN con-
troller. This allows fine-grained control of individual flows
using rule-based forwarding, based on optimal decisions
by the centralized controller. Such fine-grained control is
especially useful in satisfying the diverse QoS requirements
of IoT — in terms of delay, jitter, packet-loss, and throughput

Figure 1: Example depicting flow-table overflow due to
exact-match rules. Even though flows f1, f2 and f3, fn are
forwarded out the same ports 1 and n, respectively, separate
rules are placed for forwarding them due to exact-matching.

[5]. Rule-based forwarding in the data-plane is facilitated by
OpenFlow, the de-facto standard in SDN [6]. The control
logic and decisions of the centralized controller are translated
by OpenFlow into simple flow-rules to be installed at the
flow-table of switches. The flow-rules are in the form of
match-action pairs, with each rule capable of matching on
multiple fields such as ingress port, vlan id, ethernet, and tcp
header fields. If a new flow matches any of the flow-rules
in the flow-table, the corresponding action (such as output,
modify, or drop) is applied. For every new flow that fails
to find a match in the flow-table (table-miss), a packet-in
message containing metadata about the flow is sent to the
controller. After processing this message, an appropriate rule
is placed in the flow-table at the switch to handle the new
flow.

The ability of SDIoT to satisfy diverse QoS requirements
arises from fine-grained control over individual flows, which
allows the controller to take optimized decisions. However,
fine-grained control using such flow-rules requires exact
matching on multiple header fields, which, in turn, leads to
a combinatorial increase in the number of flow-rules with
large number of flows. On the other hand, the flow-table in
SDN switches can accommodate only upto a few thousand
entries, due to limitations of expense and power [7]. In an
IoT scenario, where billions are devices are expected to be
connected, this may lead flow-table overflow problem, as
shown in Figure 1.

Recent studies [7]–[11] explored the flow-table overflow
problem from different perspectives. Some of them [7], [8]
focused on data-center networks (DCNs) in which proactively

978-1-5386-4727-1/18/$31.00 ©2018 IEEE

placed wildcards1 were used to reduce the number of flow-
rules. Others [9]–[11] considered reactive strategies, in which
flow-rules were aggregated after flow arrival. The existing
solutions mostly focused on reducing the number of flow-
rules without considering its impact on the QoS of individual
network flows. The variety of IoT applications from diverse
domains ranging from vehicular automation to healthcare
require fine-grained application-specific QoS guarantees from
the network [5]. Thus, it is necessary to consider the impact
on QoS when considering flow-rule aggregation to address
the flow-table overflow problem in SDIoT networks.

In this work, we attempt to address the question “Is it
possible to reduce flow-table overflow in an SDIoT network,
while simultaneously preserving the QoS of IoT flows?” We
study the flow-table overflow problem in the SDIoT network
and analyze the effect of existing flow-aggregation schemes
on the QoS of IoT traffic. We observe that aggressive aggre-
gation of flow-rules can lead to incorrect forwarding deci-
sions which has an adverse effect on the QoS. Consequently,
we propose a QoS-aware adaptive flow-rule aggregation
scheme which offers sufficient reduction in the number of
flow-rules while minimizing the impact on QoS of IoT traffic.
The proposed scheme uses a key-based mechanism that is
capable of fast aggregation of new flow-rules and leaves the
choice of OpenFlow match-fields to the discretion of the user.
We observe that a particular QoS path should be adequately
chosen from multiple candidate paths while keeping in mind
the flow-table utilization of the switches. Accordingly, we
propose the Best-fit heuristic which considers the number of
new flow-rule insertions, along with the bottleneck flow-table
utilization on a path, in order to minimize the total number
of flow-rules in the network.

The rest of the paper is organized as follows. In Section
II we analyze the relevant state-of-the-art. The problem
statement is presented in III. Section IV presents the adaptive
flow-rule aggregation scheme along with the proposed Best-
fit heuristic. In Section V, we evaluate the performance of the
proposed scheme. Finally, we conclude the paper in Section
VI and present directions for future work.

II. RELATED WORK

Kanizo et al. [7] and Kang et al. [8] addressed flow-
table overflow in data-center networks (DCNs) by uniformly
distributing flow-rules across the network. In the proposed
schemes, the entire rule-space is divided into smaller sized
tables and distributed across the network, while maintaining
consistent routing policy at the controller. However, these are
proactive schemes and require apriori knowledge about the
characteristics of all flows. Thus, they are not suitable for the
dynamic nature of an IoT environment.

Rifai et al. [9] proposed ‘MINNIE’, a heuristic approach
for compressing flow-rules. The proposed approach consists
of two phases — compression and routing. In the compres-
sion phase, flow-rules are aggregated using either source or
destination and using the most occurring port. In the routing
phase, the flow-table utilization is considered as a cost factor

1Wildcard flow-rules involve many header fields set to don’t care bits.

((a)) Example where MINNIE [9] chooses incorrect forwarding path
f ′
4 for flow f4 due to aggressive aggregation by srcip. At s1, the

correct output action for flows from s1 with dstport dp1 is out port
1. However, due to the (s1, ∗, ∗, ∗) rule, f4 is forwarded incorrectly
out port 2.

((b)) Example where [11] chooses incorrect forwarding path f ′
2 for

flow f2, due to absence of packet-in message. Packet-in messages
are generated for flows f1 and f3 due to table-miss. However, flow
f2 matches the aggregated flow rule (s1, ∗, ∗, ∗) and is forwarded
incorrectly out port 2, before generation of packet-in message. Thus,
the controller is unaware of flow f2, and is unable to forward it
along QoS path.

Figure 2: Example scenarios where the methods of [9]
and [11] do not succeed, due to incorrect aggregation and
reduced visibility (absence of packet-in message). In both the
examples, exact-match flow rules are considered in the format
(srcip, dstip, srcport, dstport, action). Correct forwarding
paths are drawn solid, incorrect ones dashed.

in the routing of flows to achieve uniform usage of flow-
tables across the network. As shown in Figure 2(a), compres-
sion using only source reduces the fine-grained forwarding
capabilities of SDN. Moreover, in an IoT environment, it is
important to consider QoS metrics such as delay, loss, jitter
and throughput [5] as cost metrics for routing, instead of
flow-table utilization.

Mimidis et al. [10] proposed a reactive flow-aggregation
scheme for SDN-based backhaul networks, while considering
the impact of aggregation on the QoS of flows. On receiving a
packet-in message, the flows are separated into different QoS
classes according to the IP differentiated services code point
(DSCP) values. Then the controller checks if the recently
arrived flow can be aggregated with existing flows while
maintaining the QoS requirements. However, the authors
did not present any details on how the flow-aggregation
occurs. A similar flow-aggregation scheme was proposed by

Figure 3: System Architecture

Kosugiyama et al. [11] based on total delay experienced
by flows. Their approach is two-fold. First, on receiving a
packet-in message, delay-constrained path is calculated for
a flow, while minimizing the number of additional rules.
Second, the flow-rules associated with the recently calculated
path areaggregated into existing flow-rules, either along the
entire path or partially. As shown in Figure 2(b), this ap-
proach may lead to the absence of packet-in message, which
in turn, would lead to incorrect forwarding decisions.

Synthesis: The existing approaches have mainly focused on
rule-aggregation without considering QoS of flows, or have
considered QoS paths without analyzing the impact of flow-
aggregation on the QoS paths. Thus, they are not suitable
in an IoT environment. Detailed analysis of the literature
suggests that there exists a research lacuna on the impact of
flow-aggregation on the QoS of IoT flows. Thus, we present a
QoS-aware flow-rule aggregation scheme for SDIoT network.

III. PROBLEM STATEMENT

A. Architecture

We consider an SDIoT architecture as shown in Figure 3.
The heterogeneous IoT devices are connected to an SDN-
enabled backbone through SDIoT gateways [12]. Let S =
{si | 1 ≤ i ≤ n} denote the set of SDN-enabled switches.
Each SDN-enabled switch, si ∈ S, is also characterized by
a flow-table, Ri, consisting of a set of flow-rules. The SDN-
enabled switches communicate with the centralized SDN
controller through the OpenFlow protocol [6], and the traffic
forwarding is controlled by placing forwarding rules in the
flow-table at the switches.

We consider a flow-table rule rj as a row-vector given as
rj = 〈Mj ,Aj , Cj〉, whereMj , Aj and Cj represent the set of
match-fields, actions, and flow-counters associated with the
jth rule, respectively. The match-field set, Mj , associated
with the jth rule, is defined as Mj = {mj,i | 1 ≤ i ≤ n}
where n is the number of match-fields, which varies from 12
to 44 according to the OpenFlow specification. Therefore,
the flow-table associated with a particular switch, si ∈ S, is
given as Ri = {rij | 1 ≤ j ≤ Rmax}, where Rmax denotes
the maximum number of rules in a flow-table.

B. Presence of Heterogeneous Flows

The heterogeneity of devices and networking resources in
IoT necessarily implies the existence of heterogeneous traffic

Figure 4: Example where naive greedy approach may lead
to poor performance. The switch s3 lies on multiple paths,
thus, its flow-table gets filled up faster. The greedy approach
chooses path f1 with three new flow-rule insertions at s2, s3
and s6. On the other hand, the Best-fit heuristic takes into
account the bottleneck switch, s3, and chooses path f ′1 with
four new flow-rule insertions at s2, s4, s5 and s6.

types in the network, with differentiated QoS requirements —
in terms of delay, jitter, packet-loss, and throughput [5]. Some
IoT applications such as factory and process automation
may be latency-critical [13], while applications such as
environmental monitoring may only require periodic updates
and can tolerate a reasonable amount of delay. Thus, fine-
grained application-specific QoS treatment is required for IoT
traffic, using state-of-the-art SDN-based schemes such as [5].

However, using exact-match on all OpenFlow headers to
realize such fine-grained QoS treatment may lead to flow-
table overflow, as explained in Section I. On the other hand,
aggregating flow-rules aggressively, using fixed match-fields
such as only source, reduces the network visibility and may
lead to incorrect forwarding decisions, as shown in Figures
2(b) and 2(a). Therefore, a suitable combination of match-
fields needs to be chosen as the basis for flow-aggregation,
in order to adequately satisfy the QoS of IoT flows. For
example, from Figure 3, we observe that aggregating the
flow-rules using a combination of source and destination port
i.e., (s1, ∗, ∗, dp1) is capable of correctly forwarding the IoT
flows under consideration (also refer to Figure 2(a)). Further,
since IoT traffic is usually low-rate, multiple flows can be
aggregated using a wildcard rule such as (s1, ∗, ∗, dp1), as
long as (s1, ∗, ∗, dp1) is enough to differentiate between IoT
flows requiring different QoS treatment.

C. Adaptive flow-rule aggregation

As flows arrive sequentially, multiple candidate paths may
be present that satisfy the QoS requirements of each flow.
Therefore, from the candidate paths, a particular path has to
be suitably chosen keeping in mind the flow-table constraints.
A naive approach would be to simply pick the path with min-
imum number of new flow-rule insertions. However, such an
approach may lead to faster fill up of a bottleneck switch as
shown in Figure 4. If the bottleneck switch, s3, is completely
filled, new flows arriving at that switch will be dropped.
Consequently, all paths with s3 as an intermediate switch
will become invalid, leading to sub-optimal performance.
Therefore, we propose an adaptive heuristic, termed Best-fit,
to address this issue.

IV. SOLUTION APPROACH

In this Section, we present the Best-fit heuristic and key-
based rule-aggregation mechanism for adaptive flow-rule
aggregation.

Definition 1. Best-fit heuristic : Given a set of paths2,
choose the path P with minimum cost δ(P). The cost of
choosing a path P is given as

δ(P) =
∑
si∈P

(
αλ+ βmax

i

(|Ri|
Rmax

))
(1)

where λ represents the cost of inserting a new flow-rule and
α, β are normalizing constants.

The Best-fit heuristic takes into account the cost of
adding new flow-rules along with the flow-table utilization,
Ri/Rmax, at each switch, as shown in Figure 4. Therefore,
it does not suffer from adverse effects of bottleneck switches.

Algorithm 1 Adaptive path selection
Inputs: Set of OpenFlow switches, S, Set of flows, F
Output: Aggregated flow-rules for the set of flows

1: for each si ∈ S do
2: initialize empty dictionary, di
3: for each flow ∈ F do
4: get set of QoS paths, P = {Pk | 1 ≤ k ≤ |F|} using

existing schemes such as [5].
5: get the least cost path using the Best-fit heuristic
6: place aggregated flow-rules along least cost path

using Algorithm 2

Algorithm 1 is used to adaptively select a QoS path for a
flow based on the Best-fit heuristic, in order to minimize
the total number of flow-rules in the network. The SDN
controller maintains a dictionary, di, for each switch si ∈ S
in order to store the keys based on which flow-aggregation
takes place. For each new flow (packet-in) at the SDN
controller, the set of QoS paths is analyzed using the Best-
fit heuristic and the one with the minimum cost according
to Equation (1) is chosen. Calculating the cost δ(P) for
path P involves two operations — checking the number
of new rule insertions and calculating the bottleneck flow-
table utilization. The bottleneck flow-table utilization can
be calculated by checking the flow-table utilization of each
switch si ∈ P in O(|P |) time. To check whether a new flow-
rule will be placed at a particular switch si ∈ P involves
extracting the key (refer to Step 5 of Algorithm 2) and
checking in constant time3 whether the key exists in the
dictionary di. Thus, the complexity of calculating the cost
of path P is O(|P |), where |P | is the length of the path.
Assuming that a state-of-the art QoS scheme for IoT such as
[5] returns at most k QoS paths, the complexity of flow-rule
aggregation for a particular flow is O(k|P |) and is therefore,
linear.

2A path is an ordered sequence of OpenFlow switches.
3Average key lookup time in hash-based dictionary is O(1)

Algorithm 2 Flow aggregation
Inputs: QoS path, Pk, for the kth flow, set of switches,
S, and set of user-defined match-field indices, I ⊂
{1, 2, · · · , n}, based on which aggregation takes place.

Output: Aggregated flow rules placed along path Pk

1: for each si ∈ Pk do
2: get exact-match rule rk
3: AGGREGATE(rk, si, I)
4: procedure AGGREGATE(rk, si, I)
5: extract key λk from rk such that

λk ← mk,p,mk,q, · · · ,mk,t, ak, where p, q, · · · , t ∈
I

6: if λk ∈ keys(di) then
7: append value di[λk] ← rk
8: modify rule rk to r′k = 〈M′

k,A′
k, C′k〉 such that

m′
k,i ← mk,i ∀i ∈ I, m′

k,i ← ∗ ∀i /∈ I,
A′

k ← Ak and C′k ← Ck
9: update rule r′k in flow-table of si

10: else if λk /∈ keys(di) then
11: insert key-value pair di[λk] ← rk
12: place rk in flow-table of si

The proposed key-based flow rule-aggregation scheme
is presented in Algorithm 2. For each flow-rule, rk, in a
flow-table, a unique key, λk, is created based on a set of
user-defined match-field indices, I, where I is a subset
of all the match-field indices in a flow-rule (Step 5). The
dictionary di associated with each switch is checked for
the existence of the key λk (Step 6). If the key is found,
we set the match-fields which are not specified by I, as
don’t-care (*) to get aggregated rule, r′k (Steps 7 to 9). The
complexity of Algorithm 2 is O(1), since it involves only
key-based dictionary look-ups. Thus, Algorithm 2 is capable
of aggregating the flow rules with minimal additional delay.

V. PERFORMANCE EVALUATION

A. Simulation Settings

We evaluated the performance of the proposed scheme
using the POX SDN controller4 and the Mininet network
emulator [14]. For all the experiments, we considered a scale-
free topology using the Barabesi-Albert model [15]. We used
the D-ITG traffic generator to model IoT traffic flows based
on real traces in [16]. The different simulation parameters
are presented Table I.

B. Benchmarks

To show the effectiveness of the proposed scheme, we
compare the proposed scheme (Best-fit heuristic) with the
following baselines — existing delay-based flow-aggregation
scheme (Agg-Delay) [11], flow-aggregation using Random
and Greedy heuristic, and no aggregation (Exact-match).
For flows having same QoS path, Agg-Delay aggregates
flow rules using only the source. The Random, Greedy,
and the proposed scheme consider a combination of source

4https://github.com/noxrepo/

Table I: Simulation parameters

Parameter Value
Number of switches 10
Number of links 25
Maximum rules at a switch 200
Avg. packet size 94 – 699 bytes [16]
Active volume 142 – 27,716 bytes [16]
Mean rate 562 - 516,540 bps [16]
Active time 1 – 34 s [16]

and destination port as the key for flow aggregation. From
multiple QoS paths, Greedy selects the path with minimum
number of new flow-rule insertions and Random selects a
path randomly, while the proposed scheme selects the path
using the Best-fit heuristic.

C. Performance Metrics

We consider the following performance metrics to evaluate
the performance of the proposed scheme.

(i) Average delay: The average end-to-end delay expe-
rienced by flows in the network. This includes the
network delay and the flow-setup delay experienced by
the flows at the OpenFlow switches.

(ii) Packets dropped: The number of packets dropped in the
network. This includes loss due to incorrect forwarding
decisions as well as loss due to congestion.

(iii) Average throughput: The average data rate delivered to
all end-hosts in the network.

(iv) Reduction in flow-rules: The percentage reduction in
flow-rules at the switches due to flow-rule aggregation
as compared to exact-match rules (no aggregation).

D. Results and Discussion

 0

 400

 800

 1200

50 100 150 200 250 300

A
v
er

ag
e

d
el

ay
 (

m
s)

Number of flows

Best-Fit
Greedy

Random
Agg-Delay

Exact-Match

Figure 5: Average end-to-end delay with different number of
flows in the network

Figure 5 shows the average end-to-end delay with different
number of flows. We observe that the proposed scheme (Best-
fit) outperforms the Agg-Delay and Exact-match schemes
in all the cases, while achieving comparable performance
with the Greedy scheme. In particular, with 300 flows in
the network, the proposed scheme achieves 35% and 70%
reduction in end-to-end delay compared to the Agg-Delay
and Exact-match schemes, respectively. The Exact-match
scheme performs the worst and incurs significantly higher
delay compared to the other schemes. This is due to the

fact that no aggregation occurs in the Exact-match scheme,
and all flows incur significant flow-setup time5 at the SDN
controller. The Agg-Delay scheme incurs higher delay than
the proposed scheme because flows which do not generate
packet-in at the controller (refer to Figure 2(b)) may take
sub-optimal route to destination due to aggregation.

 0

 10

 20

 30

 40

 50

50 100 150 200 250 300

P
ac

k
et

s
d
ro

p
p
ed

 (
%

)

Number of flows

Best-Fit
Greedy

Random
Agg-Delay

Exact-Match

Figure 6: Packets dropped with different number of flows in
the network

Figure 6 shows the percentage of packets dropped with
different number of flows in the network. We observe that the
proposed scheme (using Best-fit) outperforms the benchmark
schemes. In particular, we observe that the proposed scheme
incurs 4%, 7%, 10%, and 12% less packet drop compared to
the Greedy, Random, Exact-match, and Agg-Delay schemes,
respectively. The Agg-Delay scheme incurs higher packet
drop as it aggressively aggregates flow-rules using only
source, which limits the network visibility and can lead
to incorrect forwarding decisions (as explained in Figure
2(b)). Surprisingly, the proposed scheme also outperforms
the Exact-match scheme in terms of packets dropped. This is
due to the excess delay experienced by flows in the Exact-
match scheme (refer to Figure 5), which leads to violation
of QoS constraints. Further, we observe that with higher
number of flows in the network, the proposed scheme incurs
less packet-drop than the Greedy scheme. This is due to the
Best-fit heuristic which considers the bottleneck flow-table
utilization on a path so that QoS paths are not invalidated by
one particular switch on the path suffering from flow-table
overflow, as compared to the other switches.

 0

 10

 20

 30

 40

 50

50 100 150 200 250 300

A
v
g
.
th

ro
u
g
h
p
u
t

(M
b
p
s)

Number of flows

Best-Fit
Greedy

Random
Agg-Delay

Exact-Match

Figure 7: Average throughput in the network

Figure 7 shows the average throughput in the network
with varying number of flows. We observe that the proposed

5The time taken by the SDN controller to install the corresponding flow-
rule at the SDN switch. For example, it takes ∼100 ms for installing 100
flow-rules in the HPJ9538A switch.

 25

 40

 55

 70

 85

 100

50 100 150 200 250 300R
ed

u
ct

io
n
 i

n
 f

lo
w

-r
u
le

s
(%

)

Number of flows

Best-Fit
Greedy

Random
Agg-Delay

Figure 8: Reduction in flow-rules (averaged over all switches)
with different number of flows

 50

 60

 70

 80

 90

 100

 110

1 2 3 4 5 6 7 8 9 10R
ed

u
ct

io
n
 i

n
 f

lo
w

-r
u
le

s
(%

)

Switch index

Best-Fit
Greedy

Random
Agg-Delay

Figure 9: Reduction in flow-rules at each switch with 200
flows in the network

scheme outperforms the benchmark schemes in all the cases.
In particular, with 300 flows in the network, the proposed
scheme offers 4%, 11%, 20% and 110% improvement in
average throughput compared to the Greedy, Random, Agg-
Delay, and Exact-match schemes, respectively. The average
throughput depends on the packet drop and the average
delay in the network. Consequently, the Exact-match scheme
achieves significantly less throughput due to its high end-to-
end delay and packet-loss.

Figures 8 and 9 show the percentage of reduction in
flow rules compared to the Exact-match scheme. We observe
that the proposed scheme achieves similar performance to
the Agg-Delay and Greedy schemes in terms of flow-rule
aggregation. It is noteworthy that Agg-Delay considers only
the source field for aggregation, while the proposed scheme
(Best-fit) and Greedy scheme consider a combination of
source and destination port as key for aggregation. Figure
9 shows the percentage of reduction in flow rules at each
switch compared to the Exact-match scheme. We observe
that the proposed scheme (Best-fit) achieves more uniform
reduction in flow-rules across all switches, as compared to
the Random and Greedy scheme. Consequently, the proposed
scheme does not suffer from flow-table overflow at bottleneck
switch as explained in Section III-C.

VI. CONCLUSION

In this paper, we proposed an QoS-aware adaptive flow-
rule aggregation scheme for software-defined IoT networks
with an aim to address the problem of flow-table at SDN
switches. The proposed scheme utilizes an adaptive key-
based aggregation mechanism along with the Best-fit heuristic
to minimize the total number of flow-rules in the network,

while having minimal impact on the QoS of IoT flows.
In particular, with 300 flows in the network, the proposed
scheme is capable of reducing the average delay and packet
drop by 35% and 12%, respectively, and improving the
average throughput by 20% compared to the existing delay-
based flow-aggregation scheme, while having comparable
performance in terms of rule-aggregation.

In this work, we only considered the existence of low-
rate IoT traffic in the network. However, in the ubiquitous
IoT network, such low-rate IoT traffic will co-exist with
traditional Internet traffic, which will affect the QoS. Thus,
as the future extension of this work, we aim to incorporate
adequate mechanisms to handle such traffic while preserving
flow rule-aggregation.

REFERENCES

[1] Cisco Systems Inc., “The Zettabyte Era: Trends and Analysis,” White
Paper, Cisco Visual Networking, 2014.

[2] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1,
pp. 14–76, 2015.

[3] N. Bizanis and F. A. Kuipers, “SDN and Virtualization Solutions for
the Internet of Things: A Survey,” IEEE Access, Doi: 10.1109/AC-
CESS.2016.2607786, 2016.

[4] K. Sood, S. Yu, and Y. Xiang, “Software-Defined Wireless Networking
Opportunities and Challenges for Internet-of-Things: A Review,” IEEE
Internet of Things J., vol. 3, no. 4, pp. 453–463, 2016.

[5] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubra-
manian, “A Software Defined Networking architecture for the Internet-
of-Things,” in Proc. IEEE Network Operations and Management
Symposium (NOMS), 2014, pp. 1–9.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–
74, 2008.

[7] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in Proc. IEEE INFOCOM, 2013, pp. 545–
549.

[8] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ”One
Big Switch” Abstraction in Software-defined Networks,” in Proc. ACM
CoNEXT, 2013, pp. 13–24.

[9] M. Rifai, N. Huin, C. Caillouet, F. Giroire, D. Lopez-Pacheco,
J. Moulierac, and G. Urvoy-Keller, “Too Many SDN Rules? Compress
Them with MINNIE,” in Proc. of the IEEE GLOBECOM, Dec. 2015,
pp. 1–7.

[10] A. Mimidis, C. Caba, and J. Soler, “Dynamic aggregation of traffic
flows in SDN: Applied to backhaul networks,” in Proc. IEEE NetSoft,
2016, pp. 136–140.

[11] T. Kosugiyama, K. Tanabe, H. Nakayama, T. Hayashi, and K. Ya-
maoka, “A flow aggregation method based on end-to-end delay in sdn,”
in Proc. IEEE ICC, 2017, pp. 1–6.

[12] A. Hakiri, P. Berthou, A. Gokhale, and S. Abdellatif,
“Publish/subscribe-enabled Software Sefined Networking for Efficient
and Scalable IoT Communications,” IEEE Commun. Mag., vol. 53,
no. 9, pp. 48–54, 2015.

[13] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari,
S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann,
A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency
Critical IoT Applications in 5G: Perspective on the Design of Radio
Interface and Network Architecture,” IEEE Commun. Mag., vol. 55,
no. 2, pp. 70–78, 2017.

[14] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-defined Networks,” in Proc. ACM SIGCOMM
Workshop Hot Topics in Networks, 2010, pp. 19:1–19:6.

[15] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[16] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wi-
jenayake, A. Vishwanath, and V. Sivaraman, “Characterizing and
Classifying IoT Traffic in Smart Cities and Campuses,” in Proc. IEEE
INFOCOM Workshops, 2017, pp. 559–564.

