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Abstract—In this paper, we propose a mobility-aware scheme,
named MobiPlace, to address the controller placement problem
(CPP) at the Road Side Units (RSUs) in Software-Defined
Vehicular Networks (SDVNs). MobiPlace places local controllers
at the selected RSUs to reduce the operational delay experienced
in traditional SDVN architecture, where controllers are placed
at the cloud. Additionally, we consider the effect of dynamic
road traffic and propose dynamic adjustment of the placement
of the controller with minimal changes. In contrast to the existing
literature, we infuse traffic monitoring and traffic prediction
strategies to ensure accurate delivery of control messages and
data packets. We formulate an Integer Linear Program (ILP) and
propose a solution approach consisting of three modules — mo-
bility management, controller placement, and controller selection.
The mobility management module uses Markov predictor to
predict vehicle movement and reduce controller synchronization
overhead when a vehicle moves to a different controller’s cover-
age area. The controller placement module applies a simulated
annealing-based algorithm to select potential RSUs that serve as
local controllers. The controller selection module determines the
preferable controller location for processing the service requests.
Simulation results depict that MobiPlace reduces the average flow
setup delay by 13.85% compared to the existing state-of-the-art.

Index terms— SDN, SDVN, Controller Placement, Simu-
lated Annealing, Markov Predictor.

I. INTRODUCTION

Vehicular ad-hoc networks (VANETs) are evolving charis-
matically together with the evolution of SDN [24] [3], which
adds flexibility and programmability to VANETs [26] [12]. In
conventional SDVNs, the control plane is located at the cloud
server. The centralized control plane manages Vehicle-to-
Everything (V2X) communications. Some of the recent works
[34] [36] [13] in SDVNs suggest placing local controllers at
the RSU level to reduce communication latency. However, the
location and number of local controllers affect the end-to-end
processing delay of V2X communications, which are primar-
ily latency-sensitive [11]. Moreover, road traffic conditions
are highly dynamic, involving vehicles with high mobility.
Therefore, there exists a need for a mobility-aware controller
placement scheme for SDVNs, which considers the effects of
traffic variation and vehicle mobility.

SDVN is a promising network architecture to support the
Intelligent Transportation System (ITS) [6], which includes
several smart applications [8] [4], including collision avoid-
ance, emergency notification, detection of a traffic rule vio-
lation, dynamic speed limit, and toll collection. However, the
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data demand for ITS applications is thriving, and future SDVN
architecture should be scalable to address this upsurge of traffic
data [20]. In SDVN, the control plane is the primary module
that takes routing decisions. Therefore, the optimization of the
SDVN control plane enhances the scalability of the overall
network. For network scalability, a distributed control plane
with multiple controllers is preferable to a centralized control
plane. However, the problem of controller placement in SDVN
is different from the same in traditional SDN, because of the
inherent limitations of vehicular networks such as latency-
sensitivity of V2X communications, frequent traffic variations,
and high mobility of vehicles [29].

ITS applications related to traffic safety are latency-
sensitive, and high flow setup delay violates the Quality of
Service (QoS) demands of the latency-sensitive applications
[33] [28]. Sudheera et al. [34] proposed a secondary control
plane at the RSU level to reduce the flow setup delay. However,
the authors did not consider the effects of frequent traffic
variations in vehicular networks. Toufga et al. [36] proposed
a controller placement strategy that reckons the traffic varia-
tions and places local controllers at the RSU level. However,
the change in controller placement is inefficient if a traffic
variation lasts for a very short duration. On the other hand,
high-speed vehicles frequently move from one RSU’s coverage
area to another. Controllers need to anticipate this change of
location for the correct delivery of Flow-Mod messages and
proper route generation for V2X communications. In another
work, Kaur et al. [18] proposed a controller placement scheme
for load balancing and energy management in SDN-based
Internet of Autonomous Vehicles (SD-IoAV). However, the
proposed method does not consider dynamic data traffic, which
is evident in ITS due to the vehicles’ high mobility.

In contrast to the existing state-of-the-art, in this work, we
monitor traffic for a pre-defined duration to avoid unnecessary
changes in the placement of local controllers. Additionally,
we propose a mobility prediction module to pre-determine
the vehicles’ locations for smooth transmission of Flow-
Mod messages and data packets. Mobility prediction also
helps in proactive synchronization among controllers involved
with the nodes in a communication path. Proactive controller
synchronization allows proactive flow-rule installation to all
nodes in the routing path and reduces flow setup delay.

In this work, we propose a scheme, named MobiPlace,
for mobility-aware controller placement in SDVN, to place
local controllers at selected RSUs to optimize the flow setup
delay, by considering varying traffic conditions. The primary
contributions of this work are as follows:
• We formulate an ILP to represent the local controller
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placement problem.
• We design an algorithm to solve the ILP and assign

RSUs to the local controllers with minimal changes in
the existing controller placement status.

• We propose a Markov predictor-based mobility manage-
ment approach to reduce the data loss due to vehicle
mobility.

II. RELATED WORK

In this section, we review the existing literature on SDVN,
SDN controller placement in static networks, and SDN con-
troller placement in mobile networks [11] [23].

A. SDVN

Several research works utilize the flexible network man-
agement option provided by SDN for V2X communication.
Sadio et al. [29] designed a fog-based SDVN framework
and proposed a routing strategy for Vehicle-to-Infrastructure
(V2I) and Vehicle-to-Vehicle (V2V) communications. Misra
and Bera [26] proposed a task offloading scheme for SDVN.
In this approach, OBUs can offload tasks to selected fog-
enabled RSUs. The proposed method considers the impact
of vehicle mobility to reduce the fog-to-OBU task download
delay. Ghafoor et al. [15] proposed a routing algorithm for the
Software-Defined Internet of Vehicles (SDIoV) that routes the
data traffic based on link connectivity and reliability. Liu et
al. [21] designed a fog-enabled data scheduling framework for
V2X communications in an SDVN. The authors construct a
graph considering vehicle mobility, coverage of the transmit-
ting nodes, and heterogeneous transmission rates. Based on
the constructed graph, the authors propose a Clique Searching
based Scheduling (CSS) algorithm for data dissemination. Dal-
gkitsis et al. [10] proposed a deep learning-based approach that
predicts vehicle mobility and relocates services accordingly to
minimize latency. However, high training time affects the QoS
requirements of the traffic flows.

B. SDN Controller Placement in Static Networks

Heller et al. [16] coined CPP and formulated an optimiza-
tion problem considering the average-case control path latency,
the worst-case control path latency, and the maximum number
of switches assigned to each controller. Hock et al. [17]
proposed a resiliency-aware controller placement that aims to
balance control plane load and minimize latency if any con-
troller fails. Ksentini et al. [19] proposed a bargaining game-
based controller placement approach to address the trade-off
between control plane load, switch-to-controller latency, and
inter-controller latency. Huque et al. [37] proposed a controller
placement technique for large-scale sparse and dense network.
The proposed approach aims to increase controller utilization.

C. SDN Controller Placement in Mobile Networks

Llerena and Gondim [22] presented a queueing theory-
based analysis on the controller response time for Device-
to-Device (D2D) communication in an SDN-enabled Long
Term Evolution (LTE) network. The authors proposed an Ant

Colony Optimization (ACO)-based algorithm to generate an
optimal solution to the CPP that minimizes the control traffic
response time. Kaur et al. [18] proposed an energy-aware
controller placement scheme for SD-IoAV. The authors de-
signed a greedy heuristic approach that finds a locally optimal
solution based on the SDN switches’ energy consumption.
However, the proposed method does not consider dynamic
data traffic generated by moving vehicles. Sudheera et al.
[34] selected RSUs to place local controllers to reduce control
traffic latency. The architecture proposed by the authors also
includes global controllers placed at the cloud. In this work,
the authors modeled the CPP as a p-median facility location
problem. However, this approach fails to address the variant
traffic load in vehicular networks. Therefore, as an extension
of the work proposed by Sudheera et al., Toufga et al.
[36] proposed a dynamic controller placement strategy that
changes the placement of the controllers according to change
in traffic conditions. Additionally, the authors introduced a
replacement cost metric to estimate the overhead due to
incremental controller placement. However, this approach does
not consider the inter-controller communication cost due to
handover between controllers when a vehicle moves to the
coverage area of a different controller.

Synthesis. We infer that the existing works on controller
placement in SDVN do not consider the overhead due to
synchronization between controllers when a vehicle selects
a new controller. Moreover, frequent changes in controller-
switch assignments cause service disruption. Therefore, in
this work, we propose a controller placement scheme that
performs proactive controller synchronization and minimizes
the number of placement changes considering the varying
traffic conditions. Additionally, we use a prediction-based
approach to address service disruption due to vehicle mobility.
The proposed mobility prediction approach is different from
existing mobility prediction approaches because it predicts
a vehicle’s location after a specific interval when a service
request is ready to be propagated to the vehicle.

III. SYSTEM ARCHITECTURE

A. Network Planes
In contrast to the traditional SDVN architecture consisting

of data and control planes only, we consider an additional
plane, named hybrid plane, that includes both the data and
control elements. We introduce the hybrid plane to place local
controllers and reduce the flow setup delay. Figure 1 shows
the SDVN architecture considered for MobiPlace.

1) Data Plane: The data plane consists of vehicles
equipped with Global Positioning System (GPS) and On Board
Units (OBUs). An OBU enables a vehicle to communicate
with an RSU using Dedicated Short Range Communication
(DSRC) and with a Base Station (BS) using LTE. In this work,
we consider the vehicles as a type of SDN switches. Therefore,
the OBU stores forwarding decisions for V2V communications
in the form of flows-rules. Each OBU broadcasts the current
location of the vehicle periodically. Let V be the set of
vehicles. In this work, we assume that each vehicle moves with
a uniform random velocity [31]. Additionally, we consider a
two-way highway, where vehicles move in both directions.
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Fig. 1: SDVN Architecture

2) Hybrid Plane: The hybrid plane consists of RSUs that
serve as SDN switches. RSUs are fog-based entities that store
flow-rules to support V2I communications. In this work, we
do not consider any specific placement strategy of the RSUs.
We consider that some RSUs serve as local controllers to other
RSUs and vehicles. We term an RSU that serves as a local
controller as controller-RSU (C-RSU). The deployment of C-
RSUs reduces flow setup time for the vehicles and other non-
controlling RSUs by bringing the control plane closer to the
data plane. Moreover, communication with a controller located
at the cloud is costly as the cellular spectrum is licensed. Let
N denote the set of RSUs placed in the network. We define
a binary variable to express placement of local controllers as:

xj =

{
1 if nj ∈ N is C-RSU,
0 otherwise.

(1)

3) Control Plane: The control plane consists of multiple
domain controllers and a primary controller c0. A domain
controller maintains global network view of a specific region.
Let C be the set of domain controllers. RSUs and OBUs
communicate with a domain controller via a cellular BS. The
association between a C-RSU nj and an RSU nk is given by:

yjk =

{
1 if nk is assigned to nj ,
0 otherwise

(2)

B. Traffic Model
In SDVN, vehicles request different services such as real-

time traffic information, parking space availability, road con-
gestion information, and road accident notification. Each
service request corresponds to a data flow with a source
and destination. The source is the requesting vehicle itself.
However, the destination is either an RSU or another vehicle.
The set of data flows is denoted by F . Let Dmax

a denote the
maximum allowable delay for data flow fa ∈ F .

C. Communication Model
1) V2V Communication: Each vehicle vi can send data

flow to another, which in the communication range of vi.

Therefore, using multi-hop V2V communication, a vehicle
can communicate with a distant vehicle without involving the
network infrastructure such as RSUs, C-RSUs, and BS. V2V
communications use DSRC-based transmission, which has a
low data transmission rate. Let rv denote the data transmission
rate of V2V communications.

2) V2I Communication: V2I communication involves vehi-
cle to RSU communication and vehicle to domain controller
communication. We assume that vehicle to RSU communi-
cation use existing DSRC wireless technology and vehicle
to domain controller communication use LTE. Let rf and rc
denote the data transmission rate for a vehicle to RSU/C-RSU
communication and vehicle to domain controller communica-
tion, respectively. A vehicle communicates directly with the
domain controller if no RSU or C-RSU is present within the
vehicle’s coverage area.

For simplicity, we assume a uniform data transmission rate
for all vehicles. However, in practice, the data transmission
rate varies with the vehicle’s transmission power, noise power,
and interference power [26].

D. Delay Model

If the route to the destination of a data flow is known to the
OBU, the latter transmits the data flow. Otherwise, it offloads
the request to a C-RSU or a domain controller by sending a
Packet-In request [1]. We estimate the flow setup delay as the
interval between when an OBU generates a Packet-In message
and when the source OBU receives the Flow-Mod message.
We define a binary variable to denote whether a Packet-In
request for data flow fa is processed by a domain controller
or by a C-RSU. Mathematically,

α(fa) =

{
1 if fa is processed by a C-RSU,
0 otherwise,

(3)

1) Flow Setup Delay for OBU to C-RSU Communication:
The flow setup delay for processing a Packet-In request at the
hybrid plane comprises of six components:
• The uplink transmission delay from OBU to an RSU

within the coverage of the OBU
• The propagation delay from the RSU to a C-RSU
• The queueing delay at the C-RSU
• The processing delay at the C-RSU
• The propagation delay from the C-RSU to the OBU
• The downlink transmission delay for downloading the

new flow-rule at the OBU
The uplink transmission delay for transmitting a Packet-In
message with size b from vi to an RSU nk is Dlocal

tran = b
rf

. The
propagation delay from nk to a C-RSU nj with yjk(t) = 1
is Dlocal

prop =
∑

eab∈Ekj

δab, where Ekj is the set of links that

forms the shortest path from nk to nj , and δab denotes the
propagation delay of the link eab ∈ Ekj . A C-RSU receives a
control message from either an OBU or an RSU. Therefore,
we consider the arrival rate of control messages at the C-RSU
as a Poisson process [25] and model the queue of the C-RSU
nj as an M/M/1 queue. Let λj and µ denote the arrival
rate and service rate of control messages at nk, respectively.
Hence, the queueing delay at the C-RSU nj is Dlocal

que = 1
µ−λj

.
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The processing delay at nj is Dlocal
proc = ωi

Ωj
, where Ωj is the

processing capacity of C-RSU nj and ωi is the number of
CPU cycles required for processing of the Packet-In message.
After processing the Packet-In message, the C-RSU generates
a Flow-Mod message that consists of the new flow-rule. Let
b
′

be the size of the Flow-Mod message. The C-RSU sends
the Flow-Mod message to the requesting OBU in vehicle vi.
Let nl be the RSU that covers vi at present. If nk 6= nl and
nl is assigned to a C-RSU other than nj , nj synchronizes
with the C-RSU associated with nl. The propagation delay for
the downlink communication from the C-RSU to the OBU is
Dlocal
prop′

=
∑

eab∈E
′
jl

δab, where E
′

jl is the set of links that forms

the shortest path from nj to nl. The downlink transmission
delay is negligible because of the high transmission power
and channel bandwidth. Therefore, the flow setup delay for
processing a control message generated by an OBU at a C-
RSU is Du = Dlocal

tran +Dlocal
prop +Dlocal

que +Dlocal
proc +Dlocal

prop′
.

2) Flow Setup Delay for OBU to Domain Controller Com-
munication: An OBU can send the control message directly
to the domain controller of the corresponding region via a
cellular link. However, cellular communication is expensive
than DSRC communication. We model the queue of a domain
controller placed at the cloud as a M/M/1 queue with
infinite queue length. The flow setup delay for processing a
control message generated by vi at cp is Dc = Ddomain

tran +
Ddomain
prop +Ddomain

que +Ddomain
proc +Ddomain

prop′
, where Ddomain

tran =
b
rc

, Ddomain
prop = δ

′
, Ddomain

que = 1
µ′−λ′

p

, Ddomain
proc = ωi

Ω′
p

,

Ddomain
prop′

= δ
′′

, δ
′

is the propagation delay for V2C com-
munication before processing of the control message, and δ

′′

denotes the propagation delay for V2C communication after
processing of the control message. Therefore, the flow setup
delay for a flow fa is D(fa) = α(fa)Du + (1− α(fa))Dc.

Definition 1 (Hybrid Plane State). The state of the hybrid
plane is defined as ζ = {x, y}.

The hybrid plane state is modified based on the changes
in road traffic conditions. Accordingly, some C-RSUs change
back to normal RSUs acting as SDN switches, and some
RSUs may be upgraded to C-RSUs. However, newly placed
C-RSUs need to synchronize with other C-RSUs for acquiring
the global network view required to serve as a local controller.
Therefore, significant changes in the hybrid plane state com-
pared to the previous hybrid plane state are not desirable.

Definition 2 (State Migration Overhead). The overhead for
the migration from a hybrid plane state ζ

′
to another state ζ

defined as β(ζ
′
, ζ) =

∑
nj∈N

xj(1− x
′

j) + x
′

j(1− xj).

IV. PROBLEM FORMULATION

This work aims to place a minimum number of C-RSUs
in the hybrid plane to minimize the flow setup delay as well
as the state migration overhead. Minimizing the number of
C-RSUs reduces the Operation Expenditure (OPEX) of the
network and the cost of synchronization between the C-RSUs.

However, fewer C-RSUs increases the load on individual C-
RSUs. Consequently, we formulate the CPP for SDVN as:

Minimize
ζ,α

∑
nj∈N

xj + β(ζ
′
, ζ) (4)

subject to
λj < µj , where xj(t) = 1,∀nj ∈ N, (5)
λp < µp,∀cp ∈ C, (6)∑

nj∈N
yjk = 1,∀nk ∈ N, (7)

D(fa) ≤ Dmax
a ,∀fa ∈ F, (8)

where ζ
′

is the previous state of the hybrid plane. Equations
(5) and (6) state the controller capacity constraint for C-RSUs
and domain controllers, respectively. Equation (7) ensures that
each RSU is assigned to precisely one controller. Equation (8)
ensures that the flow setup delay for each flow does not exceed
the maximum allowable delay. The optimization problem in
Equation (4) is a ILP and computationally expensive for large-
scale networks. Therefore, we propose a heuristic algorithm to
place the C-RSUs in the hybrid plane dynamically.

V. MOBIPLACE: THE PROPOSED SCHEME

MobiPlace consists of three modules — mobility man-
agement, controller placement, and controller selection. The
mobility management module reduces the flow setup delay
and the controller synchronization cost by using a mobility
prediction-based approach. The controller placement module
dynamically generates the set of C-RSUs based on changes in
the road traffic volume. Finally, based on the current controller
placement status, the controller selection module selects the
preferable controller for processing the control messages.

A. Mobility Management

For addressing a service request, a vehicle contacts a C-RSU
through the nearest RSU within the coverage of the vehicle.
The corresponding C-RSU returns the Flow-Mod messages to
the requesting vehicle. However, due to mobility, the vehicle
may move near to a different RSU. If the C-RSU is not
aware of this change, the previous RSU receives the Flow-
Mod message. However, this RSU cannot find the vehicle in its
coverage area and reports a ’Host Not Found’ error. Adopted
from the work of Misra and Bera [26], we use an order-m
Markov predictor to determine the RSU that should receive the
Flow-Mod message. Markov predictor is a popular location
predictor that predicts the future location of mobile entities
based on m most recent location data. We use the Markov
predictor because it consumes less space and performs better
than other location predictors [27] for low values of m [32].

Each vehicle periodically broadcasts its location [7] to the
nearby RSUs. The C-RSUs collect this data and sends it to
the domain controller regularly. The domain controller uses
Markov predictor to compute the next RSU that connects with
the vehicle and the time of the change in the connected RSU.

For each vehicle vi, the input to the Markov predictor is
Hi
h = {Li, Ei,W i, P i}, where Li = {li1, li2, . . . , lih} is the set

of locations, Ei = {ei1, ei2, . . . , eih} is the set of arrival time at
each location, W i = {wi1, wi2, . . . , wih} is the set of durations
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of stay at each location, and P i is the set of transition probabil-
ities from one location to another. The context for an order-m
Markov predictor is g = {lih−m+1, l

i
h−m+2, . . . , l

i
h−1, l

i
h}.

For each data flow fa generated by a vehicle vi, the Markov
predictor calculates the probability that a vi moves to location
l within ∆ time after the current elapsed time τ

′
. The value

of ∆ is given by:
∆ = α(fa)

(
Dlocal
prop +Dlocal

que +Dlocal
proc

)
+(1− α(fa))

(
Ddomain
prop +Ddomain

que +Ddomain
proc

)
(9)

For a given context g and the current elapsed time τ
′
, the

probability that vi moves to l within ∆ time is given by:
P (l|g, τ

′
) = P (l)Pl(τ

′
≤ w < τ

′
+ ∆|g, τ

′
), (10)

where P (l) is the transition probability for the next location l
and it is estimated as:

P (lih+1 = l|Li) ≈ P̂ (lih+1 = l|Li) =
γ(gl, Li)

γ(g, Li)
, (11)

where γ(gl, Li) signifies the number of occurrences of gl in
the set Li. Therefore, the output of the Markov Predictor which
is the most likely next location of vi is given by:

lih+1 = argmax
l∈Li

P (lih+1 = l) (12)

If γ(g, Li) = 0, the O(m) Markov predictor fails to return
a result. Therefore, we use fallback Markov predictor, which
backtracks to an O(m − 1) Markov predictor whenever an
O(m) Markov predictor fails to return any value. The O(0)
Markov predictor yields the location that occurs most fre-
quently in the location history set Li. Finally, the domain
controller selects the RSU nearest to lih+1 for transmitting
the Flow-Mod message. The location prediction also initiates
proactive controller synchronization required for RSUs/OBUs
in the computed flow-path that belongs to different con-
trollers. Accordingly, flow-rules are installed proactively at
all RSUs/OBUs at the flow-path. We select proactive rule
installation to reduce the end-to-end delay.

B. Controller Placement

We consider that each RSU has a traffic monitor, which es-
timates the traffic volume for τ seconds based on the received
requests from OBUs. The observation duration τ should not
be very less because a change in controller placement is not
feasible for traffic variation that lasts for a brief duration. Let
ξkcur denote the current traffic volume at RSU rk. If ξcur is less
than the minimum threshold ξmin or higher than the maximum
threshold ξmax, the current hybrid plane state is modified by
changing the placement of C-RSUs. The minimum and max-
imum traffic volume thresholds are defined as ξmin = Z1τµ
and ξmax = Z2τµ, where Z1, Z2 ∈ [0, 1] are pre-defined
constants and Z1 < Z2. For an estimated traffic volume,
the minimum number of C-RSUs required is calculated as

Γ =

⌈ ∑
nj∈N

ξcur

τµ

⌉
. The C-RSU placement module computes

the optimal hybrid plane state using a Simulated Annealing
(SA)-based approach based on the current hybrid plane state
and the road traffic data. SA is a meta-heuristic algorithm
which generates locally optimal solution in limited iterations
[30]. In contrast to other optimization techniques such as
hill climbing and gradient descent, SA does not get trapped

in local optima because less accurate solutions are accepted
based on the acceptance probability. Therefore, SA is used
for a wide range of optimization problems, including control
engineering, signal processing, and production scheduling [2].
The optimization problem defined in Equation (4) has a high
probability of getting stuck at local optima. This is because
a minimal number of controllers may address all the service
requests with less controller placement overhead. However, the
global optima may be considerably different from the local
optima in terms of the average flow setup delay. Therefore,
we use SA to achieve a more accurate solution for the CPP
formulated in Equation (4). For the placement of C-RSU, we
assign priority values to each RSU, including the existing C-
RSUs. The priority of an RSU rk depends on the following
parameters:

1) Location: RSUs placed at popular locations such as road
intersections are potential candidates to serve as C-RSUs
as more vehicles can communicate with the C-RSUs in
this case. Let uk ∈ [0, 1] denote the popularity of the
location of rk.

2) Traffic Volume: The priority of an RSU rk is directly
proportional to the estimated traffic volume ξkcur. This is
because high traffic volume generates high control traffic
that should be processed locally to avoid communication
with the domain controllers placed at the cloud.

3) Number of Neighbors: Placing the local controller
module at an RSU with a high number of neighbors
ensures that a minimum number of C-RSU manages all
RSUs. Let qk denote the number of neighbors of nk.

4) Duration of Stay: Let Wk denote the average duration
a vehicle remains connected to the RSU rk before
connecting to a different RSU. This information is avail-
able from the mobility data that the vehicles broadcast
periodically. An RSU with low Wk value is an inferior
choice as a C-RSU location because it increases the
controller synchronization overhead.

Definition 3 (RSU Priority). The priority of an RSU rk is
defined as Ψk = uk +

ξkcur∑
nj∈N

ξjcur
+ qk
|N | + Wk

τ .

Definition 4 (Controller Placement Cost). Given a hybrid
plane state ζ, the cost of controller placement strategy is
defined as:

cost(ζ) =

β(ζ
′
, ζ)

∑
nk∈N

xk∑
nk∈N

xkΨk
, (13)

where ζ
′

is the previous state of the hybrid plane.

Algorithm 1 shows the steps of the SA-based C-RSU Place-
ment Algorithm (CPA). The inputs of CPA include the initial
state of the hybrid plane ζ

′
, initial temperature T0, the rate of

cooling z, Markov chain length M , and acceptance probability
p. The initial temperature determines the convergence time of
the algorithm. A high value of T0 signifies that the algorithm
takes more time to reach an optimal solution, and a low T0

may direct the algorithm to a less accurate solution in less
time. The cooling rate determines the amount of decrease
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Algorithm 1 C-RSU Placement Algorithm (CPA)

INPUTS: ζ
′
, T0, z, M , p

OUTPUT: ζ . Final state
PROCEDURE:

1: T ← T0 . Current temperature
2: Sort RSUs in descending order of Ψ
3: N

′
← The first Γ RSUs

4: Set xj ← 1 for each RSU in N
′

5: for all nk ∈ N do
6: Set yjk ← 1 if nj is the nearest RSU with xj = 1
7: end for
8: ζ ← {x, y} . Current state
9: while T > 0 do

10: while M > 0 do
11: ζnext ← GetNextState (ζ) . Next state

12: if exp
(
cost(ζ)−cost(ζnext)

T

)
> p then

13: ζ ← ζnext

14: end if
15: M ←M − 1
16: end while
17: T ← z × T
18: end while
19: return ζ

in the temperature, and the algorithm terminates when the
temperature reaches 0. The length of the Markov chain sig-
nifies the maximum number of iterations before cooling the
temperature. The acceptance probability determines whether a
solution is acceptable or not. CPA aims to find the optimal
RSUs to place the local controller modules. Initially, the
current state is formed by selecting Γ high priority RSUs
as C-RSUs and assigning each RSU to the nearest C-RSU.
Subsequently, CPA modifies the initial state to reach an
optimal final state. Maximum I iterations are performed for
each value of the current temperature. In each iteration, CPA
generates the next state using the GetNextState method, as
shown in Algorithm 2. Equation (13) calculates the controller
placement cost for the current state and the next state of the
hybrid plane. The next state is selected as the current state
if exp

(
cost(ζ)−cost(ζnext)

T

)
> p. After the completion of M

iterations, the current temperature is reduced. In this work,
we use an exponential function as the cooling method and
set the new temperature as T ← z × T . Algorithm 2 shows

Algorithm 2 GetNextState

INPUT: ζ . Current state
OUTPUT: ζnext . Next state
PROCEDURE:

1: ζnext ← ζ
2: Randomly select an RSU nk ∈ N and set xk ← (1− xk)
3: for all nk ∈ N do
4: if nj is the nearest RSU with xj = 1 then
5: yjk ← 1
6: end if
7: end for
8: return ζnext ← {x, y}

the steps of computing the next state given a current state.
We alter the C-RSU placement status of a randomly selected
RSU. The status of a single RSU is modified to reduce the
state migration overhead. Subsequently, each RSU selects the

nearest C-RSU as the serving local controller. Figure 2 shows
the basic framework of MobiPlace. The domain controllers
perform multiple operations, including periodic synchroniza-
tion with other controllers, flow-rule management, mobility
prediction based on the mobility history of the vehicles, and
the placement of controller modules at selected RSUs. The
RSUs monitor current traffic volume, maintain flow-tables, and
collect mobility data from the connected vehicles. A C-RSU
has an additional module for serving as a local controller.

C. Controller Selection

Based on current controller placement status, a vehicle
can send a control message to either a C-RSU or a domain
controller. If the computed flow setup delay less for processing
the control message at a C-RSU than that for processing the
message at a domain controller, the message is processed
locally at a C-RSU. Therefore, for a flow fa, the value of
α is redefined as:

α(fa) =

{
1 if Du ≤ Dc,

0 otherwise,
(14)

The time complexity of the mobility management module is
O(m2), where m is the order of the Markov Predictor. The
time complexity of the controller placement module depends
on the values of T0 and z. A high T0 and low z increases the
possibility of finding an optimal solution at the cost of time
complexity. Therefore, latency-sensitive networks can set T0

to a low value for faster processing. The controller selection
module takes constant time to determine the value of α(fa).

VI. PERFORMANCE EVALUATION

A. Simulation Settings

We analyze the performance of MobiPlace using MATLAB-
based simulation. We use scale-free Barabasi-Albert topology
[5] as the network topology of the RSUs due to the non-
availability of suitable topology-based datasets for SDVN. For
the simulation of road traffic, we use the traffic data of January,
2020, on the M18 motorway, Ireland [14]. Figure 3 shows the
average volume of daily traffic. We select current the location
of the vehicles randomly. For each vehicle, we generate the
location history based on the Gauss-Markov mobility model
[9]. Additionally, we set the traffic observation duration τ to
600 seconds. The simulation parameters are shown in Table I.

B. Benchmark Schemes

We compare the performance of MobiPlace with greedy
placement, and dynamic placement [36]. The greedy place-
ment approach selects Γ high priority RSUs as C-RSUs.
We select the greedy approach as a benchmark to show
that high priority RSUs are not the optimal choice for the
placement of local controllers, and state migration overhead
is an essential parameter for C-RSU placement. The dynamic
controller placement approach proposed by Toufga et al.
[36] considers the number of local controllers, RSU to local
controller latency, controller load balancing, and the number
of placement changes as parameters for the placement of
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Fig. 2: Proposed Framework
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Fig. 3: Daily Traffic Volume

controllers and triggers controller placement periodically or
based on pre-defined events. On the other hand, MobiPlace
considers individual mobility status of the vehicles and triggers
changes in controller placement considering the number of
placement changes and several RSU-specific metrics including
location, traffic volume, number of neighbors, and average
duration stay of the vehicles at the RSU as parameters for
the placement of local controllers. We select the dynamic
placement proposed by Toufga et al. [36] as a benchmark
because similar to MobiPlace this approach modifies the
placement of local controllers based on traffic variations.

C. Performance Metrics

We evaluate the performance of MobiPlace based on the
following metrics:

• Flow setup delay: Improper and inadequate local con-
troller placement increases the average flow setup delay
due to high queueing delay at the controllers and non-
availability of nearby controller. Therefore, we use flow
setup delay as a performance metric for the placement of
local controllers.

• End-to-End delay: End-to-end delay of processing the
data flows should not exceed the maximum allowable
delay. We use this metric to estimate the QoS violation
of the data flows.

• State migration overhead: High state migration over-
head is not desirable because it increases the controller
synchronization cost. We evaluate this metric to estimate

TABLE I: Simulation Parameters

Parameter Value
Number of RSUs 50− 200
Simulation duration 24 hours

Data transmission rate
6 Mbps (DSRC), 100 Mbps
(Ethernet), 100 Gbps (Inter-
net) [34]

Propagation speed
3×108 m/s (wirless channel),
2× 108 m/s (wired channel),
[34]

Size of Packet-In message 32 bytes [1]
Size of Flow-Mod mes-
sage 56 bytes [1]

Packet size 400 bytes [34]

CPU frequency at OBU
10−30 MHz (OBU), 2.9−4.2
GHz (C-RSU), 2.9−4.2 GHz
(domain controller) [26]

Service rate
50 packets/s (C-RSU), 0.02
million packets/s (domain
controller) [35]

Request rate of an OBU 0− 10 flows/s [34]
Maximum allowable delay 100− 200 ms [34]
Initial temperature for SA 90 [38]
Cooling rate 0.97 [38]
Length of Markov chain 200 [38]
Acceptance probability 0.85 [38]

the amount of additional inter-controller communications
due to local controller placement.

• Number of Local Controllers: Minimal number of
local controllers reduces the OPEX and the controller
synchronization overhead. Therefore, we use the number
of local controllers as a performance metric.

D. Result and Discussion

1) Flow Setup Delay: We measure the average flow setup
delay based on the current hybrid plane state and the traffic
volume in each hour. Figure 4 shows the average flow setup
delay for hourly traffic. From simulation results, we observe
that the average flow setup delay for MobiPlace is less than



8

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

F
lo

w
 S

et
u
p
 D

el
ay

 (
m

s)

Hour of the Day

 Greedy Placement
 Dynamic Placement

 MobiPlace

Fig. 4: Flow Setup Delay with 200 RSUs
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Fig. 5: End-to-End Delay with 200 RSUs
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the benchmark schemes. In particular, at the 18th hour, the
flow setup delay for MobiPlace is 8.62% and 15.44% less
than greedy placement and dynamic placement, respectively.
Moreover, we observe that the average flow setup delay for
MobiPlace increases gradually for a sharp rise in traffic than
the benchmarks. Figure 8 shows the flow setup delay for
different RSU count with 1000 vehicles and a simulation
duration of 1 hour. The flow setup delay for MobiPlace with
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Fig. 7: Number of Local Controllers with 200 RSUs

200 RSUs is 5.15% more than that with 50 RSUs.
Inference: The flow setup delay in MobiPlace is less because

MobiPlace avoids reactive controller synchronization after the
Flow-Mod fails to reach the communicating vehicle. Instead
of reactive controller synchronization, MobiPlace proactively
performs controller synchronization using vehicle mobility
prediction. Additionally, MobiPlace well-distributes the C-
RSUs based on changing traffic load so that the vehicles
prefer C-RSUs to domain controllers for processing their
requests. Therefore, the flow setup delay does not increase
rapidly for excessive change in the traffic load. From the
simulation results, we conclude that MobiPlace places local
controllers at optimal locations so that the time required for the
installation of new flow-rules is minimized. Additionally, with
more RSU count, the flow setup delay increases because each
local controller handles requests forwarded by more RSUs.

2) End-to-End Delay: The end-to-end delay is the time
interval between the generation of a Packet-In request and
the reaching of the last packet of data flow at the destination.
Figure 5 depicts that the average end-to-end delay for Mo-
biPlace is less than the benchmark schemes. In particular, at
the 18th hour, the end-to-end delay for MobiPlace is 14.90%
and 26.52% less than that of greedy placement and dynamic
placement, respectively. Figure 9 shows the end-to-end delay
for different RSU count with 1000 vehicles and a simulation
duration of 1 hour. The end-to-end delay for MobiPlace with
200 RSUs is 6.42% more than that with 50 RSUs.

Inference: The end-to-end delay for MobiPlace is less
because MobiPlace performs proactive rule installation and
controller synchronization. From the simulation results, we
infer that the probability of QoS violation is low in MobiPlace
due to the low processing time of the data flows. Moreover,
with more RSU count, the end-to-end delay increases because
of more RSUs in each flow path.

3) State Migration Overhead: We measure the state mi-
gration overhead for each hour by comparing the current
controller placement with that of the previous hour. Figure 6
shows that the average state migration overhead for MobiPlace
over the 24 hours of the day is 49.62% and 48.28% less than
that of greedy placement and dynamic placement, respectively.
Additionally, we observe that the state migration overhead for
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1000 Vehicles and Different RSU Count

MobiPlace does not increase rapidly for high traffic load.
Inference: As stated in Equation (13), MobiPlace places new

C-RSUs based on traffic demand by prioritizing existing C-
RSU placement. MobiPlace observes the traffic volume at the
RSUs for τ seconds before initiating a change. Therefore,
the state migration overhead is less in MobiPlace. On the
other hand, the dynamic placement scheme reconsiders the
placement of local controllers periodically. Therefore, local
controllers are added or removed, even for short-term changes
in traffic load. Therefore, the state migration overhead in
dynamic placement is higher than that of MobiPlace. The
average number of local controllers in the greedy placement
approach is fixed to Γ. From the simulation results, we infer
that MobiPlace incurs less inter-controller traffic because it
does not prefer frequent changes in the hybrid plane state.

4) Number of Local Controllers: For each hour, we es-
timate the number of controllers placed at the RSU-level.
From Figure 7, we observe that the average number of
local controllers is less for MobiPlace as compared to the
benchmark schemes. In particular, at the 18th hour, the number
of local controllers for MobiPlace is 11.19% and 9.89% less
as compared to the greedy placement and dynamic placement,
respectively. Figure 10 shows the number of local controllers
for different RSU count with 1000 vehicles and a simulation
duration of 1 hour. For 50 RSUs, the number of local con-
trollers for MobiPlace is 52.40% and 2.98% less than the
greedy placement and dynamic placement, respectively. On
the other hand, for 200 RSUs, the number of local controllers
for MobiPlace is 11.41% and 3.96% less as compared to the
greedy placement and dynamic placement, respectively.

Inference: MobiPlace aims to manage the traffic load with
a minimal number of local controllers. The number of local
controllers in the greedy placement is high because the greedy
placement scheme considers only RSU priorities for local
controllers’ placement and does not aim to minimize the
number of controllers. The number of local controllers for the
dynamic placement is higher than that of MobiPlace because
the dynamic placement places more local controllers to reduce
the RSU to local controller latency. Moreover, the dynamic
placement scheme adds a new controller after a periodic
time interval, even when the traffic increase lasts for a short
duration. On the other hand, MobiPlace places an additional
controller only if the traffic changes last for a considerable
amount of time. From the simulation results, we conclude that

MobiPlace reduces the OPEX and controller synchronization
overhead by placing a minimal number of local controllers.
Additionally, for MobiPlace, the number of local controllers
is less even with low RSU count because MobiPlace optimizes
the C-RSU placement considering the number of C-RSUs as
a metric as mentioned in Equation (13).

VII. CONCLUSION

In this paper, we presented a mobility-aware controller
placement scheme for SDVN. The proposed scheme, Mobi-
Place, places local controller modules at RSU level to reduce
the vehicle to controller communication latency. However,
static controller placement is not suitable for SDVN as road
traffic conditions change over time. Therefore, MobiPlace esti-
mates traffic conditions for a pre-defined duration and changes
the placement status of local controllers dynamically with
minimal state migration overhead. Additionally, MobiPlace
uses mobility prediction to reduce data loss and controller
synchronization overhead during flow setup. Simulation results
exhibited that MobiPlace reduces the flow setup delay by
13.85% and the state migration overhead by 48.28% compared
to the existing dynamic placement scheme. The limitation of
the proposed scheme depends on the processing capability and
resource availability of the RSUs because usage of an RSU as
a C-RSU requires additional computation and storage.

The future extension of the work includes caching popular
flow-rules at selected RSUs to reduce the flow setup delay
further. Additionally, we plan to evaluate the proposed scheme
with more traffic traces.
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