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Abstract—In this paper, we propose a scheme to address the
problem of load management in the control plane of Software-
Defined Internet of Things (SDIoT) networks. In SDIoT, multiple
controllers are deployed to enhance network scalability. With
the growth of IoT, the number of devices is increasing rapidly.
The management of control plane load is an essential issue for
IoT networks because of the dynamic traffic characteristics. IoT
traffic is highly dynamic due to the heterogeneity of IoT devices
in terms of mobility, activation model, Quality of Service (QoS)
demand, and flow generation rate. The challenge is to prevent
controller overload and distribute traffic optimally under the
consideration of heterogeneous IoT devices. The proposed scheme
estimates control plane load based on the mobility and activation
model of IoT devices. For mobility prediction, we use Order-m
fallback Markov Predictor as it consumes less space and performs
efficiently even for small values of m. Based on the prediction
results, we implement a traffic-aware rule-caching mechanism
and a master controller assignment scheme to reduce the control
plane load. Simulation results show that the proposed scheme
reduces the peak intensity of the control traffic by 23.08% and
16.67%, as compared to the considered benchmark schemes.

Index Terms—oftware-Defined Networking (SDN), Caching,
Markov Predictor, IoT, Branch and Bound.oftware-Defined Net-
working (SDN), Caching, Markov Predictor, IoT, Branch and
Bound.S

I. INTRODUCTION

SDN is an evolving networking paradigm that separates
control decisions from data forwarding [1]. The global network
view provided by SDN makes it an attractive choice for use
in large-scale IoT deployment applications. However, SDIoT
network requires multiple controllers to handle heterogeneous
traffic from IoT devices [2]. In SDIoT, overloaded control plane is
a bottleneck that disrupts the network performance by increasing
the response time. The control plane load is directly linked to
controller-switch assignments. Therefore, dynamic assignment of
switches to controllers is required to balance control plane load
and provide uninterrupted network services in IoT networks
where fluctuation of traffic is frequent.

With the rising demand for IoT applications, SDIoT networks
encounter additional challenges due to the presence of a large
number of wireless smart devices. The primary challenge involves
handling a large number of Packet-In messages, which are control
messages initiated by a switch to its master controller. For each
new flow generated from a device, an ingress switch transmits a
Packet-In request to the master controller. The master controller
formulates a new flow-rule and sends it to the corresponding
switch in the form of a Flow-Mod message [3]. Therefore, the
load of a controller depends on the set of associated switches
and Packet-In messages generated by the associated switches. If
these Packet-In messages are not handled in a timely manner, the
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response time of the control plane increases. In the worst case, the
incoming packets get stalled in the queue of the switches and are
dropped once the queue is full. This case is not desirable for IoT
devices because IoT devices are low-power, resource-constrained,
and loss-sensitive.

In addition, the bursty nature of IoT traffic is challenging for
the control plane due to the sudden rise of control messages.
IoT devices follow different activation models [4], which is the
cause of the bursty traffic. Randomly activated devices generate
data flow bursts for a short duration. On the other hand,
periodically activated devices generate traffic at a fixed interval.
Consequently, a large number of control messages are generated
during the peak times of the day and overloads some of the
controllers.

Moreover, IoT networks involve devices having heterogeneous
QoS requirements [5]. For example, IoT applications generating
audio or video traffic are more latency-sensitive than the applica-
tions generating image-based traffic. Similarly, IoT applications
providing emergency services are also latency-sensitive. There-
fore, an overloaded controller is a bottleneck for these latency-
sensitive IoT applications.

Additionally, device mobility is an essential factor of IoT net-
works [6]. For example, IoT-based health monitoring applications
include mobile IoT devices to track the status of the patients.
Usually, these mobile IoT devices or wearables move from one
location to another due to human mobility. The load of the
corresponding controllers changes when a device moves from
one controller’s domain to another.

Hence, a high number of devices, bursty traffic, different QoS
demand, and device mobility are crucial metrics for control plane
load management in SDIoT network. The majority of the existing
solutions consider single parameter such as QoS or dynamic
traffic [7], [2]. This work aims to manage the workload of the
controllers in SDIoT, under the consideration of the essential met-
rics of IoT networks. The proposed control plane load reduction
approach, named CORE, consists of three modules — mobility
prediction, rule-caching, and master controller assignment. The
mobility prediction module uses a Markov Predictor [8] to predict
device-switch associations based on device mobility. Subsequently,
the rule-caching module caches the popular rules based on the
QoS demand and traffic pattern of IoT devices. Finally, the
master controller assignment module computes optimal controller-
switch assignments to prevent control plane overload. The specific
contributions of this work are as follows:
• We formulate an integer linear problem (ILP) to minimize

control plane load under the consideration of controller
capacity, rule-space limit, device-specific QoS demands as
constraints.

• We propose a master controller assignment scheme that
identifies optimal controller-switch assignments to minimize
the control plane load. The proposed scheme uses Markov
Predictor to predict device-switch associations based on
device mobility. In contrast to existing schemes, the proposed
scheme considers the bursty nature of IoT traffic due to the
different activation schedules of the devices.

• Based on the prediction results, we propose a device-aware
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rule-caching approach to reduce the controllers’ load. This
approach considers device-specific parameters such as QoS
demand and flow generation rate.

II. RELATED WORK

A. SDIoT
SDN is emerging as a promising platform for IoT solutions.

The integration of SDN and IoT is beneficial in terms of
intelligent traffic engineering, real-time decision making, and
provision for global view of the network [9]. Muñoz et al. [10]
proposed a SDIoT architecture to manage IoT traffic dynamically
and avoid link congestion. Bellavista et al. [11] presented a SDIoT
architecture involving Fiber-Wireless (FiWi) access networks for
better Quality of Service (QoS).

B. Control Plane Load Management in SDN
Existing approaches in this field are categorized in two parts

— controller placement-based and switch migration-based.
1) Controller Placement-Based: Controller placement-based

schemes select the number and locations of the controllers to
manage the load. Hock et al. [12] considered the maximum
control link latency and the number of switches attached to
a controller in order to place the controllers and stabilize the
load. However, the authors assume static traffic between switches
and controllers. Therefore, this approach is not preferable for
large-scale networks, including IoT networks. Ksentini et al.
[13] proposed a controller placement technique based on Nash
bargaining game. The authors considered control link latency and
equal load distribution to the controllers as the major objectives.
However, this approach does not consider the master and slave
roles of an SDN controller. Huque et al. [2] proposed LiDy+,
which places the controller modules based on data plane traffic
prediction. The load is distributed evenly among the controllers
in each module. However, frequent activation and deactivation
increases control plane overhead in terms of messages.

2) Switch Migration-Based: Switch migration-based
schemes migrate switches from a highly-loaded controller’s
domain to the domain of a lightly-loaded controller. Dixit et al.
[14] proposed a switch-migration scheme that migrates switches
from an overloaded controller to a controller with less load.
The proposed approach includes the addition and removal of
controllers, as required, in the presence of dynamic traffic.
However, this approach ignores switch-to-controller latency.
Bari et al. [7] proposed Dynamic Controller Provisioning with
Simulated Annealing (DCP-SA), which dynamically activates
and deactivates controllers to reduce the flow setup cost and
the overhead for communication. In this work, the authors
used two heuristics based on simulated annealing and greedy
knapsack. The proposed heuristics periodically reassign switches
to controllers for addressing load imbalance at the control
plane. The proposed approach does not consider queueing delay
at the controller. Sahoo et al. [15] proposed an Efficient Switch
Migration technique for Load Balancing (ESMLB) scheme to
balance the control plane load in SDIoT. The proposed approach
identifies the overloaded controllers and the switches which
generate the maximum Packet-In requests to each overloaded
controller. Each selected switch is migrated to a lightly-loaded
target controller, which is selected based on multiple criteria
such as hop count, memory usage, and bandwidth. However,
the proposed approach does not consider the effects of uneven
traffic distribution.

Synthesis: From the detailed study of the existing literature,
we infer that there exists a lacuna in the research literature
addressing the problem of control plane load management for
large-scale SDN, including SDIoT, where the heterogeneous
attributes of IoT devices have a major impact on the control
plane load. However, existing solution approaches do not consider

device heterogeneity while dealing with the dynamic workload.
Moreover, existing solution approaches ignore the bursty nature
of IoT traffic due to different activation models of IoT devices.
Therefore, in this work, we propose a prediction-based master
controller assignment scheme for control plane load reduction in
SDIoT while considering heterogeneous attributes of IoT devices
such as mobility, activation model, and QoS demand.

III. SYSTEM MODEL

A. System Architecture
The SDIoT architecture considered in our work is depicted in

Figure 1 [16]. The architecture comprises three layers — appli-
cation, network, and perception.

1) Application Layer: The application layer consists of IoT
applications, which perform services requested by the users based
on the data collected from the network layer.

2) Network Layer: The network layer consists of data plane
and control plane. Let G = (S,E) represent the data plane
topology, where S denotes the set of SDN switches and E denotes
the set of data links. We assume that a switch stores up to
Rmax flow-rules. Each flow-rule re has a timeout duration Te
seconds. Let C represent the set of controllers. We consider that
each switch si is attached to single master controller and one or
multiple slave (read-only) controllers [3] during a time-slot. Let,
ε seconds be the duration of each time-slot. The master controller
for switch si is expressed as:

xij(t) =

{
1 if cj is the master controller of si,
0 otherwise.

(1)

The slave controller for switch si is expressed as:

yij(t) =

{
1 if cj is the slave controller of si,
0 otherwise.

(2)

A controller cannot be both master and slave for the same
switch at the same time-slot. Therefore, xij(t)+yij(t) ≤ 1, ∀si ∈
S,∀cj ∈ C.

Definition 1 (Controller Capacity). The capacity of a controller cj
is the maximum number of Packet-In requests the controller handles
in a time-slot and is denoted by Ωj .

3) Perception Layer: The perception layer contains static
and mobile IoT devices that are heterogeneous in terms of
QoS requirements. The flows generated by the IoT devices are
transmitted over the wireless channel to switches via access points
(APs) having different radio access capabilities such as WiFi,
WiMax, Bluetooth, 3G, 4G, Zigbee, mmWave, and TV White
Space. In this work, we assume that each IoT device is capable
of communicating via more than one radio access technique. For
a time-slot t, D(t) denotes the set of IoT devices. For simplicity,
we assume that all the flow-rules are exact-match flow-rules [3],
where the mapping between flow-rule and flow type is one-to-
one. Further, we assume that each device generates only single
type of flow. However, if an IoT device generates multiple types
of flows, multiple instances of that device can be considered. Let
Qk be the number of flows generated by a device dk(t) ∈ D(t)
per second. We assume that the controllers record device specific
parameters such as the flow generation rate, the mapped flow
type, and QoS requirement for each time-slot. The association
between an IoT device and an SDN switch is expressed as:

zik(t) =

{
1 if dk(t) is associated with si,

0 otherwise.
(3)

We consider that a device is associated with single switch only,
as each AP sends data to a specific SDN switch. Therefore,
|S|∑
i=1

zik(t) = 1, ∀dk(t) ∈ D(t). Based on the type of IoT

application, each IoT device dk(t) activates/deactivates following
either — (1) random activation model or (2) periodic activation
model [4]. For example, devices used for IoT applications such as
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traffic monitoring, and connected health follow random activation
model. On the other hand, devices for IoT applications such as
smart home, smart city, and environment monitoring require to
report data periodically. Let t0 be the start time of time-slot
t. A device dk(t) following random activation model activates
at the τ th second, where τ ∈ [t0, t0 + ε], according to the
beta distribution with shape parameters β1, and β2 [4], which
is expressed as fk(τ) = (τ−t0)β1−1(t0+ε−τ)β2−1

εβ1+β2−1
∫ 1
0 τ

β1−1(1−τ)β2−1dτ
. On the

other hand, a device dk(t) following periodic activation model
activates repeatedly after a fixed duration τk seconds. Therefore,
the probability that a device dk(t) following periodic activation
model activates at time instant τ ∈ [t0, t0 + ε] given by:

fk(τ) =


1 if the interval between τ and the last active

time of dk(t) is more than τk,

0 otherwise.
(4)

The maximum number of Packet-In messages generated by dk(t)
in time-slot t is Mk(t) =

∫ t0+ε

t0
fk(τ)Qkdτ .

B. Mobility Model
We consider a network which has both static or mobile IoT

devices. Examples of some mobile IoT devices are smart wear-
ables, cameras, and AR/VR glasses [17]. During each time-slot,
SDN controllers collect device locations using Simple Network
Management Protocol (SNMP) via southbound APIs [18]. We
use this collected data as a history data set to predict device-
switch associations.

C. Caching Model
Each flow-entry has a default timeout duration [3]. However,

an IoT device usually generates similar flow requests for a
particular time duration. The interval of the arrival of such
similar flows may be greater than the timeout duration of the
corresponding flow-rule. In this case, a Packet-In message is re-
generated, and an expired rule is re-installed. Rule-caching is
one of the measures to reduce the number of Packet-In requests.
However, as the cache size increases, the rule-space required for
storing new flow-rules decreases, and the number of Packet-in
requests increases, eventually. Therefore, CORE considers that
each SDN switch caches maximum Rcache < Rmax flow-rules. To
express whether a switch si caches a flow-rule for dk(t) during
time-slot t we define a binary variable as:

wik(t) =


1 if si caches flow-rule that maps to the flow

type of dk(t),

0 otherwise.
(5)

D. Delay Model
Let δk(t) denote the delay of an IoT flow of type fk. The

delay δk(t) has three components — a) device to AP communi-
cation delay δ1

k(t), b) AP to switch communication delay δ2
k(t),

and c) flow setup delay δexk (t) at the switch. Mathematically,
δ1
k(t) = ∆1(t) + gk(t)

G1E1 and δ2
k(t) = ∆2(t) + gk(t)

G2E2 , where
∆1(t) is the transmission delay from device to AP, ∆2(t) is the
transmission delay from from AP to switch, gk(t) represents
the number of bytes sent by dk(t) in time-slot t, G1 is the
bandwidth of the wireless channel from device to AP, G2

represents the bandwidth of the wireless channel from AP to
switch, E1 and E2 represent the channel overheads of the
corresponding wireless channels. The flow setup delay δexk (t)

is δexk (t) =
|S|∑
i=1

|C|∑
j=1

zik(t)xij(t)
(
2δij(t) + δquej (t)

)
, where δij(t)

is the transmission delay associated with the control link and
δquej (t) is the queueing delay at controller cj . A controller stores
the Packet-In requests in its queue and processes the requests in
a First-Come-First-Serve (FCFS) order. Motivated by the work
by He et al. [19], in this work, we consider each request as
an individual and independent Poisson process. Moreover, we
assume that each controller is single-threaded. Therefore, we
model controller queue as a M/M/1 queue. The service rate
of this queueing model is controller capacity Ωj . The maximum
request arrival rate is:

λj(t) =

|S|∑
i=1

|D(t)|∑
k=1

xij(t)zik(t)(1− wik(t))Mk(t) (6)

Here, (6) considers the associated devices which have no rules
cached and estimates the maximum number of Packet-In requests
based on the active duration of the devices for each controller
cj in time-slot t. Using Little’s law, we get the queueing delay at
the controller cj as δquej (t) = 1

Ωj−λj(t)
.

E. Cost Model
Control plane cost has two components — 1) controller-switch

communication cost and 2) inter-controller communication cost
due to device mobility. The controller-switch communication
cost at cj is the traffic intensity ρj(t) =

λj(t)

Ωj
. Controllers

collect global network status data by synchronizing with other
controllers at regular intervals. We assume that each controller
completes this synchronization process at the beginning of a
time-slot. Additionally, there exist two cases when a controller
synchronizes with another controller.
• Case 1: Change in Controller-Switch Association

At time-slot t, each controller cj records the switches to
which cj served as a slave controller for time-slot t − 1
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before changing its role to a master controller. In this case,
cj needs to synchronize with the former master controller(s)
of the switches. Figure 2 shows an example where the
master controller of switch s3 changes from c1 to c2 at
time-slot t. Therefore, for seamless handover, c2 collects
unfinished session data and flow information from c1. For
each controller cj , the number of master-slave role changes

during a time-slot is χjc(t) =
|S|∑
i=1

|xij(t)− xij(t− 1)|.
• Case 2: Change in Device-Switch Association

At time-slot t, each controller cj records the mobile IoT de-
vices which are newly associated with the switches assigned
to cj . If the old switches have different master controller(s),
cj needs to synchronize with the master controller(s) of
the old switches. Figure 3 shows an example in which
a mobile device changes the associated switch from s3

to s4 at time-slot t. As s3 and s4 have different master
controllers c1 and c2, controller synchronization is required
for seamless handover. For each controller cj , the number of
such changes where controller synchronization is required

is χjs(t) =
|S|∑
i=1

|D(t)|∑
k=1

ξjk(t), where ξk(t) is expressed as:

ξjk(t) =


1 if xij(t)zik(t) = xi′ j′ (t− 1)

zi′k(t− 1) = 1, i 6= i
′
, j 6= j

′
,

0 otherwise.
(7)

Therefore, the total inter-controller communication cost for a
controller cj is Γj(t) = χjc(t) + χjs(t).

F. Problem Formulation

The objective of CORE is to determine optimal controller-
switch assignments to minimize the control plane cost. Therefore,
we formulate the cache-enabled minimum cost master controller
assignment (CMCA) problem as:

Minimize
x(t),w(t)

α
|C|∑
j=1

ρj(t) + (1− α)
|C|∑
j=1

Γj(t) (8)

subject to
λj(t) ≤ Ωj , ∀cj ∈ C, (9)
|C|∑
j=1

xij(t) = 1, ∀si ∈ S, (10)

|D(t)|∑
k=1

wik(t) ≤ Rcache, ∀si ∈ S, (11)

xij(t) = xij(t− 1) + yij(t− 1),

∀si ∈ S,∀cj ∈ C (12)
|S|∑
i=1

wik(t) ≤ 1,∀dk(t) ∈ D(t), (13)

δk(t) ≤ δmaxk , ∀dk(t) ∈ D(t) , (14)

where α ∈ [0, 1] is a weighting factor to control the relative
importance of controller-switch communication cost and inter-
controller communication cost. The relation in (9) ensures that
none of the controllers is overloaded. As mentioned in (6), the
value of λj(t) is estimated based on the probability of activation
considering random or periodic activation model. The truth that
each switch belongs to a single master controller is presented
in (10). Additionally, (11) ensures that the number of cached
flow-rules in a switch does not exceed the maximum allowable
limit Rcache. The relation in (12) ensures that a controller can
be assigned with the master role for a switch in time-slot t if
and only if it is the master or slave controller for that switch in
the previous time-slot. Moreover, (13) ensures that a device can
have cached rule only in single switch as each switch has limited
rule storage capacity. Finally, (14) expresses the delay constraint
for each device, where δmaxk is the maximum allowable delay for
dk(t).

Theorem 1. The cache-enabled minimum cost master controller
assignment (CMCA) problem is NP-hard.

Proof: Let us consider a particular instance of the CMCA
problem by excluding the rule caching at switches. In this
case, we have |C| controllers and |S| switches. Each controller-
switch association increases traffic intensity at the corresponding
controller. In addition, each controller has a maximum capacity.
For example, a switch si can be associated with a master
controller cj only if λj(t) < Ωj . A feasible solution ensures
completeness constraint in (10) that each switch is assigned to
exactly one master controller. The goal of the problem is to find a
feasible solution that minimizes the total control traffic intensity.
This is in the form of a generalized assignment problem [20],
which has been proved as NP-hard. Hence, the CMCA problem
is also NP-hard.

As the optimization problem in (8) is NP-hard, it is difficult
to obtain a solution in reasonable time. Therefore, we propose a
master controller assignment scheme based on the branch and
bound technique [21] that can efficiently determine near-optimal
solutions.

IV. CORE: THE PROPOSED SCHEME

CORE contains three modules for the purpose of — (a)
mobility prediction, (b) rule-caching, and (c) master controller
assignment. The mobility prediction module analyzes mobility
history of IoT devices to predict device-switch association in-
formation. Thereafter, the selected flow-rules are cached by the
rule-caching module to reduce the control plane load. Finally,
the master controller assignment module determines optimal
controller-switch associations.

A. Mobility Prediction
We determine the control plane load based on the number

of control messages it handles during a time-slot. However, the
number of control messages or the number of new flows depends
on the devices associated with the switches at a time-slot. Conse-
quently, we need to predict the device-switch associations, while
considering the movement history of the devices. Subsequently,
we use this prediction data to cache device specific flow-rules in
switches and determine optimal controller-switch associations. To
predict future positions of the IoT devices, we use the existing
Markov Predictor [8].

1) Markov Predictor: Several location predictors are present
in existing literature [8]. Markov Predictor is one of the most
popular location prediction algorithms to predict the future
location of a mobile device based on its mobility history. An
O(m) Markov Predictor considers m most recent locations of a
mobile device and predicts the next location. Markov Predictor
consumes less space and performs better than other popular
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predictors for small values of m [22]. Therefore, we use order-m
(O(m)) Markov Predictor to determine the future location of
each device. Therefore, for predicting the location of a device
dk(t), the components of an order-m (O(m)) Markov Predictor
are:
• Input: The input set Hk(t) = {{Lt,k, Tt,k, Vt,k}, Pt,k}

represents the mobility history of dk(t) at time-slot t,
where Lt,k = {ltk1, ltk2, . . . , ltkn} is the set of loca-
tions or meaningful places that the device visits, Tt,k =
{τtk1, τtk2, . . . , τtkn} denotes the set of arrival times at the
locations in Lt,k, Vt,k = {vtk1, vtk2, . . . , vtkn} is the set of
durations of stay at each location in Lt,k, and Ptkij ∈ Pt,k
represents the transition probability from location ltki to
location ltkj , i 6= j.

• Output: The output lt+1,k ∈ Lt,k represents the predicted
location of device dk(t) in time-slot t+ 1.

• Context: The context is formulated as h=Lt,k(n − m +
1, n)={ltk(n−m+1), ltk(n−m+2), . . . , ltk(n−1), ltkn}.

Markov Predictor extracts the context h from the input set Hk(t)
and examines the duration of stay Vl at a location l that follows
h. Mathematically,

Vl = {vtki|vtki = τtk(i+1) − τtki, where
Lt,k(i−m+ 1, i+ 1) = hl} (15)

From each Vl, we compute the conditional probability Pl(τ ≤
v < τ + ∆τ |h, τ) that the device shifts to location l within ∆τ
time beyond the current elapsed time τ . We consider ∆τ as the
remaining time of the current time-slot. Therefore, for a given
context h and elapsed time τ , the probability that a device moves
to a possible location l within ∆τ time is:

P (l|h, τ) = P (l)Pl(τ ≤ v < τ + ∆τ |h, τ), (16)
where P (l) denotes the transition probability of every possible
next location l which is calculated as P (ltk(n+1) = l|Lt,k) ≈
P̂ (ltk(n+1) = l|Lt,k) =

N(hl,Lt,k)

N(h,Lt,k)
, where N(hl, Lt,k) signifies the

number of occurrences of hl in the set Lt,k. Therefore, the output
of the Markov Predictor which is the most likely next location
of dk(t) is given by:

ltk(n+1) = argmax
l∈Lt,k

P (ltk(n+1) = l) (17)

If N(h, Lt,k) = 0, the O(m) Markov Predictor fails to return
a result. Therefore, we use fallback Markov Predictor [8] which
backtracks to an O(m−1) Markov predictor whenever an O(m)
Markov Predictor fails to return a result. The O(0) Markov
Predictor yields the location that occurs most frequently in the
location history set Lt,k.

Algorithm 1 Mobility Prediction Algorithm

INPUTS: Hk(t− 1), h
OUTPUT: z(t)
PROCEDURE:

1: Extract Lt−1,k from Hk(t− 1)
2: Compute Vl at possible locations l using (15)
3: Calculate P (l|h, τ) using (16)
4: Predict the next location using (17)
5: Select the nearest AP which covers the predicted location

and matches the radio access capability of the dk(t)
6: Set zik(t)← 1 if si is associated with the selected AP

Algorithm 1 presents the steps required for mobility prediction
of a device dk(t) and the formulation of device-switch association
zik(t). The Mobility Prediction Algorithm (MPA) is executed for
each device dk(t). An O(m) Markov Predictor returns a location
where the device is predicted to be present in time-slot t. We
consider that dk(t) associates with the nearest AP that covers
the predicted location and matches its radio access capability.

Let si be the switch associated with the selected AP. Therefore,
MPA predicts the device-switch association zik(t) = 1.

B. Rule-Caching

To estimate rule popularity, rule-caching module sorts the flow-
rules in each switch in descending order of the received packet
count. Let Ri be the set of flow-rules in si. Therefore, the rule
popularity is denoted by Θ = {θ1, θ2, θ3, . . . , θ|Ri|}, where θj ∈
[0, 1] is the probability that an incoming flow matches with the jth
flow-rule. In this work, we assume that rule popularity satisfies
the Zipf distribution [23]. Therefore, the popularity of the jth
ordered flow-rule is given by:

θj =

1
jγ

|Ri|∑
a=1

1
aγ

, (18)

where γ ∈ [0, 1] denotes the skewness of the rule popularity. The
value γ = 0 signifies uniform popularity distribution. Whereas,
a larger γ implies more uneven rule popularity. Algorithm 2

Algorithm 2 Rule-Caching Algorithm

INPUTS: Ri, γ, z(t)
OUTPUT: w(t)
PROCEDURE:

1: Compute popularity of the rules in Ri using (18)
2: Sort the flow-rules in descending order of popularity
3: for each rule re in the sorted list do
4: Select the device dk(t) whose flow type maps to re
5: if zik(t) == 1 and re not cached then
6: Delete the least popular rule from cache if cache

is full
7: Te ← 1

Qk(t−1) + (T0 − δmaxk ), wik(t)← 1
8: end if
9: end for

presents the steps of the proposed greedy solution for caching
rules in each switch si. For each switch si, the Rule-Caching
Algorithm (RCA) sorts the flow-rules present in the rule-space
of the switch based on the rule popularity calculated using (18).
For each flow-rule re which maps to the flow type of dk(t),
RCA checks whether zik(t) == 1 from the output of MPA. In
addition, RCA checks whether the rule is already cached by si.
If the cache size reaches its maximum limit Rcache, RCA deletes
the least popular rule from the cache by setting its timeout as the
default timeout T0. For caching re, RCA sets the timeout value
as Te = 1

Qk(t−1)
+ (T0 − δmaxk ). This timeout value ensures that

latency-sensitive flows are prioritized over other flows as a larger
timeout value signifies lower chance of flow-table miss.

C. Master Controller Assignment

We derive the optimization problem for minimum cost master
controller assignment from the joint optimization problem of
cache-enabled minimum cost master controller assignment stated
in (8). Hence, for a given caching policy w(t), the optimization
problem P0 for minimum cost master controller assignment
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(MCA) is given by:

Minimize
x(t)

α
|C|∑
j=1

ρj(t) + (1− α)
|C|∑
j=1

Γj(t) (19)

subject to
λj(t) ≤ Ωj ,∀cj ∈ C, (20)
|C|∑
j=1

xij(t) = 1, ∀si ∈ S, (21)

xij(t) = xij(t− 1) + yij(t− 1),

∀si ∈ S,∀cj ∈ C (22)
|S|∑
i=1

wik(t) ≤ 1, ∀dk(t) ∈ D(t), (23)

δk(t) ≤ δmaxk , ∀dk(t) ∈ D(t) (24)
The MCA problem is non-convex because of the presence of
binary decision variable. Therefore, we use the branch and bound
technique for solving the MCA problem [21]. The branch and
bound technique defines a common structure to solve a wide
range of non-convex optimization problems. It follows the divide
and conquer paradigm and starts with the original optimization
problem. Subsequently, the algorithm computes lower bound
(LB) of the global optimum by applying the lower-bounding
method to the original problem with the complete feasible
region. The branch and bound technique uses a branching rule
to divide the feasible region into multiple disjoint subregions
when no optimal solution is achieved. Each subregion signifies a
subproblem having the same objective function and constraints
as the original problem.

For each subproblem, the LB is computed. A subproblem is
discarded if its LB is greater than the optimal LB of the original
problem. Otherwise, the subproblem is partitioned further if no
optimal solution is found. Hence, a search tree with the original
problem as root is generated. The process continues until all
nodes have been visited, or an optimal solution is achieved.
Therefore, the master controller assignment scheme for the MCA
problem has two significant components — 1) branching method
and 2) lower-bounding method.

1) Branching Method: Let P0 denote the MCA problem
stated in (19). The branching method starts with P0 as the root
of the search tree. The total number of levels in the tree is
|S|+1 starting from level 0. Each level corresponds to the choice
of a master controller for each switch si. For example, level 1
corresponds to the choice of a master controller for switch s1.
Therefore, each node at a level denotes a subproblem. At each
level, we partition the leaves or subproblems. Each child node of
a node Pv at level l corresponds to a feasible master controller
for sl+1. Let Cv be the set of feasible master controllers for
sl+1. From constraint (22), we find that a controller cj ∈ C is a
member of Cv if xl+1,j(t− 1) + yl+1,j(t− 1) = 1. Therefore, the
number of children of Pv is |Cv|.

2) Lower-Bounding Method: Initially, we construct a lower
bound for the original MCA problem. To find the initial lower
bound, we construct a relaxed problem MCA-R by removing
the controller capacity constraint in (20). Therefore, each switch
freely selects the master controller so that the control plane cost is
minimum. For a given switch si, the cost for the assignment to a
master controller cj is Uij = αρj(t)+(1−α)Γj(t), where xij = 1

and xij′ = 0 for all j 6= j
′
. Therefore, the cost of a minimum cost

controller-switch association for a given switch si is expressed as
Uiji = min

∀cj
{Uij}. Hence, the LB for problem P0 is LB0 =

|S|∑
i=1

Uiji . Subsequently, we find the LB for each subproblem Pv

where v 6= 0. Let xv(t) be the allocation matrix for the branch
ending at a node Pv at level l. Therefore, the initial value of LB is
LB0

v =
∑

∀cj∈C,si∈S
Uijx

v(t). S
′

= sl+1, sl+2, . . . , s|S| denotes the

set of unassigned switches for the current branch. For each switch

si ∈ S
′
, we find the minimum cost controller-switch association

that satisfies the constraints (20), (21), (22) and (24). Therefore,
the LB of Pv is given by:

LBv = LB0
v +

∑
si∈S

′

min
∀cj
{Uij} (25)

Algorithm 3 Master Controller Assignment Algorithm

INPUTS: P0, C, S, z(t), w(t)
OUTPUT: {x∗(t), u∗}
PROCEDURE:

1: P ← {P0}, u∗ = + inf , x∗(t) = 0
2: while P 6= φ do
3: Select a node Pv ∈ P
4: P ← P − {Pv}
5: Apply branching method to Pv and generate subprob-

lems Pv1 , Pv2 , . . . , Pv|Cv|
6: for each Pva do
7: Compute LBva using (25)
8: if LBva > u∗ then
9: Delete Pva

10: else if Pva gives a complete solution {x′(t), u′}
then

11: u∗ ← u
′
, x∗(t)← x

′
(t)

12: else
13: P ← P ∪ {Pva}
14: end if
15: end for
16: end while

3) Master Controller Assignment Algorithm: Algorithm 3
shows the branch and bound procedure to solve the MCA
problem. The Master Controller Assignment Algorithm (MCAA)
initializes the values of optimal solution x∗(t) and the optimal
objective value u∗. In addition, MCAA adds the root node P0 to
the set of live nodes P . For each live node Pv ∈ P , MCAA applies
branching method to generate child nodes or subproblems. A
subproblem is deleted if it has a LB greater than the optimal
objective value u∗. The values x∗(t) and u∗ are updated when
a subproblem generates a complete solution with each switch
assigned to a master controller. Otherwise, the subproblem is
added to the set of live nodes P . The output of MCAA signifies
an optimal master controller assignment x∗(t) for time-slot t.
At time-slot t− 1, we compute x∗(t) and change the controller-
switch assignments accordingly by using Role-Change messages
[3]. Additionally, we deactivate the controllers which have no
assigned switches.

The proposed scheme applies to any controller placement
strategy. We explore control plane load balancing in networks
where controllers are already placed, and load imbalance occurs
due to the dynamic nature of IoT traffic. In this scenario,
we propose an approach to distribute the control plane load
optimally across the available controllers as the installation of
additional controllers is not possible always due to budgetary
constraints. In each time-slot, CORE determines the optimal
controller-switch associations and makes changes only if the
existing association is not optimal in terms of the current load.

V. PERFORMANCE EVALUATION

A. Simulation Settings
We evaluate the performance of CORE by implementing

a discrete event simulator in MATLAB. For the simulation,
we consider wearable IoT devices with speed 1 − 2 m/s. The
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simulation parameters are depicted in Table I. Additionally, we
consider random controller placement. In addition, we consider
an equal number of randomly and periodically activated devices.
We conduct two sets of experiments with α = 0.8 for the
performance evaluation. In the first experiment, we consider that
80% devices generate high traffic. This experiment evaluates the
performance of the proposed scheme in the presence of high IoT
traffic volume. In the second experiment, we set the percentage
of latency-sensitive devices as 80% to analyze the performance
for time-critical IoT applications. Table II shows the specific
parameters considered for categorizing high traffic generating
and latency-sensitive devices.

TABLE I: Simulation Parameters

Parameter Value
Network topology 8−pod Fat-tree [24]
Simulation Area 500 m × 500 m
Mobility model Gauss-Markov [25]
Number of IoT devices |D(t)| 200− 2500
Speed of IoT devices 1− 2 m/s [26]
Number of switches |S| 20
Flow-rule default timeout T0 10 s
Number of controllers |C| 5
Controller capacity Ω 7200−10800 K req/time-slot [27]
Average packet size 94− 234 bytes [28]
Mean data rate 462− 11388 bytes/s [28]
Maximum allowable delay δmax 0.001− 1 s [5]
Time-slot duration ε 1 hour
Skewness of rule popularity γ 0.56
Shape parameter β1 3 [4]
Shape parameter β2 4 [4]
Weighing factor α 0.2− 0.8

B. Benchmark Schemes
We compare CORE with existing switch migration-based

schemes — DCP-SA [7] and ESMLB [15]. DCP-SA considers flow
setup delay and inter-controller communication in the presence
of dynamic traffic for controller placement and switch migration.
ESMLB considers the control traffic generated by the switches
as primary criteria for switch migration-based load balancing in
SDIoT control plane. On the other hand, CORE considers flow
setup delay, inter-controller communication, dynamic network
traffic, device mobility, and heterogeneous QoS demands to
determine feasible controller-switch assignment.

C. Performance Metrics
The performance metrics considered for evaluating the pro-

posed scheme are as follows:
• Prediction accuracy: Prediction accuracy shows the correct-

ness of mobility prediction for the IoT devices.
• Control plane cost: Control plane cost is the cumulative cost

of controller-switch communication cost and inter-controller
communication cost, as mentioned in (8). We evaluate this
metric to estimate the load on the control plane as a high
controller load increases the cost.

• Peak traffic intensity: We calculate the peak traffic intensity
across all controllers to analyze the distribution of control
traffic. Mathematically, the peak traffic intensity is given as
max (ρj(t)) , ∀cj ∈ C.

• QoS violated flows: QoS violated flows are the flows which
do not satisfy end-to-end delay requirement of the flow type.
We evaluate this metric to show the efficiency of CORE in
terms of QoS.

D. Observations and Results
1) Prediction Accuracy: For the simulation, we fix the order

of the Markov predictor as k = 3. We use a Twitter dataset [29]

involving 200−1000 devices to analyze the prediction accuracy of
the Markov predictor. Figure 4 shows that the average prediction
accuracy is 83.72%. From the simulation, we infer that CORE
is capable of correctly predicting the device locations for a
significant number of cases, although the mobility pattern and
speed of the devices are highly dynamic. Additionally, based
on the dataset values, we observe that the prediction accuracy
is almost uniform for varying device count. In particular, the
prediction accuracy with 1000 devices is 0.05% less than that
with 800 devices.

2) Control Plane Cost: We analyze the average control plane
cost for different number of IoT devices. Figure 5a shows the
performance of CORE compared to DCP-SA and ESMLB for
high traffic load. CORE achieves 46.94% and 9.82% reduction
in control plane cost as compared to DCP-SA and ESMLB,
respectively. Figure 5b shows the average control plane cost when
the majority of the devices are latency-sensitive. In this case,
CORE achieves 65.63% and 20.14% reduction in control plane
cost as compared to DCP-SA and ESMLB, respectively.

3) Peak Traffic Intensity: We analyze the peak traffic in-
tensity across the controllers. Figure 6a shows the peak traffic
intensity for the first experiment. We observe that CORE
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TABLE II: Device Category

Category Average packet size (bytes) Mean data rate (bytes/s) Maximum allowable delay (s)
High traffic generating 234 [28] 11388 [28] 0.001− 1 [5]
Latency-sensitive 94 [28] 462 [28] 0.001− 0.25 [5]

performs better than the benchmark schemes in terms of peak
traffic intensity. In particular, for 2500 devices, the peak traffic
intensity of CORE is 18.66% and 25.27% less as compared to
DCP-SA and ESMLB, respectively. Figure 6b shows the peak
traffic intensity for the second experiment. We observe that
CORE achieves 23.08% and 16.67% reduction in peak traffic
intensity as compared to DCP-SA and ESMLB, respectively.

4) QoS Violated Flows: We evaluate the percentage of flows
that violate respective QoS demands due to delay higher than the
maximum allowable delay. Figure 7a reports the performance of
CORE compared to DCP-SA and ESMLB when the majority of
the devices generate high traffic. We observe that the percentage
of QoS violated flows is less for CORE even when the number
of devices is high. In particular, for 2500 IoT devices, CORE
achieves 15.64% and 16.33% decrease in QoS violation as
compared to DCP-SA and ESMLB, respectively. Figure 7b shows
the number of QoS violated flows with high number of latency-
sensitive devices. For this experiment, CORE achieves 23.73%
and 22.82% better performance as compared to DCP-SA and
ESMLB, respectively. Figure 7c shows that the QoS violation for
CORE decreases with increasing α. This is because minimizing
the control plane cost with a high α implies more reduction
of the traffic intensity. Therefore, each controller handles fewer
Packet-In requests, and the queueing delay at the controller
as well as the end-to-end delay decrease. Figure 7d shows the
percentage of QoS violated flows for a simulation duration of
one hour with 80% high traffic generating devices, α = 0.8,
and ε = 900s. From simulation results, we observe that the
QoS violation increases initially and reduces in later time-slots.
Although the traffic load varies based on the different activation
models followed by the IoT devices, CORE optimizes controller-
switch assignments based on the existing assignments and present
traffic load. Therefore, more optimal assignments are obtained
in later time-slots.

E. Discussion
From the simulation result, we observe that CORE signifi-

cantly outperforms the benchmark schemes, especially for the IoT
environment. The majority of the IoT flows are latency-sensitive,
and CORE has low control plane cost for a high number of
latency-sensitive devices. This is because the rule-caching module
prioritizes latency-sensitive flows and reduces controller-switch
communication. It is noteworthy that with less number of IoT
devices, the peak traffic intensity of CORE is similar to the
benchmark schemes. This is because, at a lower load, the control
traffic is well-distributed across the controllers. However, IoT
networks expect the presence of a massive number of IoT devices,
and CORE reduces the peak traffic intensity for a high number
of IoT devices. Therefore, we deduce that CORE is more suitable
for reducing control plane load in the IoT environment than the
benchmark scheme.

VI. CONCLUSION

In this paper, a prediction-based scheme to reduce the control
plane load in SDIoT was presented. We proposed rule-caching
and master controller assignment schemes under the considera-
tion of heterogeneous attributes of IoT devices. We observe that
the proposed scheme, CORE, ensures appropriate distribution of
control traffic across the controllers while minimizing the control
plane cost and QoS violation. Simulation results indicate that
CORE reduces the average control plane cost under both varying
traffic load and varying QoS demand. Specifically, for high traffic
load, the average control plane cost decreased approximately
by 46.94% and 9.82% as compared to DCP-SA and ESMLB,
respectively.

The future extension of this work includes the implementation
in a real testbed. Additionally, we plan to increase prediction
accuracy further. We also plan to modify CORE, under the
consideration of the placement of the controllers.
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