
Traffic-Aware Consistent Flow Migration in SDN

Ilora Maity, Student Member, IEEE Sudip Misra, Senior Member, IEEE,
and Chittaranjan Mandal, Senior Member, IEEE *

Abstract

In this paper, we present a traffic-aware consistent ap-
proach for flow migration in Software Defined Network-
ing (SDN). The proposed scheme considers heterogeneous
traffic to determine a consistent flow migration schedule.
In a large-scale network, majority of traffic flows are la-
tency sensitive. These flows change path frequently to
accommodate new traffic flows. The challenge is to re-
duce the time required to modify the flow-path of latency
sensitive flows. Existing solutions do not consider spe-
cific flow characteristics to decide a consistent traffic flow
migration schedule. In this work, we propose a coalition
graph game based strategy while prioritizing traffic flows
based on latency sensitivity. The proposed scheme signifi-
cantly reduces the migration duration of latency sensitive
traffic flows. In particular, the average traffic flow migra-
tion duration is 15.43% less than existing timed two-phase
update solution.

Keywords: Software Defined Networking (SDN), Flow
Migration, Latency, Network Traffic, Coalition Graph
Game.

1 Introduction

Software Defined Networking (SDN) separates control
logic from forwarding elements which makes it appropri-
ate for large-scale networks [1], [2]. The devices connected
to these networks are huge in number and generate a mas-
sive number of traffic flows. Majority of these flows are
short in size and latency sensitive [3]. Moreover, new traf-
fic flows are generated frequently and the existing flows
are required to migrate paths to accommodate these new
flows. Therefore, traffic flow migration is an important
aspect of network update in SDN [4]. In addition, com-
pleting traffic flow migration in minimal time is impor-
tant. However, the migration process should not disrupt
the consistency of the traffic flows [5].

During traffic flow migration, SDN controllers send up-
date packets to the required SDN switches to change flow-
path from an initial path to a final path and the switches
install new flow-rules accordingly. Consistent traffic flow
migration guarantees that the packets of a flow are either
handled by old rules or new rules, not both. Moreover, a

*The authors are with the Department of Computer Science
and Engineering, Indian Institute of Technology Kharagpur, India
(Email: {imaity, sudipm, chitta}@iitkgp.ac.in).

traffic flow is primarily classified into two categories — la-
tency sensitive and throughput sensitive. Typically, long-
lived traffic flows such as the flows involving VM migra-
tions, data center synchronization, and data backup are
throughput sensitive. On the other hand, traffic flows in-
volving web browsing, email sending, social networking,
or any other ephemeral flows are latency sensitive. The
number of latency sensitive traffic flows are more than
80% of the total volume of flows in the network [3]. Exist-
ing flow migration solutions [6], [7], [8] do not consider the
heterogeneous latency requirements of the traffic flows.
Therefore, there is a need for a traffic-aware and consis-
tent scheme for efficient migration of flows.

In this work, we propose a traffic flow migration scheme
for SDN, which prioritizes flows based on latency sensi-
tivity. The proposed approach for traffic-aware consistent
flow migration in SDN, named COSMOS, consists of two
primary modules — (a) coalition graph formulation, and
(b) consistent flow migration. Initially, COSMOS gener-
ates a coalition graph to identify related flows. The coali-
tions are extracted from the graph in the order of their
priorities. Thereafter, a feasible migration schedule is de-
termined, and respective controllers update corresponding
switches. This approach reduces the average waiting time
for latency sensitive flows during flow migration.

The primary contributions of our work are as follows:

� We formulate the utility value for each traffic flow
participating in the migration process. In addition,
we design a coalition graph game to determine the
traffic-aware flow migration schedule.

� We propose an algorithm to construct the coalition
graph and define the coalitions.

� We design an algorithm for consistent, latency sensi-
tive, and rule-space efficient traffic flow migration in
SDN.

Simulation results depict that COSMOS reduces the av-
erage migration duration of the traffic flows.

The remainder of this paper is organized as follows.
Section 2 discusses the existing approaches for traffic flow-
path update in SDN. In Section 3, we discuss the system
architecture and problem statement. Section 4 describes
the coalition graph game-based approach. Section 5 de-
picts the experimental results. Finally, Section 6 con-
cludes the proposed work and discusses directions for fu-
ture work.

1

2 RELATED WORK 2

2 Related Work

In this section, we discuss the existing literature related
to traffic flow migration in SDN. Reitblatt et al. [6] in-
troduced a two-phase update approach for ensuring con-
sistency. In this approach, the first phase updates inter-
nal switches and the final phase updates ingress switches.
Updated ingress switches install tags that contain the ver-
sion numbers to incoming packets so that packets are en-
tirely processed by a single version of rules. After the
exhaustion of all the old packets, a garbage collection
phase deletes the older rules. However, this approach
wastes rule-space due to the storage of two versions of
each rule for the entire flow migration duration. Canini
et al. [9] presented a transactional flow-path update policy
where either all updates are complete or none is initiated.
McGeer et al. [10] proposed a buffered update technique
which stores the incoming packets at the controller end
during an ongoing update. Additional flow-rules are in-
stalled in each switch in order to redirect packets to the
control plane. Mizrahi et al. [7] proposed a time-triggered
approach for flow update which specifies starting time for
each update phase. However, precise time synchroniza-
tion depends entirely on the characteristics of particular
switches. CURE [11] prioritizes switches based on work-
load and schedules update accordingly. This approach im-
plements a queueing scheme to ensure consistency. CURE
considers a control plane having a centralized controller.

Synthesis: From the exhaustive study of existing litera-
ture, it is evident that there exists a need for a consistent
flow migration scheme for SDN, which reduces migration
duration for latency sensitive traffic flows. Existing solu-
tion approaches do not consider the diverse traffic char-
acteristics of traffic flows. Moreover, an unplanned sched-
ule disrupts the operations of latency sensitive applica-
tions. Therefore, in this work, we consider flow-specific
requirements to generate a delay-aware traffic flow migra-
tion schedule for SDN.

3 System Model

In this section, we discuss the SDN architecture and the
problem statement for latency sensitive consistent update
in SDN. Table 1 summarizes the key notations used in
this work.

As shown in Figure 1, SDN involves heterogeneous de-
vices including sensors, actuators, and mobile devices.
These devices generate flows of data packets which are
transferred to SDN switches through gateways. The la-
tency sensitivity of a traffic flow is determined by the type
of applications for which the flow is generated. The exam-
ples of latency sensitive applications are financial trading
applications, online multiplayer games, and video confer-
encing applications.

SDN switches store packet forwarding instructions
as flow-rules in table like structures called flow-tables
[12]. Switches use Ternary Content Addressable Mem-

Table 1: Summary of key notations

Symbol Definition
C Set of controllers
S Set of switches
Rj Set of flow-rules of sj ∈ S
Rmax Rule storage capacity of sj ∈ S
lij Link between si and sj
wij Capacity of link lij
cij Load of link lij
F Set of traffic flows
α(fi) Latency sensitivity index of fi ∈ F
S(fi) Set of switches in the path of fi ∈ F before migration

F
′

Set of to-be-migrated traffic flows

E Set of edges in coalition graph

S
′
(fi) Set of switches in the path of fi ∈ F

′
after migration

Tfi Flow setup time of fi ∈ F
′

Nj Number of overlapping flows of fj ∈ F
′

ory (TCAM) to store the flow-rules. The flow-rules are
ternary strings of 0’s, 1’s, and *’s. The rule-space of each
switch is limited due to the high manufacturing cost of
TCAM. Each switch is managed by a controller which in-
stalls flow-rules for new traffic flows and updates existing
rules.

Figure 1: SDN Architecture

During traffic flow migration in SDN, controllers in-
sert new flow-rules into the switches in the new path and
delete old rules. Typically, large-scale networks require
guaranteed service with minimum latency. Therefore, a
flow migration schedule should ensure that all traffic flows
are migrated consistently. Flow-level consistency is main-
tained when the packets of a traffic flow follow either old
rules only or new rules only, after the initiation of network
update.

Let C and S denote the set of controllers and the set
of switches, respectively. The set of flow-rules for switch
sj ∈ S is represented as Rj . The data link between si and
sj is denoted by lij and its capacity is denoted by wij .
F denotes the set of existing traffic flows in the net-

work. A traffic flow fi ∈ F is denoted by a tuple
<src(fi), dest(fi), P (fi), S(fi), α(fi)>, where src(fi) de-
notes the source, dest(fi) is the destination, P (fi) is
the set of packets of f , S(fi) ⊂ S denotes the the set
of switches along the path of fi before migration, and
0 ≤ α(fi) ≤ 1 signifies the latency sensitivity index (LSI)
for fi. A high α(fi) indicates that fi is highly latency

3 SYSTEM MODEL 3

sensitive.
Let F

′ ⊂ F denote the set of to-be-migrated traffic
flows. A traffic flow fi is a member of F

′
if γ(sj) =

1,∃sj ∈ S(fi), and S(fi) 6= S
′
(fi), where S

′
(fi) is the set

of SDN switches in the new path of fi after migration.
We assume that the source and destination of a traffic
flow fi ∈ F

′
do not change after migration. Therefore,

S(fi) ∩ S
′
(fi) 6= φ.

Let us consider that the network update procedure for
traffic flow migration starts at time t0. After t0, a packet
is termed old if it is handled by a to-be-updated switch.
Otherwise, the packet is termed new. Therefore, the mi-
gration of a traffic flow fi ∈ F is consistent when an old
packet in P (fi) follows old path only and a new packet in
P (fi) follows new path only. We express consistent traffic
flow migration as:

Ψ(fi) =

{
1 if the migration of fi is consistent,

0 otherwise.
(1)

At t0, each switch in the new path receives an UPDATE
signal from its master controller. Therefore, the set of to-
be-updated switches are represented as:

γ(sj) =

{
1 if sj ∈ S received UPDATE signal,

0 otherwise.
(2)

The total setup time of a traffic flow fi is given by:

Tfi =

|S
′
(fi)|∑
k=1

τkγ(sk),∀fi ∈ F
′
, (3)

where τk is the average flow setup time of sk.

3.1 Illustrative Example

Figure 2 depicts an example for traffic flow migration in
SDN. We consider five switches s1, s2, s3, s4, and s5. In
addition, we consider two traffic flows f1 and f2. The old
and new paths for each traffic flow are depicted in the
figure as red dotted and green solid lines, respectively.
Therefore, γ(s2) = 1, γ(s4) = 1, and γ(s3) = 1 for the
migration of f1 and f2. We consider link capacity as 1
Gbps for all links. The bandwidths of f1 and f2 are 1
Gbps each. We consider three different scenarios.

Scenario 1 considers f1 as the traffic flow having the
highest latency sensitivity. Controller schedules the up-
date order as f1 → f2. Switches s2 and s4 send Packet-In
messages to the controller. For consistency, old packets
of f1 should be processed by s3 and new packets should
be processed by s4 before reaching the destination. More-
over, due to this update order the link l45 becomes con-
gested as it is part of both the new path of f1 and the old
path of f2.

For scenario 2, let f2 be the most latency sensitive traf-
fic flow. Controller schedules the update order as f2 → f1.

Figure 2: Illustrative Example

Switch s3 sends Packet-In message to the controller for
installation of new rules corresponding to the new path.
For consistency, old packets of f2 should be processed by
s4 and new packets should reach the destination directly.
Moreover, due to this update order, the link l35 becomes
congested as it is part of both the new path of f2 and the
old path of f1.

In scenario 3, f1 and f2 have the same latency sensi-
tivity. Therefore, if we update s2, s4, and s3 together
then we need to consider processing of the old packets
consistently.

So, we need to group correlated to-be-updated traffic
flows based on their latency sensitivity to avoid link con-
gestion and packet inconsistency. Therefore, we design
a coalition graph game which forms coalitions of traffic
flows to generate an optimal migration schedule.

3.2 Problem Formulation

The migration of a flow fi involves the update of each
switch sj in the set S

′
(fi) having γ(sj) = 1. Moreover,

the update of fi is consistent when the packets of fi follow
either new rules or old rules only, after the initiation of the
network update. In addition, majority of the traffic flows
in large-scale networks are latency-sensitive and are re-
quired to be updated within a short duration. Therefore,
it is required to design a consistent flow migration scheme,
which is aware of latency sensitivity of traffic flows and is
free from link congestion.

In this work, we formulate a coalition graph game with
non-transferable utility to minimize the total update com-
pletion time of the traffic flows in F

′
while maintaining

flow-level consistency. Here, the players of the game are
the to-be-migrated traffic flows. Each coalition Ak ⊂ F

′

denote the set of traffic flows {f1, f2, . . . , f|Ak|} which are
migrated simultaneously. Within a coalition, the traffic
flow having the highest LSI is termed as the coalition-
head. Therefore, a coalition-head has |Ak| − 1 children
nodes, which are termed as coalition members. A coali-
tion structure is a set of coalitions defined as:

4 COSMOS: THE PROPOSED SCHEME 4

VA = {A1, A2, . . . , AM},

where

M⋃
k=1

Ak = F
′
, Ai ∩Aj = φ, ∀i 6= j (4)

The controllers try to maximize the cumulative payoff
obtained from the utility functions of the coalitions. Let
U(Ai, VA) denote the utility value of a coalition Ai ∈ VA
and uj(.) denote the utility value of a player fj ∈ Ai.
The marginal utility of each traffic flow fj increases with
decrease in the migration duration of the flow. Mathe-
matically,

∂uj(.)

∂Tfj
< 0 (5)

The utility function uj(.) varies linearly with the LSI
and the number of overlapping flows of each flow so that
a high number of flows are migrated at a time depending
on their traffic characteristics. Therefore, we get:

∂uj(.)

∂α(fj)
> 0 and

∂uj(.)

∂Nj
> 0 (6)

Therefore, we utility function of a traffic flow fj as:

uj(.) = Nj

(
α(fj)−

Tfj
Tmax

)
, (7)

where Tmax is a constant denoting the maximum allow-
able duration for the migration of a traffic flow without
violating the quality of service (QoS) constraints. Nj is
the number of overlapping flows. The overlapping flows
of fj are the traffic flows in the coalition having at least
one link in the old (new) path that overlaps with a link
in the new (old) path of fj . Hence, the utility function
U(Ai, VA) is formulated as:

U(Ai, VA) =


∑

fj∈Ai

uj(.) if |Ai| > 1,

0 otherwise.
(8)

The total utility of all the coalitions in a coalition struc-
ture VA is given by:

U(VA) =

M∑
i=1

U(Ai, VA) (9)

Therefore, the coalition graph formulation is described
mathematically as:

Maximize
VA

U(VA) (10)

subject to

Ψ(fi) = 1,∀fi ∈ F
′
, (11)

Rj ≤ Rmax, ∀sj ∈ S
′
(fi),∀fi ∈ F

′
,

where γ(sj) = 1, (12)

Tfj ≤ Tmax,∀fi ∈ F
′
, (13)

cij ≤ wij ,∀si, sj ∈ S (14)

Equation (11) expresses the flow-level consistency con-
straint for all traffic flows in the network during up-
date. Equation (12) represents the capacity constraint
of switches, where Rmax is the rule storage capacity of a
switch. The rule storage capacity of a switch is defined
as the maximum number of flow-rules that can be stored
in the flow tables of the switch. In this work, we con-
sider homogeneous switches which have the same amount
of TCAM and rule storage capacity. Equation (13) en-
sures that the flow setup time for each traffic flow does
not exceed the maximum allowable flow migration dura-
tion. Equation (14) denotes the link capacity constraint
for all data links, where cij is the load of link lij .

The objective, however, is a combinatorial problem hav-
ing high complexity when the number of traffic flows in-
creases. Therefore, we design a heuristic algorithm for
solving the problem.

4 COSMOS: The proposed
scheme

In this section, we discuss the proposed scheme, COS-
MOS, in details. Based on the aforementioned coalition
graph game formulation, we construct a coalition graph
G = (F

′
, E), where F

′
is the set of to-be-migrated flows

and E is the set of edges that denotes dependency between
the to-be-migrated traffic flows. There exists an edge be-
tween fi ∈ F

′
and fj ∈ F

′
if fi is an overlapping flow of

fj . We extract the feasible coalitions one by one from the
coalition graph starting from the coalition containing the
coalition-head with the highest LSI. Finally, we propose a
consistent flow migration algorithm to migrate the traffic
flows.

4.1 Coalition Graph Formation

The to-be-updated traffic flows, which are the players of
the coalition graph game, form the coalition graph based
on the utility function defined in Equation (9). In this
game, each player is interested in finding the overlapping
flows in its coalition to improve its utility. Therefore,
we consider that the proposed coalition graph game is
hedonic, which implies that a player has a preference for
the choice of coalition. The preference relation is defined
as:

Definition 1 (Preference Relation). The relation
VA �F ′′ VB denotes that the way VA partitions F

′′
is

preferred to the way VB partitions F
′′

, where F
′′ ⊆ F ′

is
a set of players.

The coalitions are updated periodically based on merge
and split rules as follows:

Definition 2 (Merge Rule). Merge any set of coalitions

{A1, A2, . . . , Ak} where {
k⋃
i=1

Ai} �F ′′ {A1, A2, . . . , Ak},

4 COSMOS: THE PROPOSED SCHEME 5

F
′′

=
k⋃
i=1

Ai. Therefore, {A1, A2, . . . , Ak} →
k⋃
i=1

Ai.

Definition 3 (Split Rule). Split any set of coalitions
k⋃
i=1

Ai where {A1, A2, . . . , Ak} �F ′′ {
k⋃
i=1

Ai}, F
′′

=

k⋃
i=1

Ai. Therefore,
k⋃
i=1

Ai → {A1, A2, . . . , Ak}.

We propose the Coalition Graph Formation Algorithm
(CGFA), which uses merge and split rules to generate the
coalition graph.

Algorithm 1 Coalition Graph Formation Algorithm
(CGFA)

INPUT: F
′

OUTPUT: {E, VA}
PROCEDURE:
1: for all fi ∈ F

′
do

2: Ai ← Ai ∪ {fi}
3: Ai head← fi . Coalition head

4: VA ← VA ∪ {Ai} . Coalition structure

5: end for
6: do
7: Sort VA in descending order of the α of the coalition

heads
8: Store the ordered list of coalitions in VA

9: V initial
A ← VA

10: for all Aj ∈ VA do
11: Merge or split Aj using Definition 2 and Definition

3
12: if fk ∈ Aj overlaps with fl ∈ Aj and (fk, fl) 6∈ E

then
13: E ← E ∪ (fk, fl)
14: end if
15: Select the flow with the highest LSI as Aj head and

sort Aj in descending order of LSI of the member flows
16: end for
17: Update VA

18: while VA 6= V initial
A

19: return {E, VA}

Algorithm 1 describes the proposed algorithm, i.e.,
CGFA. Initially, each traffic flow forms an individual
coalition. CGFA sorts the coalitions in descending or-
der based on the LSI of the coalition-heads. Next, new
coalitions are formed using Definitions 2 and 3. For each
coalition, the traffic flow having the highest LSI is marked
as the coalition-head. This process is repeated until no
further update of VA is possible.

Figure 3 shows an example of coalition graph genera-
tion process for a network having 11 switches and 5 traffic
flows. For this example, we consider the Sprint topol-
ogy [13] as the network topology. Figure 4 depicts the
Sprint topology. In this example, F

′
= {1, 2, 3, 4, 5}, E =

{(5, 1), (2, 1), (3, 4)}. The possibility of parallel edges be-
tween nodes 3 and 4 is eliminated by line 12 of Algorithm
1. Initially, each traffic flow forms a coalition with utility
0 according to Equation (8). The sets of to-be-updated

switches for the five traffic flows are {4, 5, 6, 7}, {4, 0, 7},
{7, 6}, {6, 7}, and {8, 7}, respectively. Let the average
flow setup time for each switch is 1 ms and Tmax = 10.
Therefore, according to merge and split rules, the players
in set F

′
are divided into two coalitions {1, 2, 5} having

utility 2(0.6 − 4
10) + 2(0.4 − 3

10) + 2(0.3 − 2
10) = 0.8 and

{3, 4} having utility 1(0.8− 2
10) + 1(0.8− 2

10) = 1.2. The
coalition-heads for coalitions {1, 2, 5} and {3, 4} are 1 and
4, respectively. The LSI of coalition-heads 1 and 4 are 0.6
and 0.8, respectively. Therefore, the ordered coalition-
structure is VA = {{3, 4}, {1, 2, 5}}.

Figure 3: Coalition Graph Generation Example

4.2 Consistent Flow Migration

Algorithm 2 describes the process of traffic flow migration.
The Consistent Flow Migration Algorithm (CFMA) se-
lects the coalitions from VA one-by-one. Initially, CFMA
processes the old packets in the selected coalition and
starts queuing the new packets at the switches. This step
ensures packet-level consistency. After processing the all
the old packets, new rules are installed and old rules are
deleted. This step addresses rule-space constraint of the
switches as only a single version of a flow-rule is stored at
a time. After the modification of all the required rules,
CFMA processes the queued packets.

Algorithm 2 Consistent Flow Migration Algorithm
(CFMA)

INPUT: VA
OUTPUT: F p . Set of migrated traffic flows

PROCEDURE:
1: for all Ai ∈ VA do
2: for all fj ∈ Ai do
3: Process old packets
4: Queue new packets
5: end for
6: for all fj ∈ Ai do
7: Install new rules
8: Delete old rules
9: end for

10: for all fj ∈ Ai do
11: Process queued packets
12: F p ← F p ∪ {fj}
13: end for
14: end for
15: return F p

5 PERFORMANCE EVALUATION 6

Figure 4: Sprint Topology

Table 2: Simulation parameters

Parameter Value
Topology Sprint [13]
Number of traffic flows 200− 1000
Number of switches 11
Number of controllers 3
Maximum controller-to-switch delay 4.865 ms [11]
Maximum end-to-end network delay 0.262 ms [11]
Maximum time interval between dis-
patch of two consecutive update mes-
sages

5.24 ms [11]

Packet arrival rate per switch 0.005−0.025 mpps [11]
Average packet service rate per
switch

0.03 mpps [11]

Tmax 1− 250 ms [14]

5 Performance Evaluation

5.1 Simulation Settings

We evaluate the performance of COSMOS by implement-
ing a discrete event simulator in MATLAB. We use the
Sprint topology [13], which is shown in Figure 4. The
Sprint topology has 11 switches and 18 links. Table 2 rep-
resents the simulation parameters. The number of traffic
flows in the network is varied between 200 and 1000. For
each flow, we select the source-destination pair randomly.

5.2 Benchmark schemes

We compare the performance of COSMOS with three
benchmark schemes — two-phase update [6], timed two-
phase update [7], and Greedy approach. The first two
benchmark schemes consider no flow priority and sched-
ule all traffic flows together for migration. The two-phase
update scheme updates the ingress switches after updat-
ing the internal switches. In the timed two-phase update,
the update of each phase starts at a pre-determined time
instant. In both of these approaches, all flows complete
migration only when all the switches are updated. In
the Greedy approach, flows with similar LSI values are
grouped together and the groups are migrated one-by-one
according to the average LSI values of the groups start-
ing with the group having the maximum average LSI. On
the other hand, COSMOS considers flow-specific QoS re-
quirements while preparing the migration schedule and
migrates the flows consistently as described in CFMA.

5.3 Performance Metrics

We consider the following metrics to analyze the perfor-
mance of COSMOS:

� Flow migration duration: The migration duration of
a traffic flow is the interval between migration start
time and migration end time of the corresponding
coalition.

� Queueing delay : The queueing delay of a packet is
its waiting time in the switch queue.

� QoS violated flows: QoS violated flows are traffic
flows which do not satisfy link capacity constraint
stated in Equation (14) or has a migration comple-
tion time greater than Tmax.

 0

 50

 100

 150

 200

2 4 6 8 10

Fl
ow

 M
ig

ra
tio

n
D

ur
at

io
n

(m
s)

Number of Flows (x 100)

 Two-phase Update
 Timed Two-phase Update

 Greedy
 COSMOS

(a) Effect of Traffic Load

 0

 50

 100

 150

 200

0.2 0.4 0.6 0.8 1

Fl
ow

 M
ig

ra
tio

n
D

ur
at

io
n

(m
s)

Latency Sensitivity Index

 Two-phase Update
 Timed Two-phase Update

 Greedy
 COSMOS

(b) Effect of LSI

Figure 5: Flow Migration Duration

5.4 Result and Discussion

5.4.1 Flow Migration Duration

From Figure 5a, we observe that the average flow mi-
gration duration for COSMOS is 55.17% and 15.43% less
than the two-phase update and timed two-phase update,
respectively. This is because, COSMOS migrates the
flows incrementally, resulting in reduced waiting time for
each traffic flow. However, the average flow migration du-
ration for COSMOS is higher than the Greedy approach
because COSMOS estimates overlapping flows and sched-
ules overlapping flows together to address the link capac-
ity constraint. Figure 5b depicts the effects of LSI on the
average flow migration duration for 1000 flows. We ob-
serve that the average flow migration duration for both
COSMOS and Greedy decreases as the latency sensitivity

 0

 20

 40

 60

 80

 100

2 4 6 8 10

A
ve

ra
ge

 Q
ue

ue
in

g
D

el
ay

 (
m

s)

Number of Flows (x 100)

 Two-phase Update
 Timed Two-phase Update

 Greedy
 COSMOS

Figure 6: Queueing Delay

 0

 2

 4

 6

 8

 10

2 4 6 8 10Q
oS

 V
io

la
te

d
Fl

ow
s

(%
)

Number of Flows (x 100)

 Two-phase Update
 Timed Two-phase Update

 Greedy
 COSMOS

Figure 7: QoS Violated
Flows

6 CONCLUSION 7

of migrating traffic flows increases. However, the change
of flow latency sensitivity has no effect on the migration
duration of benchmark schemes.

5.4.2 Queueing Delay

From Figure 6, we infer that average queueing delay for
COSMOS is 65.84%, 18.44%, and 1.08% less than the
two-phase update, timed two-phase update, and Greedy
approach, respectively. This result implies that although
COSMOS queues packets for maintaining consistency, the
packets are processed with a consistent rate.

5.4.3 QoS Violated Flows

From Figure 7, we observe that the number of QoS vi-
olated flows in COSMOS is 76.34% less than the same
using two-phase update, 53.50% less than the same using
timed two-phase update, and 18.90% less than the same
using Greedy approach. This is due to the fact that COS-
MOS migrates the traffic flows in order of their latency
sensitivity so that each flow fulfills the specific QoS de-
mand. Additionally, COSMOS considers the link capacity
constraint by scheduling the overlapping flows together.
On the other hand, the two-phase update schemes com-
plete migration only after all ingress switches are updated
in the last phase. In the Greedy approach, the number
of QoS violated flows increases with the number of flows
as higher number of overlapping flows increases the oc-
currence of link congestion. Therefore, the benchmark
schemes are not able to meet QoS demands in realistic
networks.

6 Conclusion

In this paper, a traffic-aware scheme for consistent flow
migration in SDN was presented. A coalition graph game
was designed to divide the traffic flows into multiple coali-
tions based on heterogeneous latency sensitivity of the
flows. We proposed a priority based approach to migrate
the traffic flows in each coalition consistently. The pro-
posed scheme reduces the average flow migration dura-
tion by 15.43% and the number of QoS violated flows by
53.50% compared to timed two-phase update.

The future extension of this work involves addressing
the influence of different network topologies, including
data center networks (DCNs) on traffic flow migration.
We also plan to modify our scheme considering loss sen-
sitive and jitter sensitive traffic flows along with latency
sensitive flows.

References

[1] A. Mondal, S. Misra, and I. Maity, “Buffer Size Eval-
uation of OpenFlow Systems in Software-Defined
Networks,” IEEE Systems Journal, pp. 1–8, 2018,
doi: 10.1109/JSYST.2018.2820745.

[2] S. Bera, S. Misra, and M. S. Obaidat, “Mobility-
Aware Flow-Table Implementation in Software-
Defined IoT,” in Proc. IEEE GLOBECOM, Dec
2016, pp. 1–6.

[3] T. Benson, A. Akella, and D. A. Maltz, “Network
Traffic Characteristics of Data Centers in the Wild,”
in Proc. ACM SIGCOMM. New York, NY, USA:
ACM, 2010, pp. 267–280.

[4] A. Basta, A. Blenk, S. Dudycz, A. Ludwig, and
S. Schmid, “Efficient Loop-Free Rerouting of Multi-
ple SDN Flows,” IEEE/ACM Trans. Netw., vol. 26,
no. 2, pp. 948–961, Apr. 2018.

[5] S. Vissicchio, L. Vanbever, L. Cittadini, G. G. Xie,
and O. Bonaventure, “Safe Update of Hybrid SDN
Networks,” IEEE/ACM Trans. Netw., vol. 25, no. 3,
pp. 1649–1662, Jun. 2017.

[6] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker, “Abstractions for Network Update,”
in Proc. ACM SIGCOMM, New York, NY, USA,
2012, pp. 323–334.

[7] T. Mizrahi, E. Saat, and Y. Moses, “Timed Con-
sistent Network Updates in Software-Defined Net-
works,” IEEE/ACM Trans. Netw., vol. 24, no. 6, pp.
3412–3425, Dec. 2016.

[8] P. T. Congdon, P. Mohapatra, M. Farrens,
and V. Akella, “Simultaneously Reducing Latency
and Power Consumption in OpenFlow Switches,”
IEEE/ACM Trans. Netw., vol. 22, no. 3, pp. 1007–
1020, Jun. 2014.

[9] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid,
“Software Transactional Networking: Concurrent
and Consistent Policy Composition,” in Proc. HOT
SDN. New York, NY, USA: ACM, 2013, pp. 1–6.

[10] R. McGeer, “A Safe, Efficient Update Protocol for
Openflow Networks,” in Proc. HOT SDN, New York,
NY, USA, 2012, pp. 61–66.

[11] I. Maity, A. Mondal, S. Misra, and C. Mandal,
“CURE: Consistent Update With Redundancy Re-
duction in SDN,” IEEE Trans. Commun., vol. 66,
no. 9, pp. 3974–3981, Sep. 2018.

[12] “OpenFlow Switch Specification (Version 1.5.1):
Open Networking Foundation,” Mar. 2015.

[13] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and
M. Roughan, “The Internet Topology Zoo,” IEEE J.
Sel. Areas Commun., vol. 29, no. 9, pp. 1765–1775,
Oct. 2011.

[14] S. F. Abedin, M. G. R. Alam, S. M. A. Kazmi,
N. H. Tran, D. Niyato, and C. S. Hong, “Resource
Allocation for Ultra-Reliable and Enhanced Mobile
Broadband IoT Applications in Fog Network,” IEEE

REFERENCES 8

Trans. Commun., vol. 67, no. 1, pp. 489–502, Jan.
2019.

