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Abstract—In this paper, we propose a mobility-aware task
offloading scheme, named as Soft-VAN, with an aim to minimize
task computation delay in a software-defined vehicular network.
The proposed scheme consists of two phases — fog node selection
and task offloading. In the first phase, we formulate an integer
linear program (ILP), and solve the problem to get optimal
number of fog nodes required for a given network. In the
task offloading phase, we formulate an optimization problem to
minimize overall delay in task computation, while considering
associated constraints. As finding optimal solution to the problem
is NP-hard, we propose a greedy heuristic approach in two
phases — task offloading and computed task downloading — to
solve it in polynomial time. The greedy solution for offloading
takes into account network delay, flow-rule capacity, and link
utilization. On the other hand, the solution for computed task
downloading considers vehicle’s mobility in addition to the
parameters associated with the offloading decisions. Experimental
results show that the proposed scheme, Soft-VAN, is capable of
enhancing the performance approximately by 30%, 45%, and
50% in terms of delay compared to state-of-the-art schemes
— Detour, DAGP, and SD2O, respectively.

Index Terms—Software-defined networks, VANET, Fog com-
puting, Task offloading, Optimization

I. INTRODUCTION

The rapid growth in vehicular applications supported by next
generation networks demands unprecedented network capacity
and stringent quality of service (QoS) in connected vehicular
networks [1]. To meet such requirements, vehicular networks
should support advanced communication technologies and
dynamic data forwarding mechanisms in real-time, in order to
improve safety and efficiency, and reduce traffic congestion in
the transportation system. Recent studies on edge computing
suggest that vehicular tasks can be offloaded to nearby fog
computing facilities (such as road-side units) to meet the
stringent QoS requirements of vehicular applications with
heavy computations and hard-deadlines [2], [3]. However, the
current best-effort Internet technology limits the flexibility of
dynamic decision making on task offloading [4]. To address
the limitations, researchers proposed task offloading schemes
in software-defined networks (SDN) [5], [6], in which a
centralized controller takes task offloading decisions. Further,
the software-defined approach allows the controller to manage
the network in a flexible and simplified manner. Consequently,
in this work, we focus on software-defined task offloading in
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a vehicular network in the context of fog computing. Further,
the compute, storage and networking resources in the network
are deployed at a few selected road-side units (RSUs), known
as fog nodes, while providing abstracted global view of the
entire network.

In SDN, rule-based packet forwarding is followed at the
devices in contrast to the traditional networks. The existing
SDN-based approaches [5], [6] considered the delay involved
in task offloading from an end-device to a fog node, and over-
looked the complexity involved in downloading the computed
task from the fog node to end-device from the context of SDN.
Further, presence of mobile devices in the network is a crucial
factor to be considered while offloading tasks to fog nodes.
Figure 1 depicts a software-defined task offloading scenario
and associated complexities/issues present in a vehicular net-
work. As shown in Figure 1(a), a vehicle offloads its task to
nearby RSU. On receiving the offloading request, the RSU
generates a Packet-In to the controller with packet meta-
data [7]. According to the Packet-In, the controller selects
the forwarding path and places flow-rules at the associated
RSUs/fog nodes. Once the task is computed at the selected
fog node, it generates another Packet-In to the controller
with packet meta-data, as depicted in Figure 1(b). Similar to
the offloading, the controller decides the path for downloading
the computed task and places flow-rules. However, due to the
mobility, the vehicle is no longer associated with the previous
RSU (RSU 1 in this case, refer to Fig. 1(b)). As a result,
RSU 1 generates another message to the controller as ‘Host
Not Found’. Finally, the controller decides the correct path
based on vehicle’s association to RSU, as depicted in Figure
1(b), Step 4. Consequently, the computed task experiences
additional control overhead and delay, which may violate
required QoS of the application. In contrast, as depicted in
Figure 1(c), the issues with downloading the computed task
can be avoided by placing flow-rules in a proactive manner,
while considering vehicle’s mobility in the network.

Motivated by the above mentioned facts, in this work, we
propose a mobility-aware task offloading scheme in software-
defined vehicular networks. The proposed scheme consists of
two phases — fog node selection and task computation. In
the first phase, we formulate an ILP to select optimal number
of RSUs required to be selected a fog nodes for a given
network. In the second phase, we formulate a non-linear opti-
mization problem to minimize delay in task computation, while
considering associated constraints. As the task computation
problem is NP-hard to solve, we divide the problem into two
sub-problems — task offloading and computed task down-
loading. We propose two greedy-heuristic approaches for task
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(a) Task offloading in SDN (b) Existing Work: computed task downloading (c) Proposed Work: computed task downloading

Fig. 1: Motivating scenario: a) task offloading in software-defined vehicular network; b) Issues due to mobility of vehicles and
reactive approach; c) Proactive scheme (proposed)

offloading and computed task downloading, while considering
vehicles’ mobility in the network. Extensive experiment results
show that the proposed task offloading scheme outperforms the
existing schemes in terms of delay and control overhead in the
network. In brief, the contributions are as follows:
• We formulate an ILP-based optimization problem to se-

lect optimal number of fog nodes for a given network,
in order to minimize capital expenditure and operational
cost, i.e., CAPEX and OPEX, in the network.

• We formulate a non-linear optimization problem to min-
imize task computation delay, while considering associ-
ated constraints. As the problem is NP-hard, we propose
greedy heuristic approaches — delay minimization in task
offloading and computed task downloading — to solve the
problem.

• Experimental results show that the proposed scheme is
capable of minimizing task computation delay by 30%,
45%, and 50% compared to existing schemes — Detour
[6], DAGP [5], and SD2O [8], respectively.

The rest of the paper is organized as follows. Section II
discusses existing works on task offloading and their limi-
tations. Section III presents the selection of fog nodes and
detailed system model for a given network. Section IV presents
the optimization problem for task offloading in software-
defined vehicular network. Section V presents the proposed
task offloading scheme to minimize the task computation
delay. The performance evaluation of the proposed scheme
is presented in Section VI. Finally, Section VII concludes the
work with some future research directions.

II. RELATED WORK

In this section, we discuss state-of-the-art works, which fo-
cused on task offloading in order to minimize task computation
delay [1], [5], [6], [8]–[16]. Recently, Tan and Hu [1] proposed
an edge caching and computing scheme, while considering
vehicle’s mobility. They showed that task offloading to the
edge devices is useful in a vehicular network in order to
minimize associated cost. Yousefpour et al. [10] studied the
task offloading problem while considering benefits of inter-fog
communication and load sharing to minimize service delay.
Similarly, Jiang and Tsang [11] proposed delay-aware task
offloading scheme in a shared fog network. The authors con-
sidered three types of tasks – delay-sensitive, delay-tolerant,

and delay-insensitive. The delay-sensitive tasks are prioritized
over the delay-tolerant and delay-insensitive tasks.

Huang et al. [12] proposed a mobile edge computing (MEC)
framework for SDN-based LTE networks. The proposed frame-
work abstracts radio API to collect network information, such
as topology, bandwidth, and signal strength, from radio access
network (RAN). Tran and Pompili [13] studied task offloading
and resource allocation as a joint optimization problem. The
authors formulated two sub-problems – task offloading and
resource allocation – in order to minimize overall service
delay. Huang et al. [15] studied a vehicle-to-vehicle (V2V)
data offloading scheme while utilizing the benefits of SDN. In
such a scheme, the centralized SDN controller manages end-to-
end connection between two communicating vehicles. Further,
Li et al. [16] proposed a mobile edge computing framework
based on SDN to improve scalability and response time of
the network. Chen and Hao [5] proposed a task offloading
scheme in software-defined mobile edge computing network,
in order to minimize task computation delay. Recently, Misra
and Saha [6] proposed a similar approach for task offloading in
software-defined fog network. In contrast to the other works,
the authors considered that a fog node may be situated at multi-
hop distance from end-device.

Synthesis: Table I summarizes the existing works. Detailed
analysis of the existing works reveals that they either consid-
ered one-hop distance between end-device and fog node or
overlooked the impact of mobility of the end-devices, while
offloading tasks in a software-defined network. Further, delay
involved in downloading the computed task from fog node to
vehicle in a multi-hop scenario is an important concern to be
considered, in order to avoid additional control overhead and
delay, as depicted in Figure 1. Consequently, we propose a
task offloading scheme in software-defined vehicular network,
while considering multi-hop path and impact of mobility of
the vehicles.

III. SYSTEM MODEL

We consider a software-defined architecture of fog-based
vehicular network consisting of a sets of RSUs, fog nodes,
and vehicles, as depicted in Figure 2. The vehicular network
is modeled as a directed graph G = (N ,L), where N and
L denote the set of all RSUs and links between the RSUs,
respectively. Further, the set of RSUs is denoted as N =



3

TABLE I: Differences between the proposed and state-of-the-art works

Work Energy Delay-
offload

Delay-
download

Multi-
hop

Mobility SDN Flow-
rule

Tan and Hu [1] 3 7 7 7 3 7 7

Yousefpour et al. [10], Jiang and Tsang [11] 3 7 7 7 7 7 7

Tran et al. [13] 3 3 7 7 7 7 7

Huang et al. [12], Chen and Hao [5] 3 3 7 7 7 3 7

Li et al. [16], Huang et al. [15] 7 3 7 3 3 3 7

Misra and Saha [6] 3 3 7 3 7 3 3

Soft-VAN (Proposed scheme) 3 3 3 3 3 3 3

Fig. 2: Software-defined architecture of fog-based VANET

{N1, N2, . . . , Nn}, n ∈ Z+. The set of links is represented as
L = {(i, j),∀i,∀j ∈ N , i 6= j}. Further, the set of vehicles in
the network is represented as V = {v1, v2, . . . , vn}, n ∈ Z+.
In the subsequent sections, we discuss the selection of fog
nodes and detailed system model considered in this work.

A. Selection of Fog Nodes

For a given network G, our objective is to select optimal
number of fog nodes, which is denoted by a set F , from the
set of all RSUs N . We consider hop-count to select optimal
number of fog nodes in the network. In other words, for dense
fog node deployment, hop-count between an RSU and at least
one fog node can be considered as one. Whereas for sparse
deployment of fog nodes, hop-count between fog node and
RSU is large. Accordingly, we formulate an ILP to select
optimal number of RSUs that need to be configured as fog
node as follows:

Minimize
|N |∑
j=1

wj

subject to
∑
j

βhi,j ≥ 1,∀i ∈ N , (1)

βhi,j ≤ wj ,∀i and j ∈ N (2)

where wj denotes whether jth RSU is selected as a fog node.
Therefore, the optimization problem determines minimum
number of RSUs required to be deployed as fog nodes in the
network. In other words, the optimization problem expresses
the selection of optimal number of RSUs that need to be
deployed as fog nodes in the network, which is unknown

a priori. Equation (1) ensures that there exists at least one
fog node for each RSU within the desired hop-count h1.
βhi,j captures the availability of such fog node from an RSU.
Mathematically,

βhi,j =


1, if there exists a fog node

from RSU within hop-count h
0, Otherwise

(3)

Equation (2) restricts on the number of selected fog nodes in
order to minimize the overall objective function. We solve this
optimization problem using existing ILP solver2. Therefore,
the fog nodes are the subset of RSUs having additional task
processing capacity. Consequently, the set of fog nodes is
represented as F = {F1, F2, . . . , Fm}, m ≤ n. We denote
the set of general RSUs as R = {R1, R2, . . . , R|N |−|F|}.

It is noteworthy that a vehicle can compute its task locally or
can offload to nearby RSU, while considering associated delay
and energy consumption. A task, θ, associated with a vehicle
v ∈ V , is represented as a tuple of task size, sv , and CPU
cycles required to compute the task, wv . Mathematically, a task
is represented as θ = {sv, wv}. Therefore, the set of tasks from
all vehicles is represented as Θ = {θ1, θ2, . . . , θn}, n ∈ Z+.
Similarly, a computed task is denoted as θ

′
= {s′v}, where s

′

v

denotes the data size after computation. In subsequent sections,
we discuss the delay and energy consumption associated with
local computation and offloading a task.

B. Delay Model

The delay associated with task computation is calculated
as the delay involved in local computation and offloading, as
described below.

1) Delay in Local Computation: Delay associated with lo-
cal computation is mathematically represented as ∆loc

θ = wv
ζlocv

,
where ζlocv denotes the task computation capacity of a vehicle
v ∈ V .

2) Delay in Offloading: In contrast to the local computa-
tion, delay in task offloading depends on delay involved in
task uploading and downloading the computed task. Further,
delay in uploading a task comprises of transmission delay,
propagation delay, queuing delay, and processing delay. On
the other hand, the delay involved in downloading a computed
task comprises of propagation delay and transmission delay.

1The value of h is user-defined and application-specific.
2https://www.gnu.org/software/glpk/

https://www.gnu.org/software/glpk/
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We present each of these delay models associated in task
offloading.

A vehicle transmits the task to nearby RSU/fog. Therefore,
the transmission delay for task offloading is calculated as
∆tran
θ = sv

rv,i
, v ∈ V, i ∈ N , where rv,i denotes the upload

data rate between vehicle v and RSU/fog i. Mathematically,
the upload data rate is calculated as rv,i = Blog2(1 +
pvgv,i/(σ

2 + Iv,i)), where B denotes the channel bandwidth,
and pv and σ2 denote the transmission power and noise power
of the vehicle, respectively. The symbols gv,i and Iv,i denote
the channel gain and interference power between the vehicle
and RSU/fog, respectively. Each offloaded task experiences
a propagation delay from RSU to fog node at which the
task is finally computed. Mathematically, it is represented as
∆prop
θ =

∑
(i,j)∈L δi,jx

θ
i,j , where δi,j denotes the propagation

delay of a link (i, j) ∈ L, and xθi,j denotes whether link
(i, j) is selected for offloading task θ. Further, offloaded tasks,
θ ∈ Θ, arrive at each fog node following different paths.
Therefore, queuing delay at a fog node depends on task arrival
and execution rates of the fog node. It is noteworthy that
a task can be offloaded from a vehicle and an intermediate
RSU. Therefore, the task arrival rate at a particular fog node
is modeled as Poisson process [17]. Consequently, task arrival
rate at a fog node j ∈ F is mathematically denoted as
αj = 1

T

∑
θ∈Θ

∑
i∈R x

θ
i,j , where T denotes the total time

period, and xθj is a binary variable used to denote whether
fog j is selected to serve task θ. Considering multi-threaded
model, the queuing delay experienced by the task θ at the fog
node j is mathematically represented as ∆que

θ = 1
εj−αj [18],

where εj and αj denote the task execution and arrival rate at
the fog node, respectively. Processing delay experienced by
the task θ at the fog node depends on the size of the task and
the processing capacity of the fog node. Mathematically, it is
denoted as ∆proc

θ =
∑
θ svx

θ
j

ζj
, where ζj denotes the processing

capacity of the fog node.
Similarly, each computed task experiences propagation and

transmission delay. The propagation delay, ∆prop

θ′
, depends on

the link delay through which the computed task is sent back
to the vehicle. On the other hand, transmission delay between
vehicle and edge RSU/fog, to which the vehicle is associated
with, depends on the transmission power of the RSU/fog.
It is noteworthy that the transmission delay for computed
task downloading is negligible as transmission power and
channel bandwidth is high for downloading [5]. However, the
transmission delay for task offloading is considered. Therefore,
the total delay involved in task offloading is represented as
∆off
θ = (∆que

θ + ∆tran
θ + ∆prop

θ + ∆proc
θ + ∆prop

θ′
).

C. Energy Consumption Model

We adopt the energy consumption of vehicles for task of-
floading from the existing works [5], [13]. Energy consumption
for local computation depends on the CPU cycles required to
complete the task. Mathematically, it can be represented as
Elocv = σvwv , where σv denotes the power coefficient of the
vehicle v ∈ V . On the other hand, energy consumption of
a vehicle related to task offloading depends on the transmis-
sion power, pv , task size, sv , and upload data rate between

the vehicle and RSU or fog, rv,i, and it is represented as
Eoffv = pvsv

rv,i
, i ∈ N .

IV. PROBLEM FORMULATION

The objective is to select optimal fog node to offload a
task, so that overall delay associated with task offloading
and computed task downloading is minimized. The overall
optimization problem is mathematically formulated as follows:

Minimize
yθ,xθi,j ,x

θ
j ,x

θ
′
i,j

∑
θ∈Θ

[ task offloaded︷ ︸︸ ︷
yθ∆

off
θ +

task computed locally︷ ︸︸ ︷(
1− yθ

)
∆loc
θ

]
s. t.∑

θ∈Θ

wvx
θ
i,j +

∑
θ′∈Θ′

s
′

vx
θ
′

i,j ≤ Ci,j ,∀(i, j) ∈ L, v ∈ V (4)

∑
θ∈Θ

svx
θ
j ≤ ζj ,∀j ∈ F , v ∈ V (5)

∑
θ∈Θ

rθi +
∑
θ′∈Θ′

rθ
′

i ≤ Rmaxi ,∀i ∈ N (6)

(1− yθ)Elocv < Eavlv and yθEoffv < Eavlv (7)

In the optimization problem, Equation (4) ensures that the link
utilization is always less than or equal to the link capacity.
Equation (5) denotes that the assigned tasks to a fog node
for processing is always within the capacity of the fog node.
Equation (6) ensures that number of flow-rules present at the
RSUs and fog nodes is always less than or equal to their
maximum flow-rule capacity. Further, Equation (7) denotes
that the energy consumed in local computation and offloading
is always less than the available energy of the vehicle. yθ is
a binary variable used to denote whether a task is computed
locally or offloaded to a fog node. Mathematically,

yθ =

{
1, if task is offloaded
0, if task is computed locally

The above mentioned delay optimization problem is a non-
linear programming problem, and it is NP-hard [19].

V. PROPOSED TASK OFFLOADING SCHEME

To solve the problem in polynomial time, we divide the
optimization problem into two sub-problems — task offload-
ing and computed task downloading. In the task offloading
problem, we propose a greedy heuristic approach to decide
whether to offload the task and to select optimal fog node if
the task is offloaded. On the other hand, we propose another
greedy heuristic approach for selecting the path for download-
ing computed task, while considering vehicle’s mobility and
associated RSU.

We redefine the decision variable yθ to decide whether to
offload a task as follows:

yθ =

1, if ∆off
θ −∆loc

θ

∆off
θ

≤ 0

0, otherwise
(8)

where yθ is always 1 when the delay in local computation is
more than the delay in offloading. Further, we define a cost
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function for selecting a fog node to which the task has to be
offloaded as follows:

Cfogθ,j = α∆que
j + (1− α)

wv
ζj

(9)

where α is a predefined constant to denote relative importance
of queuing delay and processing delay. In this work for
experiment, we give equal importance on queuing delay and
processing delay, i.e., α = 0.5. We define another cost function
to select path through which the task has to be offloaded to
the selected fog node as follows:

Clinki,j = βprop
δi,j

max
i,j

δi,j
+ βlink

Lutili,j

Li,j
+ βrule

Rutilj

Rmaxj

(10)

where Lutili,j and Rutilj denote the link- and rule utilization,
and Li,j and Rmaxj denote the link capacity and maximum rule
capacity, respectively. Constants βprop, βlink, and βrule denote
the relative importance of propagation delay, link utilization,
and rule utilization, respectively. It is noteworthy that the
propagation delay, link utilization, and rule utilization are
normalized, in order to get the forwarding path cost. We
also give equal importance on these constants. Algorithm 1

Algorithm 1 Algorithm for task offloading
Inputs: Set of RSUs, R; Set of fog nodes, F ; Set of links L,

Set of link-delays, D
Output: Selection of fog node j ∈ F for offloading task θ ∈

Θ
1: for task θ ∈ Θ do
2: Calculate yθ according to Equation (8)
3: if yθ == 1 then
4: for fog node j ∈ F do
5: Calculate Cfogθ,j according to Equation (9)

6: Select fog node k = arg min
j

Cfogθ,j

7: Calculate path P to offload task θ to fog node k
according to Equation (10)

8: else
9: Compute task θ locally

presents the proposed greedy algorithm for task offloading.
For downloading the computed task from fog node to

vehicle, optimal path is required to be selected, in order to
minimize the propagation delay, as mentioned in the optimiza-
tion problem. Further, vehicle’s mobility also needs to be con-
sidered, while selecting the downloading path. Therefore, the
SDN controller decides the downloading path from fog node to
the associated RSU3, after predicting location of the vehicle.
In our previous work [20], we showed that order-k Markov
predictor is useful to predict locations of mobile nodes, in
order to control end-device and access-point association in a
centralized manner. We adopt a similar approach to predict
locations of vehicles in the network, which is briefly discussed
in this paper.

The location predictor calculates the probability of hand-off
that will occur in the next ∆ time period, where ∆ = (∆prop

θ +

3The vehicle is associated with an RSU.

∆que
θ + ∆proc

θ ). Further, the predictor calculates conditional
probability that the vehicle will move to a location s within
∆ time after the current elapsed time t. Consequently, for a
given location context c and elapsed time t, the probability of
each vehicle moving to each possible location s within ∆ time
is calculated as follow:

P (s|c, t) = P (s)Ps(t ≤ z < t+ ∆|c, t) (11)

where P (s) is the transition probability of every possible next
location s, which can be calculated as follows:

P (st+∆ = s|H) ≈ P̂ (st+∆ = s|H) =
N(cs,H)

N(c,H)
(12)

where N(cs,H) denotes the number of occurrences of cs
in the movement history set H. Accordingly, the Markov
predictor predicts the most likely location s will be visited
at t+ ∆ time as follows:

st+∆ = arg max
s∈S

(P (st+∆ = s)) (13)

The SDN controller decides the RSU to be associated with the
vehicle based on the predicted location st+∆. It is noteworthy
that the association between RSU and vehicle can be controlled
in a centralized manner using SDN framework [21]. Therefore,
the controller determines path for downloading computed
task from the selected fog node (refer to Algorithm 1) to
the associated RSU at t + ∆ time. Algorithm 2 presents
the proposed downloading path selection scheme. It is also
noteworthy that both the Algorithms 1 and 2 are executed for
all vehicles, i.e., for all tasks, in the network.

Algorithm 2 Algorithm for selecting downloading path
Inputs: Movement history set, H; Set of RSUs, R; Set of fog

nodes, F ; Set of links, L
Output: Selection of downloading path from fog node f ∈ F

to associated RSU R ∈ R
1: Calculate probability of next possible locations s accord-

ing to Equation (11)
2: Predict next location st+∆ according to Equation (13)
3: Select an RSU R ∈ R to be associated with the vehicle

based on st+∆

4: Calculate path between fog node f ∈ F and the RSU R
using Equation (10)

Time complexity of the proposed scheme is analyzed by two
steps — complexity in task offloading and downloading. Algo-
rithm 1 includes selection of fog nodes, which runs in O(|F|)
time, and path selection for offloading based on Dijkstra’s
shortest path principle, which runs in O(|R|+|F|2). Therefore,
Algorithm 1 runs in O(|F|+ (|R|+ |F|2)) ≈ O(|R|+ |F|2).
On the other hand, Algorithm 2 includes location prediction
and path selection. The order-k Markov predictor runs in
O(k2), where k is the number of input sequences of locations
of vehicles. Similar to Algorithm 1, path selection runs in
O(|R| + |F|2). Therefore, the running time complexity of
the proposed scheme is O(|R| + |F|2 + k2), where value
of k is user-dependent. We solve the optimization problem
formulated in Section IV with small number of tasks using
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Fig. 3: Comparison between MINLP and proposed greedy
approach

Fig. 4: Network topology and fog node selection using differ-
ent hop-count (fog nodes in blue color)

APMonitor-GEKKO (http://apmonitor.com/). Figure 3 shows
the comparison between the MINLP problem and proposed
greedy approach for task offloading scheme. We see that the
proposed greedy method yields competitive results compared
to MINLP, while having very small computation time.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed scheme using
python-based simulations. The performance is carried out on a
Intel i5 2.2 GHz PC with 4GB RAM and running Linux kernel
4.15. Table II shows the parameters and their values used in
the experiment. To create network topology consisting of RSU,
we use scale-free Barabasi-Albert topology [22], as topology
traces of software-defined vehicular network are difficult to
obtain. The RSUs and vehicles are deployed within the area
in a uniform random manner. Vehicles move in the network
following the Gauss-Markov mobility model, as considered
in our previous work [20]. Figure 4 shows the topology and
deployment of fog nodes based on the optimization problem
formulated in Section III-A. We consider two different topolo-
gies and vary the hop-count to fog node from any RSU as 1
and 2. Accordingly, we present the results for four different
scenarios — T1-FHC = 1, T1-FHC = 2, T2-FHC = 1, and
T2-FHC = 2, as presented in Section VI-A. Further, we plot
the results using 95% confidence interval.

We consider three existing schemes — Detour [6], DAGP
[5], SD2O [8] — to show the effectiveness of the proposed
scheme. In all schemes, Soft-VAN, Detour, DAGP, and SD2O,
fog nodes are selected based on the fog node selection
optimization problem, and the topologies are considered, as
depicted in Figure 4. In Detour [6], DAGP [5], and SD2O [8],
the offloading decisions are taken based on associated delay
in uploading the tasks to a fog node. Further, Detour follows
a utility function to take offloading decisions. Therefore, in
Detour, the fog node with the highest utility is selected to
serve the offloaded tasks. On the other hand, DAGP follows
hop-count to fog nodes in order to take offloading decisions.
Therefore, in DAGP, fog node with the lowest hop-count

TABLE II: Simulation parameters

Parameter Value
Number of total RSUs 30
Number of tasks 200 – 1500
Vehicle CPU frequency 10 – 30 MHz
Vehicle transmit power 20 dBm [13]
Fog CPU frequency 2.9 – 4.2 GHz [6]
Task computation amount 1500 – 2500 megacycles [13]
Average task size 450 KB [13]
Channel noise power -100 dB [13]
Channel bandwidth 20 MHz [13]

is selected to serve the offloaded tasks. In SD2O, the fog
node with the lowest delay, i.e., with the highest utility, is
selected to offload the task irrespective of the offloading path.
In contrast, the proposed scheme, Soft-VAN, takes offloading
decisions based on delay associated to uploading the tasks
to a fog node and downloading the computed tasks from the
fog node, while predicting vehicles’ locations in the network.
Further, Soft-VAN also considers the cost function (refer to
Equations (9) and (10)), while selecting a fog node to serve
the offloaded tasks. In rest of the work, we use Soft-VAN,
Detour, DAGP, and SD2O to denote the proposed scheme and
existing schemes, respectively. It is also noteworthy that the
predicted location may not be always true in real-time, which,
in turn, results increased delay and control overhead compared
to the predicted ones. We limit our discussion on the impact
of wrong location prediction in this work. Interested readers
may refer to Mobi-Flow [20].

A. Results and Discussion

We consider three different performance metrics — delay,
energy consumption, and Packet-In — to show the results.

1) Delay: We measure the reduction in delay per task while
offloading a task compared to local computation. Figure 5
shows the reduction in delay using the proposed scheme, Soft-
VAN, compared to the existing schemes, Detour, DAGP, and
SD2O. It is evident that the Soft-VAN is capable to reducing
task computation delay approximately by 30%, 45%, and 50%
compared to Detour, DAGP, and SD2O, respectively. In Soft-
VAN, the SDN controller takes offloading decisions based on
delay associated to uploading and downloading the task, link
capacity, rule capacity of the RSUs, and locations of vehicles.
On the other hand, Detour, DAGP, and SD2O did not consider
the delay associated to downloading the computation task,
while taking offloading decisions. Further, locations of vehicles
are not considered, which leads to incorrect forwarding of the
computation task, as discussed in Section I. Consequently, the
existing schemes, Detour, DAGP, and SD2O, yield degraded
performance compared to the proposed scheme, Soft-VAN.
It is also noteworthy that the performance of the proposed
scheme is slightly degraded with an increase in the number of
tasks in the network. This is due to the fact the more number of
tasks are offloaded to the fog nodes, which, in turn, increases
queuing delay in the network. However, it is always better
than the existing schemes. Further, we see that significant

http://apmonitor.com/)


7

 20

 50

 80 T1, FHC=1

Soft-VAN Detour DAGP SD2O

 20

 50

 80 T2, FHC=1

 20
 50
 80

200 500 800 1000 1500D
el

ay
 I

m
p
ro

v
em

en
t 

(%
)

Number of Tasks

T1, FHC=2

 20
 50
 80

200 500 800 1000 1500D
el

ay
 I

m
p
ro

v
em

en
t 

(%
)

Number of Tasks

T2, FHC=2

Fig. 5: Reduction in delay with different tasks
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Fig. 6: Energy consumption per vehicle with different tasks

performance degradation in terms of delay with increasing
number of hops to fog nodes for all the schemes. This is also
due to the fact that the queuing delay at the fog nodes increases
with decreasing number of fog nodes in the network. Similar to
number of tasks, the proposed scheme, Soft-VAN, yields better
performance in terms of delay compared to Detour, DAGP, and
SD2O with different network topologies.

2) Energy Consumption: Energy consumption of the ve-
hicles in the network is also taken into consideration, while
taking decisions on whether to offload or to locally compute
the task. Accordingly, we measure the average energy con-
sumption per vehicle in the network using Soft-VAN, Detour,
DAGP, and SD2O schemes, as depicted in Figure 6. We see
the all the schemes are equally competitive in term of vehicle’s
energy consumption with different number of tasks. This is due
to the fact that all the schemes prefer to offload the task instead
of local computation. Consequently, in all schemes, vehicle’s
transmission energy is consumed to offload the task.

To show the effects of SDN, we also measure the energy
consumption at the RSUs. We consider energy consumption at
RSUs for Packet-In, rule-matching, and Actions based
on Open vSwitch [23]. We do not consider the base energy
consumption as it is the same for all schemes. Further, energy
consumption for flow-table lookup is considered from the
study by Congdon et al. [24]. Figure 7 shows average energy
consumption per RSU in the network. In contrast to Figure
6, we see that the proposed scheme, Soft-VAN, is capable of
minimizing energy consumption at RSUs approximately by
30%, 40%, 42% compared to the existing schemes, Detour,
DAGP, and SD2O, respectively. In Soft-VAN, the task offload-
ing and downloading decisions are taken by the controller,
while considering link delay, bandwidth, flow-rule utilization
of RSUs, and locations of the vehicles. Accordingly, fog nodes
are selected to serve the offloaded task. On the other hand,
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Fig. 7: Energy consumption per RSU with different tasks
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Fig. 8: Number of Packet-In with different tasks

Detour did not consider the locations of vehicles that leads to
incorrect forwarding path, which, in turn, increases the energy
consumption at RSUs. In contrast, DAGP only considered
delay to offload the task, due to which it incurs more energy
consumption at RSUs compared to Soft-VAN and Detour.
Similarly, SD2O also considered delay of the fog nodes in
order to take offloading decisions. Therefore, SD2O incurs
more energy consumption compared to Soft-VAN and Detour.
We also see that energy consumption at RSUs increases with
increasing number of tasks, as more number of tasks need
to be forwarded and processed at the RSUs and fog nodes,
respectively.

3) Packet-In Message: Control overhead is a major concern
in SDN while placing flow-rules at the forwarding devices.
Consequently, we measure the number of Packet-In mes-
sages generated by the RSUs/fog nodes to the controller, as de-
picted in Figure 8. It is also evident that the proposed scheme,
Soft-VAN, is capable of minimizing number of Packet-In in
the network approximately by 50% compared to the existing
schemes, Detour, DAGP, and SD2O. In Soft-VAN, the SDN
controller proactively places flow-rules at the RSUs/fog nodes,
while predicting locations of vehicles in the network. On the
other hand, in Detour, DAGP, and SD2O, the controller places
flow-rules at RSUs/fog nodes in reactive manner. Further, due
to the change in locations of the vehicles, incorrect forwarding
path leads to more Packet-In to the controller. As a result, the
existing schemes, Detour, DAGP, and SD2O, generate more
number of Packet-In compared to the proposed scheme,
Soft-VAN. It is also noteworthy that the Soft-VAN incurs a
few additional Packet-In due to wrong location prediction
(refer to [20]). However, it is always better than the existing
schemes.
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B. Use-Case Scenario: Practical Aspects

We discuss a use-case scenario of the proposed scheme
from practical aspects of smart grid. In smart grid, plug-
in electric vehicles (PHEVs) play a key role in real-time
energy management [25]. The PHEVs can charge/discharge
their batteries to reduce imbalance in energy supply-demand
in the grid. In order to take the charging/discharging decisions,
the PHEVs exchange real-time information with the grid which
needs to be computed in real-time, in order to take the
decisions. However, due to the resource-constrained nature of
the vehicles, computational data can be offloaded to access
devices in the smart grid network to minimize the delay.
In such a scenario, the proposed task offloading scheme is
beneficial to minimize the task computation delay for PHEVs,
while considering the vehicles’ mobility in the network.

VII. CONCLUSION

In this paper, we proposed a task offloading scheme in
software-defined vehicular network, while considering mobil-
ity of vehicles in the network. A centralized controller takes
offloading decisions from three different aspects — whether
to offload, where to offload, and path to offload the task,
while utilizing global view of the network. We formulated
an optimization problem and solve it to get optimal number
of fog nodes to be deployed in the network. Further, we
proposed a greedy heuristic-based solution approach to take
offloading decisions while considering locations of vehicles,
as finding global optimization is NP-hard. Experimental results
showed that the proposed scheme is capable of reducing task
computation delay compared to the existing schemes, while
minimizing the control overhead in the network.

In this work, we considered that the fog nodes are de-
termined during network deployment stage and they remain
static in the network. However, selection of fog nodes can be
done dynamically in real-time in the presence of mobile fog
nodes in addition to the vehicles in the network. Therefore,
we plan to study the task offloading scheme in the presence of
mobile fog nodes as a future extension of the work. Further, in
the proposed scheme, we did not consider vehicle-to-vehicle
(V2V) communication that may be useful to minimize the
energy consumption of vehicles and overall delay in task-
offloading. Therefore, we also plan to study the impact of V2V
communication on task-offloading in vehicular network.
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