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Abstract—In this paper, we study the problem of data flow
management in the presence of heterogeneous flows — elephant
and mice flows1 in software-defined networks (SDNs). The re-
searchers did not consider the presence of heterogeneous flows
in SDN in the existing literature. Moreover, we argue that the
optimal data flow management in the presence of heterogeneous
flows is NP-hard. Hence, we propose a game theory-based
heterogeneous data flow management scheme, named FlowMan.
In FlowMan, initially, we use a generalized Nash bargaining game
to obtain a sub-optimal problem, which is NP-complete in nature.
By solving it, we get the Pareto optimal solution for data-rate
associated with each switch. Thereafter, we use a heuristic method
to decide the flow-association with the switches, distributedly,
which, in turn, helps to get a Pareto optimal solution. Extensive
simulation results show that FlowMan is capable of ensuring
quality-of-service (QoS) for data flow management in the pres-
ence of heterogeneous flows. In particular, FlowMan is capable
of reducing network delay by 77.8–98.7% while ensuring 24.6–
47.8% increase in network throughput compared to the existing
schemes such as FlowStat and CURE. Additionally, FlowMan
ensures that per-flow delay is reduced by 27.7% with balanced
load distribution among the SDN switches.

Index Terms—Load Balancing, Software-Defined Networks,
Nash Bargaining game, IoT, Heterogeneous Flow.

I. INTRODUCTION

With the advent of Internet of Things (IoT), huge amount
of data traffic, i.e., big-data, is generated by the various IoT-
devices, which results in significant difficulties in managing
this data. Under these circumstances, software-defined net-
works (SDNs) are getting attention from the research commu-
nity for supporting new services and applications. Essentially,
SDN aims to divide the network functionalities and thus,
follows a two-plane architecture, comprising of control and
data planes. The control plane handles network control. On
the other hand, the data plane manages the packet processing
and forwarding tasks [2]. In the control plane, the application
programming interfaces (APIs) are of two types such as
northbound and southbound. Using the northbound APIs, the
applications directly interact with the SDN controller. On the
other hand, the interaction between the controller and the
switches is supported by the southbound APIs. Additionally,
the data traffic flows are handled by these APIs according
to the flow-rules installed in the ternary content-addressable
memory (TCAM) space. These flow-rules are, in turn, installed
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1The data flow is divided into two categories based on the associated data-
rate [1]. The flows with high data-rate are termed as elephant flows, while
those with low data-rate are termed as mice flows.

in the switches by the controller, which has a logically
centralized view of the network. Therefore, SDN is considered
to be one of the most promising architectures for supporting
numerous applications generated from the heterogeneous IoT-
devices [3].

Fig. 1: Issues in Heterogeneous Flow Management in SDN

In SDN, data flow2 management and flow-rule placement in
the switches are two significant problems. In the existing lit-
erature, few works [2], [4], [5] focused on proposing schemes
and architectures for addressing these issues. However, in these
works, researchers considered each flow to be homogeneous
in nature [6]. This assumption is no longer practical in the
modern world, in which, due to the digitization of everything,
we encounter different types of data traffic with high and
low volume, i.e., elephant and mice flows, respectively, in the
network. In such a scenario, due to the unbalanced nature of
data traffic, the switches handling the elephant flows incur
high delay, whereas the switches handling the mice flows
incur low throughput. As shown in Figure 1, the incoming
flows can be discarded due to overflow or can replace the
existing flows, which results in high delay or low throughput,
respectively. This, in turn, degrades the overall performance of
the SDN. In the existing literature, researchers overlooked this
unbalanced traffic problem in the presence of heterogeneous
flows generated from the IoT devices. Therefore, in order to
ensure high quality-of-service (QoS), i.e., high throughput and
low delay, there is a need to design efficient flow management
techniques for SDN to ensure high throughput and low delay,
while considering the presence of heterogeneous IoT traffic.

Motivating Scenario: We consider an SDN with IoT de-
vices and switches connected using access points (APs). These
heterogeneous IoT devices are capable of running different
applications such as Internet browsing, Email, VoIP calls,
and video streaming [7]. As per Federal Communications
Commission (FCC) [7], video streaming applications in IoT
devices consume almost 104 times more bandwidth than

2We define data flow as a stream of data packets
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normal applications such as browsing and calls. Therefore,
we argue that the flows generated from these video streaming
applications are the elephant flows, whereas the other flows
are mice flows. This necessitates the design of a dynamic
heterogeneous flow management scheme in SDN.

In this paper, we introduce a QoS-aware stochastic data flow
management scheme, named FlowMan, for SDN in the pres-
ence of heterogeneous flows, i.e., elephant and mice flows. We
use a generalized Nash bargaining game to decide the Pareto
optimal datarate to be allocated to each SDN switch, while
considering the heterogeneous flows within one-hop network.
Here, using a generalized Nash bargaining game, we achieve
an intermediate Pareto optimal throughput for the switches.
Thereafter, using a distributed heuristic method, i.e., a method
for solving the bounded Knapsack problem, we decide the
switch and flow-rule association for ensuring optimal data flow
management in SDN. The specific contributions of this paper
are listed as follows:

1) We present a QoS-aware data flow management scheme,
FlowMan, for ensuring high QoS, i.e., maximizing the
throughput and minimizing the delay, of SDN in the presence
of heterogeneous flows.

2) We argue that dynamic data flow management in the
presence of heterogeneous flows, which can be mapped to
zero-one knapsack problem, is an NP-hard problem. Therefore,
we use the generalized Nash bargaining game to obtain a
sub-optimal problem which can be mapped to the bounded
Knapsack problem, an NP-complete problem.

3) We present an algorithm for FlowMan. The first part
of the algorithm deals with the optimal data rate selection by
using the bisection method. On the other hand, the second part
of the algorithm focuses on the optimal mapping of data flows
to the appropriate switches for efficient data flow management.

II. RELATED WORKS

In the past few years, many research works on the differ-
ent aspects of SDN emanated, viz., [8]–[11]. The existing
literature are divided into two categories — (a) data traffic
management and (b) flow-rule management.

Some of the SDN management schemes proposed in the
existing literature are discussed here. Huang et al. [8] proposed
a rule multiplexing scheme to reduce the usage of TCAM
memory while maintaining QoS constraints. The authors for-
mulated a joint optimization problem while considering route
engineering and rule placement. In another work, Sadeh et
al. [12] proposed a scheme, named Bit Matcher’, to reduce
the TCAM memory usage for a given set of flow-rules.
Rottenstreich et al. [9] proposed a traffic splitting scheme for
switches while considering the heterogeneity of the network
paths or servers and the limited capacity of the flow-tables.

Agarwal et al. [13] studied the traffic handling in SDN. The
authors showed that having a centralized view of the network,
the controller is capable of reducing the delay and packet loss
in data traffic. Tseng et al. [14] studied the path stability in
hybrid SDN. The authors calculated the routes locally to re-
duce computational complexity, thereafter, using a centralized
scheme to re-evaluate the routes for gaining stability. Moradi

Fig. 2: Schematic Diagram of SDN Architecture

et al. [11] proposed an efficient traffic engineering scheme,
named DRAGON, for SDN-based ISP networks having differ-
ent types of network links and switches. In DRAGON, the flow
optimization problem is broken down into sub-tasks having
different objectives and the sub-tasks are executed in parallel
to reduce complexity. In another work, Allybokus et al. [15]
proposed fair resource allocation scheme in the presence of
multiple network paths in a distributed SDN scenario using the
alternating direction method of multipliers. Sanvito et al. [16]
proposed a scheme for deciding the time frame to reconfigure
flow-tables, while considering overlap data flow paths. Mondal
et al. [3] proposed a scheme to ensure high throughput in SDN
while assuming that the volume of data to be generated is
known a priori. The authors optimally distributed the traffic
load among the switches and ensured high network throughput.
Tahaei et al. [17] presented a SDN-based flow management
scheme for data center networks with multiple controllers and
selected an optimal number of switches. In another work,
Görkemli et al. [18] proposed a novel distributed dynamic
control plane architecture in which the switches communicate
with their controllers through a virtual overlay network. The
authors also proposed the introduction of a “control flow table”
to manage the dynamic control plane traffic. Another dynamic
traffic engineering scheme was proposed by Bera et al. [6] in
which the authors attempted to reduce the control overhead by
reducing the number of messages to the controller. The authors
proposed a greedy heuristics-based approach to determine the
optimal number of candidate switches (with higher TCAM)
necessary to reduce the involvement of the controller.

Some of the schemes in the existing literature, focusing on
the flow-rule processing of SDN are discussed here. Mein-
ers et al. [19] proposed a flow-rule compression scheme to
accommodate high number of switches in SDN. Mao et al.
[20] proposed a Convolutional Neural Networks (CNNs)-based
intelligent traffic management scheme. The authors considered
that the controller has high computational resources. Mogul et
al. [21] proposed a hashing-based scheme and reduced flow-
table lookups. Rottenstreich et al. [22] studied the shared
multi-core processing scheme and evaluated a trade-off be-
tween the number of allocated cores and the associated delay
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in the context of network virtualization. Reitblatt et al. [23]
studied the problem of consistent flow-rule update network-
wide, while processing the incoming data packet. In another
work, Katta et al. [5] evaluated a trade-off between the TCAM
space and the duration for network update. On the other hand,
Hayes et al. [24] classified the traffic in SDN. In another
work, Rottenstreich and Tapolcai [25] proposed a limited-size
classifier set to accommodate the flow-rules in limited TCAM
memory.

Synthesis: From the survey of the existing literature, we
argue that a few research works on data flow management
in SDN consider the efficient utilization of TCAM of each
switch. However, the researchers have not considered the
presence of heterogeneous flows, i.e., elephant and mice flows,
in the existing literature which leads to unbalanced data
traffic. Additionally, dynamic flow management in SDN while
maximizing throughput and minimizing delay is a significant
requirement for ensuring high QoS.

III. SYSTEM MODEL

We consider an SDN with multiple switches, a centralized
controller, and multiple IoT devices and the SDN switches
connected using access points (APs). We consider that these
IoT devices generate heterogeneous data-traffic such as Inter-
net browsing, Email, VoIP calls, and video streaming. Ad-
ditionally, we consider that the switches are heterogeneous in
nature and have different TCAM capacity. We present the SDN
network as a flow network G(V,E), where V and E denote
the set of vertices and the set of edges in the flow network,
respectively. Here, we consider that V =

⋃
L V

L
I ∪

⋃
L V

L
S ,

where V LI and V LS represent the set of IoT devices and
the set of switches in the layer L of the flow network,
respectively, L ≥ 0, and V 0

S = {∅}. We consider that each
edge eij ∈ E has a limited bandwidth Bij and Bij > 0, given
that eij 6= 0. We consider two QoS parameters — throughput
and delay — for evaluating the performance of the network.
The throughput and delay per flow depend on the allocated
capacity of the corresponding flow. In this work, we consider
that the network flows are comprised of multiple elephant
(high-volume) and mice (low-volume) flows [1]. Hence, we
argue that there is a need to focus on ensuring both the
optimal throughput and delay of the network. We consider
that each IoT device n ∈ V LI generates FEn (t) and FMn (t)
set of elephant and mice flows, respectively, at time instant t,
where |FEn (t)|, |FMn (t)| ≥ 0. Therefore, the number of flows
FL(t) in layer L of the network is as follows:

FL(t) =
∑
n∈V L

I

[|FEn (t)|+ |FMn (t)|] (1)

We assume that there is sufficient space in the switches to
place |FL(t)| rules, i.e., |FL(t)| ≤

∑
k∈V (L+1)

S

Rmaxk , where
Rmaxk is the maximum flow-rules which can be accommodated
at SDN switch k. On the other hand, each elephant flow
fEn (t) ∈ FEn (t) and each mice flow fMn (t) ∈ FMn (t) generate
data with rate rEn (t) and rMn (t), respectively. Therefore, the
data-generation rate is given as Ψ(t) =

∑
fE
n (t)∈FE

n (t) r
E
n (t)+∑

fM
n (t)∈FM

n (t) r
M
n (t). Moreover, we consider that each SDN

switch k ∈ V
(L+1)
S handles a set of installed rules Rk(t),

where Rk(t) ≤ Rmaxk . Therefore, we have:

Rk(t) = |F ek (t)|+ |Fmk (t)| (2)

where F ek (t) and Fmk (t) represent the set of elephant and mice
flow-rules installed in SDN switch k. Therefore, the through-
put Tk(t) of SDN switch k, where Ψ(t) =

∑
k∈V (L+1)

S

Tk(t),
is defined as follows:

Tk(t) =
∑

fE
n (t)∈F e

k (t)

rEn (t) +
∑

fM
n (t)∈Fm

k (t)

rMn (t) (3)

Additionally, we consider that each SDN switch k has pro-
cessing capacity of µSk (t). Considering that the flow processing
at SDN follows a packet-centric approach and following the
work of Park and Schaar [26], the processing delay Dk(t) [10]
is defined as follows:

Dk(t) = D0
k +

µSk (t)

Tk(t)− T 0
k (t)

(4)

where T 0
k denotes the minimum resource share of each switch

k; D0
k is the minimum delay for processing a packet, while

considering the switch is idle, i.e., there is no packet in the
switch. In this work, our objective is to obtain an optimal
association among the data traffic flows and the switches for
maximizing the network throughput and minimizing the delay.

IV. QOS-AWARE DATA FLOW MANAGEMENT (FLOWMAN)
SCHEME

To study the interaction among the switches and the IoT
devices in the considered problem scenario, we use general-
ized Nash bargaining game theory and propose a QoS-aware
dynamic data traffic management scheme, named FlowMan,
for SDNs with IoT devices. Here, we consider that the
switches act cooperatively in order to ensure high network
throughput and low processing delay. In the proposed scheme,
FlowMan, the strategy of each switch is to decide the optimal
subset of flows to be handled by it. Based on the rule-
space capacity of the switches, we introduce the bargaining
power α = {α1, · · · , αk, · · · , α|V L

S |}, where αk denotes the
bargaining power of switch k. Hence, we summarize the
components of the generalized Nash bargaining game in the
proposed scheme, FlowMan, as follows:

1) SDN switches act as the players and bargain among
themselves to distribute the set of flow rules to be installed.

2) Data flows available in the network form the resource
pool. Here, we only consider the flows generated/handled by
one-hop neighbors, i.e., switches and IoT devices.

3) Switches are heterogeneous in terms of TCAM capacity.
4) Bargaining power of each switch depends on its TCAM

capacity.

A. Justification for Using Generalized Nash Bargaining Game

As mentioned earlier, the problem of optimal distribution
of heterogeneous data-flow among the available switches in
SDN in order to simultaneously ensure high throughput and
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low delay is an NP-hard problem, as it can be mapped to the
zero-one knapsack problem [27]. In order to obtain a solution
to this problem in polynomial time, we adopt a game-theoretic
approach. In SDN, the aforementioned problem scenario can
be visualized in the form of a “bargaining” situation in which
the switches bargain among themselves to obtain their fair
share of the data-flows. Here, the switches act cooperatively
and try to agree upon a distribution of flow-rules which
ensures mutual benefit. Moreover, in this work, the switches
are also considered to be heterogeneous with respect to TCAM
capacity. Hence, in order to model the considered problem
scenario and the aforementioned properties of SDN, we use
the generalized Nash bargaining game. Here, the generalized
Nash bargaining game not only takes into consideration the co-
operative nature of the switches but also perfectly captures the
heterogeneity of switches by introducing the Nash bargaining
power of each individual switch. The Nash bargaining solution
provides a Pareto optimal solution (which is shown in the
subsequent sections) for deciding the maximum data-rate to be
handled by each switch for ensuring high network throughput
with less delay. Hence, we argue that the generalized Nash
bargaining game is the most suitable technique for managing
dynamic flow-traffic in the presence of multiple elephant and
mice flows in SDN.

B. Game Formulation

In the proposed game, we consider that each switch k ∈
V

(L+1)
S decides its strategy, i.e., bargain, for distributing the

one-hop network flows (including elephant and mice flows)
while ensuring high network throughput and low delay in data
traffic. The utility function Uk(·) of each switch k signifies the
utilization of its capacity and TCAM memory. Motivated by
the work of Park and Schaar [26], we consider that Uk(·) needs
to ensure the following properties:

1) Each switch tries to maximize the utilization factor of
its capacity. Therefore, each switch k tries to increase Tk(t),
while ensuring the constraint — Rk(t) ≤ Rmaxk .

2) Each switch k tries to reduce the overall network delay
by reducing the packet queuing delay Dk(t).

Therefore, we define Uk(·) for each switch as follows:

Uk(Tk(t)) =
λ

D0
k +

µS
k (t)

Tk(t)−T 0
k

=
λ(Tk(t)− T 0

k )

D0
k(Tk(t)− T 0

k ) + µSk (t)

(5)
where λ is a constant and λ > 0. Moreover, we consider that
in the proposed scheme, FlowMan, each switch k ensures a
minimum payoff dk which is termed as its disagreement point.
Disagreement point is calculated as the equilibrium point while
the players act non-cooperatively. Here, we have — dk =
Uk(T 0

k ). Hence, in FlowMan, we ensure that the payoff of each
switch will be higher than Uk(T 0

k ). Therefore, from Equation
(5), we get — dk = 0. Considering that each switch k handles
Tk(t) amount of resource, we define a feasible utility set S as
— S = {· · · ,Uk(Tk(t)), · · · }. We argue that S is nonempty,
convex, closed, and bounded. Additionally, we represent the
disagreement point vector d as — d = {· · · ,Uk(T 0

k ), · · · }.
Here, d is a set with elements having zero value. Thereby, the

bargaining problem is defined as a tuple < S,d >. We argue
that the Pareto optimal solution exists in the proposed scheme
as defined in Definition 1.

Definition 1. We define that U∗(t) is Pareto optimal, where
U∗(t) = (· · · ,Uk(T ∗k (t)), · · · ), iff we have —

(· · · ,Uk(T ∗k (t)), · · · ) ≥ (· · · ,Uk(Tk(t)), · · · ) (6)

As each switch has different bargaining power, we introduce
the function F : S → R|V

(L+1)
S |, where we have —

F (S,d) =
∏(
Uk(Tk(t))− Uk(T 0

k )
)αk =

∏
Uk(Tk(t))αk

= {U ∈ B|U = α · T (t),
∑
αk = 1, αk ≥ 0,∀k}

(7)
where T (t) = {T1(t), · · · , Tk(t), · · · , T|V (L+1)

S |(t)} and B is
the bargaining set defined in Definition 2.

Definition 2. The bargaining setB represents a set containing
the Pareto optimal payoff pairs F (S,d), and B ⊆ S.

Hence, based on the feasible utility set S and disagreement
point vector d, the optimization problem is defined as follows:

max
U∈S

F (S,d) (8)

On the other hand, the solution U∗ needs to satisfy the
following constraints —

Uk(Tk(t)) > 0 and
∑

αk = 1, where αk ≥ 0,∀k (9)

C. Axioms for Generalized Nash Bargaining Solution

In this section, we examine the existence of the generalized
Nash bargaining solution (please refer to Theorems 1-4) in
the context of the proposed scheme, FlowMan, while ensuring
that the following axioms are satisfied [26] — (1) Individual
Rationality; (2) Feasibility; (3) Pareto Optimality; (4) Inde-
pendence of Irrelevant Alternatives; and (5) Independence of
Linear Transformations.

Theorem 1. Feasible utility set S is convex.

Proof. Please refer to the supplementary file.

Theorem 2. In FlowMan, the function F (S,d) satisfies
Pareto optimality.

Proof. Please refer to the supplementary file.

Theorem 3. The function F (S,d) is independent of linear
transformation.

Proof. Please refer to the supplementary file.

Theorem 4. The function F (S,d) is independent of irrelevant
alternatives.

Proof. Please refer to the supplementary file.
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Fig. 3: Workflow Diagram of FlowMan

D. Existence of Generalized Nash Equilibrium

We prove the existence of generalized Nash equilibrium by
using variational inequality (VI), as shown in Theorem 5.

Theorem 5. Given a set of flows and the corresponding data-
rates, there exists a generalized Nash equilibrium for each
switch in the network.

Proof. In FlowMan, we aim to maximize function F (S,d),
which ensures cooperative benefit for the switches. Addi-
tionally, in order to prove that there exists a generalized
Nash equilibrium, we need to show that the Hessian matrix
of F (S,d) is negative. We derive the Karush-Kuhn-Tucker
(KKT) conditions — Stationary condition, Primal feasibility
constraints, Dual feasibility condition, and Complementary
slackness condition. For detailed analysis, please refer to the
supplementary file. From primal feasibility and complementary
slackness conditions, we get — θk = 0,where θk is the
Lagrangian multiplier. Hence, from stationary condition, we
get that:

∇L =

· · · , αk
∏
l 6=k
Ul(Tl(t))αl

Uk(Tk(t))
− νµSk (t)λ

(λ−D0
kUk(Tk(t)))2

, · · ·


T

(10)
Additionally, the Hessian matrix of F (S,d) is a negative

matrix [26], which concludes the proof.

E. Analysis of Generalized Nash Bargaining Solution

Based on the KKT conditions3 as mentioned in the Section
IV-D, we have ν 6= 0, where ν is a Lagrangian multiplier.
Therefore, we get that —

ν =

αkUk(Tk(t))(αk−1)
∏
l 6=k
Ul(Tl(t))αl(λ−D0

kUk(Tk(t)))2

νµSk (t)λ
(11)

Here, ν and λ are constants. Hence, we rewrite Equation
(11) as follows:

3For detailed calculation, please refer to the supplementary file.

αk(λ−D0
kUk(T ∗k (t)))2

µSk (t)Uk(T ∗k (t))
=
αl(λ−D0

l Ul(T ∗l (t)))2

µSl (t)Ul(T ∗l (t))
(12)

where k 6= l, and k, l ∈ V (L+1)
S . By replacing Uk(Tk(t)) with

λ(Tk(t)−T 0
k )

D0
k(Tk(t)−T 0

k )+µ
S
k (t)

(please refer to Equation (5)), we get:

αkµ
S
k (t)

(D0
kTk(t) + µSk (t))Tk(t)

=
αlµ

S
l (t)

(D0
l Tl(t) + µSl (t))Tl(t)

(13)

We know that
∑
Tk(t) = Ψ(t). Hence, from Equation (13),

we get that —

Tl(t) =
1

2αkµSk (t)D
0
l

(
−αkµSk (t)µSl (t) +

√
Φkl

)
(14)

where Tl(t) > 0, D0
l > 0, ζk = (D0

kTk(t) + µSk (t)), and
Φkl =

[
(αkµ

S
k (t)µ

S
l (t))

2 − 4αkαlµ
S
k (t)µ

S
l (t)ζkTk(t)D

0
l

]
.

Algorithm 1 Data Flow Management in FlowMan
INPUTS:

1: Ψ(t), ε, ∪n∈V L
I
FE
n (t), ∪n∈V L

I
FM
n (t), Rmax

k , α, V
(L+1)
S ,

µS(t), D0(t)
OUTPUT:

1: F e
k (t), F

m
k (t), ∀k ∈ V (L+1)

S
PROCEDURE:

1: l← 0 and h← Ψ(t)
2: do
3: Tk(t)← l+h

2

4: for each l ∈ V (L+1)
S and l 6= k do

5: Calculate Tl(t) using Equation (14) . Obtained from the
proposed Nash bargaining game-theoretic model

6: end for
7: if

∑
Tk(t) ≤ Ψ(t) then

8: l← Tk(t)
9: else

10: h← Tk(t)
11: end if
12: while (h− l) < ε
13: F(t)← (∪n∈V L

I
FE
n (t)) ∪ (∪n∈V L

I
FM
n (t))

14: for each k ∈ V (L+1)
S do

15: F e
k (t), F

m
k (t)← FlowMan-Knapsack (Tk(t),F(t))

16: F(t)← F(t)/(F e
k (t) ∪ Fm

k (t))
17: end for
18: return F e

k (t), F
m
k (t), ∀k ∈ V (L+1)

S

F. Proposed Algorithm

From Section IV-E, we observe that, in SDN, the con-
troller can ensure efficient load distribution using the proposed
scheme, FlowMan, while ensuring that the data flows are
fairly distributed among the switches. The controller needs to
calculate the optimal data rate T ∗k (t) for any switch k using
a heuristic approach. In FlowMan, we use bisection method
[28] having a fixed tolerance ε > 0, as mentioned in Algorithm
1. Bisection method is used to evaluate the optimal value for
T ∗k (t) as the upper and lower bounds of the utility functions
are known for the time instant t. Thereafter, using Equation
(14), which is derived based on the utility function Uk(Tk(t)),
the controller calculates the optimal data rate T ∗l (t) for each
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switch l, where k 6= l. Finally, the controller uses a bounded
Knapsack solution method [29], named FlowMan-Knapsack,
to decide the optimal distribution of data flows for each switch.
The workflow diagram of FlowMan is presented in Figure 3.

G. Complexity Analysis

In FlowMan, there are two methods which need to be
executed sequentially. In the first method, i.e., the bisection
method, the controller tries to find the optimal value for Tk(t).
Based on that,in the second method, the optimal data traffic as-
sociated with other switches are calculated using the bounded
knapsack method. The complexity of the bisection method is
O(|V (L+1)

S |), whereas, the complexity for bounded Knapsack
method, i.e., FlowMan-Knapsack, is O(H|V (L+1)

S |), where
H = max{Rk(t)|∀k ∈ V

(L+1)
S }. Hence, the overall com-

plexity of the proposed scheme, FlowMan, is O(H|V (L+1)
S |),

as H ≥ 1. Thus, FlowMan has a complexity of O(HC) for
the overall network, where C = max{|V LS |,∀L}. Hence, we
argue that with the increases in the number of switches in each
layer, the complexity of FlowMan increases. However, the
complexity of FlowMan does not get affected by the increase
in the number of layers in the network.

V. PERFORMANCE EVALUATION

In this section, we analyze the performance of the proposed
scheme, FlowMan, through simulation by varying the number
of heterogeneous flows, i.e., elephant and mice flows, and the
number of available switches.

A. Simulation Parameters

We simulated the proposed scheme, FlowMan, on Python3-
based simulation platform. We considered that the switches
and IoT devices are deployed randomly over the terrain of
10×10 km2, and each IoT device generates a single flow. We
considered that each flow generates data traffic at a random
rate. We considered that the threshold datarate is 0.1 million
packets per second (mpps) to separate the flows into two
categories – elephant and mice flows, as mentioned in Table
I. Additionally, we varied the number elephant flows, i.e., 5–
10% of the total flows [1]. We also considered that each switch
has an infinite buffer size. We performed the simulation for
50 independent iterations. Each iteration is executed for 100
simulation seconds.

B. Benchmark

The performance of the proposed scheme, FlowMan, is
evaluated by comparing with existing schemes — FlowStat
[31] and CURE [32]. In FlowStat, Bera et al. [31] proposed
a flow-rule placement scheme based on the per-flow statistics.
In this work, the authors tried to accommodate the maximum
number of flows while finding an end-to-end path at once. We
consider FlowStat as it deals with similar problems such as
forwarding switch selection for heterogeneous flows and flow-
rules placement to maximize the throughput of the network.
On the other hand, in CURE, Maity et al. [32] proposed a

scheme for flow management. The authors considered that the
flow-rules are updated according to the priority of the switches.
We consider CURE as it deals with the generic problems of
rule placement in SDN such as rule update while ensuring the
high throughput of the network. In contrast to these existing
schemes, FlowMan considers heterogeneous flows and aims to
ensure high QoS, i.e., high network throughput and low delay,
in SDN. Additionally, FlowMan reduces an NP-hard problem
to an NP-complete problem with the help of the generalized
Nash bargaining game within a finite time duration and ensures
a Pareto optimal flow distribution among the switches in SDN.

TABLE I: Simulation Parameters

Parameter Value
Number of SDN switches 5, 10, 15
Number of flows 5000, 10000, 20000
Number of elephant flows 5–10%
Data generation rate per mice flow (0–0.1) mpps
Data generation rate per elephant flow [0.1–0.5] mpps
Maximum flow rules /switch 4000–8000 [30]
Simulation duration 100 sec

C. Performance Metrics

We evaluated the performance of the proposed scheme,
FlowMan, using the following metrics:

1) Per-Flow Throughput: Per-flow throughput is calculated
as the average amount of data processed for each flow over a
certain duration, individually. In the presence of heterogeneous
flows, per-flow throughput not only depends on the number
of flow-rules installed at the switch but also on the data-rate
associated with each flow.

2) Network Throughput: Network throughput is calculated
as the amount of data processed cumulatively by the switches
available in the network. It depends on the flow-association of
each switch and the data-rate of each associated flow.

3) Per-Flow Delay: Per-flow delay is calculated as the
queuing delay and the processing delay incurred by each flow
at the associated switch. Due to the presence of heterogeneous
flows, unbalanced data traffic results in high delay per-flow for
the mice flows, when the elephant flows and mice flows are
associated with the same switch.

4) Network Delay: Network delay is calculated as the end-
to-end delay incurred by the flows available in the network.
We argue that, with balanced load distribution, the network
delay can be minimized significantly.

D. Results and Discussions

From Figure 4, we observe that the per-flow throughput
decreases with the increase in the number of flows, due to
the increase in the number of elephant flows. However, using
FlowMan, the per-flow throughput remains higher than using
FlowStat and CURE, as FlowMan follows a Pareto optimal
data-rate distribution for data flow management. We argue that
FlowMan distributes the incoming flows with heterogeneous
data-rate among the available switches, optimally. Hence, we
yield that, using FlowMan, per-flow throughput increases by

ayan
For Personal Use Only



7

 0
 0.25

 0.5
 0.75

 1

5000 10000 20000

(b) Number of Switch = 10
Number of Flows

 0
 0.25

 0.5
 0.75

 1

5000 10000 20000

(c) Number of Switch = 15
Number of Flows

 0
 0.25

 0.5
 0.75

 1

5000 10000 20000

(a) Number of Switch = 5

Pe
r-

Fl
ow

 T
hr

ou
gh

pu
t 

(N
or

m
al

iz
ed

)

Number of Flows

 FlowMan  FlowStat  CURE

Fig. 4: Per-Flow Throughput Analysis
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Fig. 5: Network Throughput Analysis
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Fig. 6: Per-Flow Delay Analysis
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Fig. 7: Network Delay Analysis

24.6–47.8%. On the other hand, Figure 5 depicts that the net-
work throughput increases significantly using FlowMan than
using FlowStat and CURE. The network throughput depends
on the elephant flows, as well as on the mice flows. We observe
that, unlike FlowMan, the elephant flows get associated with
a subset of switches using FlowStat and CURE, though these
flows contribute almost 80% of the overall flow [1].

On the other hand, Figure 6 depicts that per-flow delay
decreases by 27.7% using FlowMan than using FlowStat and
CURE. In FlowMan, the traffic associated with each switch
is optimal, hence there is no significant change in the delay
of the associated flows. However, using FlowStat and CURE,
the per-flow delay increases significantly due to the fact that
these schemes do not take into consideration the presence
of heterogeneous flows. We yield that, FlowMan reduces the
queuing delay by 77.8–98.7%. Similarly, Figure 7 depicts that
the network delay increases exponentially with the increase
in the number of flows. This is due to the fact that queuing
delay has a significant impact on the overall network delay.
Hence, we argue that FlowMan ensures Pareto optimal flow

distribution among the switches. Thereby, the queuing delay
per-flow reduces significantly, which, in turn reduces the over-
all network delay. Additionally, through theoretical analysis,
we observe that using FlowMan, the flow-setup delay remains
constant for a fixed set of switches. However, using the
existing schemes – FlowStat and CURE, the flow-setup delay
increases linearly with the increase in the number of flows in
the network. Therefore, we argue that FlowMan enhances the
performance of network universally, i.e., enhances the network
QoS, while ensuring the per-flow QoS is maintained

VI. CONCLUSION

In this paper, we argued that in the presence of heteroge-
neous flows, QoS-aware data flow management in SDN is NP-
hard. Therefore, we proposed a novel scheme, named Flow-
Man, to address the aforementioned problem. In FlowMan, we
used the generalized Nash bargaining game to obtain a Pareto
optimal data-rate distribution for the switches. Thereby, we
achieved a sub-optimal problem which can be mapped to the
bounded Knapsack problem, i.e., an NP-complete problem.
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Thereafter, we used a heuristic approach to solve the reduced
sub-optimal problem. Additionally, we analyzed that the pro-
posed scheme, FlowMan, follows the axioms of the general-
ized Nash bargaining game. Through simulations, we observed
that FlowMan outperforms the existing benchmark schemes
— CURE and FlowStat, while ensuring high throughput and
low delay. In particular, FlowMan reduces network delay by
77.8–98.7% and increases network throughput by 24.6–47.8%,
than using FlowStat and CURE.

Future extension of this work includes designing a data flow
management scheme for broadcasting while minimizing the
length of the routing path of the flows. We argue that the afore-
mentioned problem can be mapped to the traveling salesman
problem, which is an NP-hard problem. Hence, obtaining a
Pareto optimal solution is challenging. Additionally, this work
can be extended while incorporating the possibility of over-
subscription in the presence of switches with limited flow-table
capacity.
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