
1

DART: Data Plane Load Reduction for Traffic Flow
Migration in SDN

Ilora Maity, Student Member, IEEE,
Sudip Misra, Senior Member, IEEE, and Chittaranjan Mandal, Senior Member, IEEE

Abstract—In this paper, we present a traffic-aware flow
migration approach, which reduces data plane load in Software-
Defined Networking (SDN) during a network update. SDN up-
date involves rerouting of multiple traffic flows to accommodate
new flows. An unplanned flow migration schedule overloads
the data plane by burdening the data links and flooding the
rule-space of capacity-constrained SDN switches. The overload
of data links and switches blocks the update process, and the
network fails to address the Quality of Service (QoS) demands
of the traffic flows, especially latency-sensitive flows. Prior
approaches migrate flows without considering load reduction
of the data plane along with QoS demands of the flows. In this
work, we propose a load reduction strategy that prioritizes traffic
flows based on QoS demands and aims to avoid link congestion
and rule-space overflow during flow migration. The proposed
scheme significantly reduces the maximum data link bandwidth
usage. In particular, the maximum data link bandwidth usage
is 13.22% less than the two-phase update approach.

Index Terms—DN, Traffic Flow Migration, Data Plane Load,
Coalition Graph Game, Rule-Space Management.DN, Traffic
Flow Migration, Data Plane Load, Coalition Graph Game, Rule-
Space Management.S

I. INTRODUCTION

SDN involves heterogeneous devices connected to a pro-
grammable network that dissociates control logic from forward-
ing elements or switches [1] [2]. For large-scale networks, the
devices associated with the switches are enormous in number and
generate a massive amount of traffic flows [3]. Therefore, new
flows are generated frequently, and an initial route is assigned
to each new flow based on the existing flow-rules. However,
based on the available bandwidth of the data links and latency
requirement of the flows, the network operators may migrate the
paths of some existing and/or new flows [4]. So, flow migration
is an essential feature of network updates. Additionally, the
flows are heterogeneous in terms of QoS demand [5], and the
majority of the flows are latency-sensitive [6]. Therefore, the flow
migration process should adhere to the traffic characteristics of
the flows. Otherwise, the update delay makes the final route
invalid for the majority of the flows. Moreover, the migration
process should be feasible in terms of link capacity and rule-
space capacity to avoid excessive processing delay and poor user
experience.

SDN data plane has two elements — (1) SDN switches and
(2) data links which are the links between the switches. Switches
store forwarding information in the form of flow-rules in flow
tables [7] and the rule-space capacity of each switch is limited
[8]. Similarly, the data links also have a capacity constraint in
terms of bandwidth usage. So, the data plane load comprises of
rule-space and link bandwidth usages.

The authors are with the Department of Computer Science and
Engineering, Indian Institute of Technology Kharagpur, India (Email:
imaity@iitkgp.ac.in; smisra@cse.iitkgp.ac.in; chitta@iitkgp.ac.in).

SDN update routinely routes existing flows to a new path
to accommodate new flows. During flow migration, controllers
transmit update packets to the required SDN switches to modify
flow-path from an initial path to a final path. Accordingly, the
switches install new rules. However, if any switch has insufficient
rule-space for the installation of a new flow-rule, the traffic flows
involving the corresponding switch are routed incorrectly and
suffer packet loss. Similarly, congestion in one of the links in
the routing path of a flow degrades network performance by
causing packet loss.

Therefore, the migration of traffic flows should consider
important parameters, such as feasibility and consistency. A
feasible flow migration reduces data plane load by ensuring
that no links get congested after the migration. The feasibility
constraint confirms that all the switches involved in the update
process have enough rule-space capacity to install the new
flow-rules required for the migration. On the other hand, a
consistent flow migration guarantees that each migrating flow
follows either old or new configuration (not both) after the
initiation of migration [9]. A consistent flow migration should
be blackhole free so that no packet is dropped and loop free
so that no flow forms loop due to incorrect forward during
migration [10]. Moreover, the migration process should consider
the heterogeneous latency demands of the flows to avoid QoS
violations. Therefore, feasible, consistent, and traffic-aware flow
migration is necessary to maintain network performance.

Figure 1 shows the necessity of forming a feasible flow
migration schedule. The nodes in each graph represent SDN
switches, and the edges represent data links connecting the
switches. The capacity of each data link is 1 Gbps. For this
scenario, we consider two to-be-migrated traffic flows — f1 and
f2, each having a bandwidth of 1 Gbps. The old paths of f1 and
f2 are s1 → s2 → s3 → s5 and s3 → s4 → s5, respectively. The
new paths of f1 and f2 are s1 → s2 → s4 → s5 and s3 → s5,
respectively. Therefore, the sets of to-be-updated switches for f1
and f2 are {s2, s4} and {s3}, respectively. A flow is consistent if
each packet of a flow is entirely processed by either old flow-rules
or new flow-rules. For example, if a packet of f2 is processed
by an old flow-rule at s3, then the packet is forwarded to s4.
In this scenario, consistent processing ensures that the packet
is handled by an old flow-rule at s4 to reach s5. On the other
hand, if a packet of f2 is processed by a new flow-rule at s3, the
packet reaches the destination s5 directly. Rule-space capacity
constraint is another aspect that we consider for flow migration.
From the scenario depicted in Figure 1, we observe that an
additional flow-rule is installed in s4 for the migration of f1
because s4 is not present in the old path. Therefore, if s4 does
not have free rule-space for the installation of the new flow-
rule, all the packets of f1 reaching s4 are dropped. However,
for s2 and s3, no additional rule-space is required if the new
rules replace the old ones. Additionally, we consider link capacity
constraint and QoS demands of the flows. Let f1 is more latency-
sensitive than f2. Therefore, if f1 is migrated before f2, the
data link from s4 to s5 is congested. However, if f2 is migrated
before f1, the link from s3 to s5 is congested. Therefore, a
QoS-aware migration schedule should also consider the link

2

capacity constraint. Motivated by this scenario, in this work,
we form a feasible flow migration schedule that satisfies the
bandwidth demand, rule-space requirement, and QoS demands
of the flows by migrating the flows in groups with a consistent
update process.

In this work, we propose a feasible and consistent flow
migration approach for SDN, that balances data plane load
during the migration process. The proposed approach for data
plane load reduction for traffic flow migration in SDN, named
DART, consists of three modules — (a) generation of QoS-
aware migration schedule, (b) generation of feasible migration
schedule, and (c) rule-space management. Initially, DART for-
mulates a coalition graph game [11] to generate a QoS-aware
flow migration schedule. Based on the initial schedule, DART
verifies the possibility of link congestion and prepares a feasible
migration schedule. The rule-space capacity management module
deletes selected rules from the switches having low free rule-
space. Finally, the flow-paths are updated consistently according
to the schedule. The primary contributions of our work are as
follows:
• We formulate an Integer Linear Program (ILP) to maxi-

mize the number of latency-sensitive flows in each update
stage, considering data plane load.

• We formulate a coalition graph game to determine the
set of flows that must be migrated together. In this game,
we compute the utility value for each to-be-migrated flow.
Based on the utility, related flows are grouped, and an
initial flow migration schedule is formed.

• Based on the initial migration schedule, we design an
algorithm to transform the initial migration schedule to
a feasible schedule, which reduces link capacity violations.

• Additionally, we analyze the rule-space usage in the
switches and propose an algorithm that ensures the re-
quired rule-space for the migration process.

II. RELATED WORK

A. Consistent Flow Migration
Consistent flow migration approaches aim to preserve packet

consistency while rerouting flows. Reitblatt et al. [12] proposed
a two-phase update approach to guarantee packet consistency.
In this scheme, the first phase installs new flow-rules. However,
at this stage, the packets are processed by old flow-rules only.
The second phase stamps each incoming packet with a new
version number. Subsequently, the packets with new version
numbers are processed by new flow-rules. After the processing
of all the old packets, a garbage collection phase removes the
older flow-rules. However, this approach wastes rule-space due
to the storage of two versions of each flow-rule for the entire
update duration. Moreover, in the second phase, the new path
of flow may become functional before other to-be-migrated

flows and cause link congestion. McGeer et al. [13] proposed
a buffered update approach that buffers the incoming packets
at the control plane during an ongoing update. Additional rules
are installed in each switch to redirect packets to the control
plane. Mizrahi et al. [14] proposed a time-triggered scheme for
flow update which starts each update phase at a specific time. Lu
et al. [15] proposed an update approach that preserves packet
consistency by scheduling rule updates at specific time windows.
However, precise time synchronization depends entirely on the
characteristics of particular SDN switches. Basta et al. [16]
proposed a flow migration approach to reduce the number
of times a switch is updated to migrate all flows. In this
approach, the shortest common supersequence is generated
based on the switches in the new paths of the to-be-migrated
flows. The switches are updated sequentially according to the
supersequence. This approach considers homogeneous flows.

B. Capacity-Aware Flow Migration
Capacity-aware flow migration schemes focus on link capacity

and rule-space capacity constraints during flow migration. Lud-
wig et al. [17] proposed an ordered-update technique that sched-
ules flow-path update in multiple rounds. In this case, a round
starts only after the completion of the previous round. This work
aims to minimize the number of controller interactions and guar-
antee consistent flow migration. This approach does not store
additional flow-rules. However, in this approach, existing packets
processed by old flow-rules may be processed by new flow-rules
after the completion of an update round. Therefore, in this
scenario, the ordered update approach suffers from inconsistent
forwarding. Vissicchio and Cittadini [18] considered rule-space
capacity constraint and proposed a flow migration scheme by
combining the ordered update approach with version numbering
technique of two-phase update approach. This scheme reduces
the use of additional rules. However, this approach does not
consider the link capacity constraint. Zheng et al. [19] proposed
a time-synchronized scheme, named Chronicle, that schedules
the migration of multiple flows considering the link capacity
constraint. In this approach, the migrating flows are divided into
update blocks, and the update of each block is scheduled based
on resource dependency. However, the computational complexity
of the proposed approach is high. In another work, Amiri et al.
[20] designed a polynomial-time algorithm for congestion-free
migration of two flow. However, this approach does not work
for more than two migrating flows.

Table I shows the parameters considered in DART compared
to the related works.

Synthesis: From the exhaustive study of existing literature,
it is evident that there exists a need for a consistent traffic
flow migration scheme for SDN, which considers both rule-
space capacity and link capacity constraints. Moreover, existing
solution approaches ignore the diverse QoS demands of flows.
An uncoordinated schedule causes link congestion and rule-
space overflow. Therefore, in this work, we consider flow-specific
demands to generate a congestion-free flow migration schedule
for SDN. Additionally, we ensure the rule-space availability
required for the installation of new flow-rules.

III. SYSTEM MODEL

The system includes a set of network elements and a set of
traffic flows.

1) Network Elements: As shown in Figure 2, SDN involves
heterogeneous devices that transmit flows to switches via gate-
ways. The rule-space of each switch is managed by an SDN
controller. Let C and S denote the set of SDN controllers
and the set of SDN switches, respectively. The switches are
connected through data links and the controllers are connected
through inter-controller links. Moreover, a switch connects with

3

a controller through a control link. At time t, the rule-space
usage for switch sa ∈ S is represented as Ra(t). In this work,
we consider exact-match flow-rules, where a flow-rule is placed
for each traffic flow [7]. In this work, we assume that the
timeout value of a flow-rule is set to either a default value or
a value based on the application type. Let Rmax be the rule-
space capacity of a switch. At time t, the bandwidth usage and
capacity of the data link between sa and sb is denoted by lab(t)
and wab, respectively.

2) Traffic Flows: Let F denote the set of traf-
fic flows. A flow fj ∈ F is expressed by a tuple
<src(fj), dest(fj), bw(fj), P (fj), T

max
j >, where src(fj) de-

notes the source, dest(fj) is the destination, bw(fj) is the
bandwidth of fj , P (fj) is the ordered set of switches along
the path of fj , and Tmaxj is the maximum allowable delay for
fj . We define latency-sensitivity index (LSI) for fj as:

α(fj) =


0.5 +

T−Tmaxj

T
if Tmaxj < T,

0.5− Tmaxj −T
Tmaxj

if Tmaxj > T,

0.5 otherwise,

(1)

where T is the average flow processing delay in the network.
Equation (1) ensures that a traffic flow with a less maximum
allowable delay has high LSI. Subsequently, we normalize the
LSI to the 0 − 1 range. Mathematically, α(fj) =

α(fj)−αmin
αmax−αmin

,
where αmin and αmax denote the minimum and the maximum
LSI given by Equation (1).
F

′
⊂ F denotes the set of to-be-migrated flows. A flow fj is

a to-be-migrated flow if P (fj) 6= P
′
(fj), where P

′
(fj) is the

new path of fj after migration. In this work, we assume that
the initial and final paths of the traffic flows are determined by
the control plane. Additionally, we assume that the source and
destination of a flow fj ∈ F

′
are same in both initial and final

paths.

Definition 1 (To-Be-Updated Switch). A switch sa is termed a to-
be-updated switch for flow fj ∈ F

′
if the new path of fj includes at

least one data link involving sa that is not present in the old path.

Let S
′
(fj) denote the set of to-be-updated switches for fj ∈

F
′
. The migration of fj involves the update of each switch

sa ∈ S
′
(fj). For the migration of fj , the controller sends update

packets to all switches in the set S
′
(fj). Therefore, the maximum

rule update time required fj is Tfj =
(
|S

′
(fj)| − 1

)
∆ + δsc +∑

sa∈S
′
(fj)

γ(sa), where ∆ is the maximum time interval between

dispatch of two successive update messages from the controller,
δsc is the maximum controller-to-switch delay [14], and γ(sa)
is the update time of sa [21].

Let us consider that the network update procedure for traffic
flow migration begins at time t0. After t0, a packet is termed
old if it is processed by an old flow-rule. Otherwise, the packet
is termed new. Therefore, the migration of a traffic flow fj ∈ F
is termed consistent when each old packet follows the old path
only, and each new packet follows the new path only. We express
consistent flow migration as:

Ψ(fj) =

{
1 if fj is consistent during migration,
0 otherwise.

(2)

Let the flow migration process be divided into multiple update
stages, and in each stage, single or multiple flows are migrated,
based on the flow migration schedule. Let M be the total number
of update stages. To express the flow migration schedule, we
define a binary variable as:

χ(fj ,m) =

{
1 if fj ∈ F

′
is migrated in stage m,

0 otherwise.
(3)

Definition 2 (Correlated Flow). Two flows fi and fj are correlated
if at least one common link exists between the old (new) path of fi
and the new (old) path of fj .

The flows of an update stage are migrated in parallel if
multiple controllers initiate them. Therefore, the completion time
of a stage depends on the maximum rule update time of the flow
that consumes the maximum time among all flows of the stage.

Definition 3 (Stage Completion Time). The completion time of a
stage m is Dm = max

(
χ(fj ,m)Tfj

)
,∀fj ∈ F

′
.

Definition 4 (Flow Migration Duration). The migration duration of
each flow which is migrated in stage m is DR

m = (m0− t0) +Dm,
where m0 is the time when stage m starts.

The objective of this work is to include the maximum number
of latency-sensitive flows in each update stage, considering
data plane load. Therefore, we formulate the load-aware flow
migration problem (LFMP) as:

Maximize
χ

∑
fj∈F

′
χ(fj ,m)α(fj), ∀m ∈ [1,M] (4)

subject to∑
fj∈F

′
χ(fj ,m)Ψ(fj) =

∑
fj∈F

′
χ(fj ,m),∀m ∈ [1,M], (5)

Ra(t) ≤ Rmax, ∀sa ∈ S
′
(fj), ∀fj ∈ F

′
,

t ∈ [m0,m0 +Dm],m ≤M, (6)

DR
m ≤ Tmaxj , χ(fj ,m) = 1,m ≤M,∀fj ∈ F

′
, (7)

M∑
m=1

χ(fj ,m) = 1, ∀fj ∈ F
′
, (8)

lab(t) ≤ wab, ∀sa, sb ∈ S, a 6= b,

t ∈ [m0,m0 +Dm],m ≤M (9)

4

Equation (5) expresses the consistency constraint for traffic
flows in each update stage. The consistency constraint ensures
that each flow is consistent during migration. Equation (6)
represents the rule-space capacity constraint of switches during
the processing of each update stage. Equation (7) ensures that the
migration duration of each migrating traffic flow fj is within the
maximum allowable delay Tmaxj of the flow. Equation (8) ensures
that each flow is migrated only once. Equation (9) denotes the
link capacity constraint during the processing of each update
stage.

Theorem 1. LFMP is NP-hard.

Proof: To prove the NP-hardness of LFMP, we reduce
LFMP to the well-known 0 − 1 multidimensional knapsack
problem [22]. The 0−1 h−dimensional knapsack problem, which
is an NP-hard problem, involves a set of items so that each item
has a h−dimensional weight vector and a value. The goal is
to maximize the total value of items included in the knapsack,
given a knapsack with a fixed h−dimensional capacity vector.
The decision to include an item in a knapsack is binary, i.e.,
an item is added to the knapsack as a whole or not added.
We construct an instance I of the LFMP for an update stage
m. We reduce I to an instance I

′
of the 0− 1 two-dimensional

knapsack problem. Each flow fj in I refers each item in I
′
. The

vector (bw(fj), Ra(t)) , ∀sa ∈ S
′
(fj) corresponds to weight of

each item. LSI α(fj) correspond to the value of each item. The
vector (wab, R

max) is mapped to the capacity of the knapsack. In
this case, the value of the decision variable χ(fj ,m) is restricted
to 0 or 1, depending on whether fj is migrated in stage m or
not. The goal of I is to find a feasible solution that includes
the maximum number of flows with high LSI in each update
stage without violating the link capacity and rule-space capacity
constraints for any flow. Therefore, the optimal solution of I is
also the optimal solution to the instance of the 0− 1 knapsack
problem I

′
. Hence, the LFMP is also NP-hard.

As the optimization problem in Equation (4) is NP-hard, we
propose a heuristic approach for solving LFMP.

IV. DART: THE PROPOSED SCHEME

In this section, we present the proposed scheme, DART, which
has three modules — 1) generation of QoS-aware migration
schedule, 2) generation of feasible migration schedule, and 3)
rule-space management. The QoS-aware migration scheduling
module analyzes the QoS demand of each migrating flow
and generates an initial flow migration schedule. The feasible
migration scheduling module evaluates whether the initial flow
migration schedule is feasible or not and updates the schedule
to avoid link congestion. The rule-space management module
checks the available rule-space in each to-be-updated switch
and frees up rule-space as per the requirement. Lightly loaded
controllers can execute the first two modules related to the
generation of migration schedules in the control plane. For each
switch, the corresponding master controller executes the rule-
space management module.

A. Generation of QoS-Aware Migration Schedule
We formulate a coalition graph game to form groups of flows

so that each group is migrated in each update stage. In this
game, F

′
is the set of players. Each coalition Ak ∈ F

′
denotes

the set of flows {f1, f2, . . . , f|Ak|} which are migrated in an
update stage. Within a coalition, the flow with the highest LSI
is termed as the coalition-head. Therefore, a coalition-head has
|Ak|−1 children nodes, which are termed as coalition members.
To form the coalitions, the proposed game constructs a coalition
graph G = (F

′
, E), where E is the set of edges representing the

correlation between flows as defined in Definition 2. So, there
exists an edge between fi ∈ F

′
and fj ∈ F

′
if fi and fj are

correlated flows.

1) Suitability of the Coalition Graph Game for QoS-Aware
Migration Scheduling: The coalition game applies a fair and
cooperative strategy that is beneficial to all players. Moreover,
coalition game theory reduces computation overhead associated
with large-scale networks because the coalitions are formed
in a distributed manner. On the other hand, compared to
greedy algorithms, in a coalition game-based approach, the
probability of getting stuck at local optima is low because the
stable coalition is formed based on multiple applications of the
merge-and-split rules. The computation time in the coalition
game-based approach is significantly less than the ILP solution
generated by a solver. Hence, coalition game is widely used for
cooperative communication systems to serve several objectives,
including power-aware routing, collaborative task sensing, and
relay transmission [23].

Motivated by the aforementioned advantages of coalition
game, in this work, we use coalition game theory to migrate the
traffic flows, which cooperatively decide the optimum strategy
to satisfy their QoS demands and achieve Pareto optimal
distribution of link capacity. Moreover, the correlation between
flows serves as a critical aspect for forming the groups as the
update of one flow may cause link congestion in the flow-path of
a correlated flow. Accordingly, we formulate a coalition graph
game to form a QoS-aware flow migration schedule, where
migrating flows form cooperative groups, which are migrated
simultaneously in an update stage for optimal utilization of the
available link capacity.

Definition 5 (Coalition Structure). A coalition structure is a set of
coalitions VA = {A1, A2, . . . , AM}, where

⋃M
k=1Ak = F

′
, Ak ∩

Al = φ, ∀k 6= l.

2) Utility Function of a Coalition: The controllers aim
to maximize the cumulative payoff obtained from the utility
functions of the coalitions. Let U(Ak, VA) denote the utility
of a coalition Ak ∈ VA and uj(.) denote the utility of a
player fj ∈ Ak. The marginal utility of each flow fj increases
with decrease in the maximum rule update time of the flow.
Mathematically, ∂uj(.)

∂Tfj
< 0. The utility function uj(.) varies

linearly with the LSI, and the number of correlated flows in
the coalition (Nj) so that a high number of flows are migrated
in an update stage depending on their traffic characteristics.
Therefore, we get ∂uj(.)

∂α(fj)
> 0, and ∂uj(.)

∂Nj
> 0. Therefore, we

define the utility of a flow fj as:

uj(.) = Nj

(
α(fj)−

Tfj
Tmaxj

)
(10)

Hence, the utility function U(Ak, VA) is formulated as:

U(Ak, VA) =


∑

fj∈Ak
uj(.) if |Ak| > 1,

0 otherwise.
(11)

The total utility of the coalitions in VA is:

U(VA) =

M∑
k=1

U(Ak, VA) (12)

Equation (10) and Equation (11) ensure that the utility of
a coalition increases as more latency-sensitive flows with less
maximum rule update time and more number of correlated flows
are included in the coalition. Therefore, selecting a coalition with
high utility at an earlier update stage increases the possibility
that latency-sensitive flows are migrated without violating the
QoS requirements.

3) Coalition Graph Formation: The to-be-migrated traffic
flows, which are the players of the coalition graph game, form the
coalition graph based on the utility function defined in Equation
(12). We consider that the proposed coalition graph game is
hedonic, which implies that a player has a preference for the
choice of the coalition.

Definition 6 (Preference Relation). The relation VA �F ′′ VB

5

denotes that the way VA partitions F
′′

is preferred to the way VB
partitions F

′′
, where F

′′
⊆ F

′
is a set of players.

In this work, we consider Pareto order [24] as the basis for
the preference relation �. According to Pareto order, a coalition
structure VA is preferred over another VB if the change of
coalition structure from VB to VA improves utility for at least
one player without decreasing the utility of any other player.
Let uj(A) denote the utility of player fj which is a member of
coalition Ak ∈ VA. Mathematically,

VA �F ′′ VB ⇔ {uj(A) ≥ uj(B)},∀fj ∈ F
′′
,

F
′′

=
|VA∪VB |⋃
k=1

Ak, ∀Ak ∈ VA ∪ VB , (13)

with at least one player fx having the strict inequality ux(A) >
ux(B).

The coalitions are updated incrementally based on merge and
split rules as follows:

Definition 7 (Merge Rule). Merge any set of coalitions

{A1, A2, . . . , Ak} where {
k⋃
l=1

Al} �F ′′ {A1, A2, . . . , Ak}, F
′′

=

k⋃
l=1

Ai. Therefore, {A1, A2, . . . , Ak} →
k⋃
l=1

Al.

Definition 8 (Split Rule). Split any set of coalitions
k⋃
i=1

Al where

{A1, A2, . . . , Ak} �F ′′ {
k⋃
l=1

Al}, F
′′

=
k⋃
l=1

Al. Therefore,

k⋃
l=1

Al → {A1, A2, . . . , Ak}.

Therefore, multiple coalitions merge into a large coalition if
merging is preferable to the set of players according to Equation
(13). Similarly, one large coalition splits into multiple coalitions
if splitting is beneficial to the set of players. To restrict the search
space for the merge operation, we consider a greedy approach
to decide the potential candidates for the attempt of merging. In
this approach, a coalition Al attempts to merge with coalition
Ak only if there exists at least one edge eij ∈ E between fi ∈ Al
and fj ∈ Ak. This constraint ensures that the merged utility is
always positive.

Definition 9 (Stable Coalition). A coalition Ak ∈ VA is stable if
1) no player fj can improve its utility by leaving its coalition

Ak and acting individually.
2) no other coalition Al ∈ VA can improve its utility by joining

Ak.

Definition 10 (Stable Coalition Structure). A coalition structure VA
is stable if Ak ∈ VA, ∀k ∈ [1,M] is stable.

Algorithm 1 describes the generation of the initial migration
schedule. Initially, the flows form singleton coalitions. The Initial
Migration Scheduling Algorithm (IMSA) sorts the coalitions in
descending order based on the LSI values of the coalition-heads.
In each iteration, each coalition Ak forms a potential candidate
list Lk. The list Lk is sorted based on the LSI values of the
coalition-heads. Ak attempts to merge with the first coalition
in Lk. If the merge attempt is successful, both coalitions are
merged. Otherwise, Ak attempts to merge with the next coalition
in the list. This merge process can be performed distributively,
where each coalition makes a greedy attempt to merge with
the coalitions in its potential candidate list. After completing
greedy merge attempts for all coalitions, the split operation is
performed, if any split is possible. The merge and split process
is repeated until VA is stable. The initial migration schedule χ

′

is formed by scheduling the flows of each coalition from vA in
each update stage.

The time complexity of IMSA depends on the number of
merge and split attempts. For |F

′
| flows, the maximum number

Algorithm 1 Initial Migration Scheduling Algorithm (IMSA)

INPUT: F
′

. Set of migrating flows
OUTPUT: χ

′
. Initial migration schedule

PROCEDURE:
1: E ← E ∪ {eij} if fi ∈ F

′
and fj ∈ F

′
are correlated flows

2: Ak ← Ak ∪ {fk}, VA ← VA ∪ {Ak},∀fk ∈ F
′

3: do
4: Sort VA in descending order of the LSI values of the

coalition-heads
5: for all Ak ∈ VA do
6: Form potential candidate list Lk using E
7: Sort the coalitions in Lk in descending order of the LSI

values of the coalition-heads
8: if merge attempt successful for Al ∈ Lk then
9: Merge Ak and Al using Definition 7 and Update VA

10: else
11: Attempt merge with Al+1 ∈ Lk
12: end if
13: end for
14: Split coalitions in VA using Definition 8 and Update VA
15: while VA is not stable
16: Set χ

′
(fj , k) = 1, ∀fj ∈ Ak,∀Ak ∈ VA

17: return χ
′

of possible coalitions is |F
′
|. In the worst case, each coalition

attempts to merge with all the others. In this case, the first
coalition makes |F

′
| − 1 merge attempts, the second coalition

requires |F
′
| − 2 merge attempts, and so on. Therefore, the

maximum number of merge attempts is |F
′
|(|F

′
|−1)

2
. However,

in a practical scenario, the number of merge attempts is
significantly less as each coalition attempts to merge only with
coalitions in the potential candidate list. In the worst case, the
split operation of a coalition involves finding all partitions of
the coalition. The total number of partitions is given by the Bell
number [25], which grows exponentially with the number of
players in the coalition. However, in a practical scenario, once a
coalition splits based on the Pareto order as stated in Equation
(13), no further split is attempted. Therefore, the total number
of split attempts is significantly less in practice.

Theorem 2. IMSA converges to a stable coalition structure.

Proof: Initially, each player forms an individual coalition
having zero utility. Therefore, a player has the lowest utility value
when it acts individually. In subsequent iterations, each player
tries to increase its utility via the merge and split operations. This
process continues if at least one player is capable of improving its
utility by joining another coalition and a new coalition structure
is formed. However, the number of partitions of a set with a
finite number of elements is finite [25]. Therefore, the number
of coalition structures generated by IMSA is finite as F

′
is a

finite set, and IMSA reaches a final coalition structure. Moreover,
the termination of the merge and split process implies that no
coalition can improve its utility by joining another coalition.
Therefore, IMSA generates a stable coalition structure, VA.

B. Generation of Feasible Migration Schedule
The coalitions from the stable coalition structure VA are

selected one-by-one for consistent flow migration, and only
one coalition is migrated in each update stage. However, the
migration of a flow may trigger congestion in one or multiple
links. This is because those links have to-be-migrated flows
which are scheduled to be migrated in a later stage. Therefore,
prospective link congestion makes a flow migration schedule
infeasible. Therefore, we propose a greedy heuristic algorithm

6

Algorithm 2 Feasible Migration Scheduling Algorithm
(FMSA)

INPUTS: χ
′
, VA

OUTPUT: χ . Feasible migration schedule
PROCEDURE:

1: while m 6= |VA| do
2: for all fj ∈ F

′
do

3: if χ
′
(fj ,m) = 1, DR

m+1 ≤ Tmaxj , and migration of fj
violates link capacity constraint then

4: Set χ(fj ,m+ 1) = 1 and update VA
5: end if
6: end for
7: end while
8: return χ

to analyze the feasibility of the initial migration schedule and
prepare the final migration schedule that reduces the data link
load. Algorithm 2 shows the steps for the generation of a feasible
flow migration schedule.

Each iteration of the Feasible Migration Scheduling Al-
gorithm (FMSA) checks the initial migration schedule and
determines whether the migration of the flows in a stage is
feasible in terms of the link capacity constraint. If any flow
violates the link capacity constraint, FMSA moves the infeasible
flow to the next update stage. A flow fj belonging to stage m is
moved to the next stage m+1 only if the flow migration duration
for stage m+ 1 does not exceed the maximum allowable delay
Tmaxj of the flow fj . As we migrate the flows in each update stage
together, the possibility of link congestion reduces for some links,
and some infeasible flows become feasible. Therefore, FMSA
takes a greedy approach to allocate the infeasible flows to the
nearest update stage. FMSA runs in O(|F

′
|) time as each flow

in an update stage checks for link capacity violation based on
the bandwidth usage data of the links, which is available to the
controller.

C. Rule-Space Management
FMSA generates the final migration schedule, which reduces

link congestion during flow migration. However, another part
of the data plane load is rule-space usage. SDN switches have
limited rule-space, and the overflow of rule-space makes the
migration process inconsistent and incomplete. However, in each
stage, we update the switches based on the approach proposed
in our earlier work, CURE [26]. This approach deletes old
rules immediately after installing new flow-rules. Therefore, the
switches, which are part of both old and new paths of a flow,
require no additional rule-space. However, the switches, which
only belong to the new path, require the installation of additional
flow-rules to define the new path. So, we propose a heuristic
algorithm to ensure that these switches have enough capacity to
address the additional rule-space requirement.

The proposed rule-space management process requires the
deletion of unimportant flow-rules from the switches, which
have low free rule-space. To select the rules that are no longer
required, we estimate the popularity of the rules stored in the
rule-space of a switch. We sort the rules of the corresponding
switch in descending order of the received packet count. For sa,
the rule popularity is denoted by Θ = {θ1, θ2, θ3, . . . , θRa(t)},
where θk is the probability that a flow matches with the kth

rule. We estimate the rule popularity based on Zipf distribution
[27], which is θk =

1
kε

Ra(t)∑
b=1

1
bε

, where ε is the skewness of the

rule popularity. The value ε = 0 denotes uniform popularity
distribution and a larger ε signifies more uneven rule popularity.

Algorithm 3 shows the steps of the rule-space management
process based on the feasible flow migration schedule. The

Algorithm 3 Rule-Space Management Algorithm (RSMA)

INPUTS: χ, λ
OUTPUT: S

′′

PROCEDURE:
1: while m 6= |VA| do
2: for all fj ∈ F

′
do

3: if χ(fj ,m) = 1 then
4: S

′′ ← S
′′ ∪

(
P

′
(fj) \ P (fj)

)
5: addRules(sa) ← addRules(sa) + 1,∀sa ∈(

P
′
(fj) \ P (fj)

)
. Additional rule-space

required for migration
6: end if
7: end for
8: end while
9: for all sa ∈ S

′′
do

10: if Rmax −Ra(t) < addRules(sa) then
11: Delete addRules(sa) − (Rmax − Ra(t)) less popular

rules with remaining timeout greater than ζ
12: end if
13: end for
14: return S

′′

Rule-space Management Algorithm (RSMA) identifies the set of
switches S

′′
, requiring the installation of additional flow-rules.

Additionally, RSMA estimates the rule-space requirement for
each switch in S

′′
. To identify the overloaded switches, RSMA

checks if the available rule-space for any switch in S
′′

is less
than the additional rule-space required for migration. Finally,
RSMA frees the required rule-space in the overloaded switches
by deleting the required number of rules starting with the least
popular rule with remaining timeout greater than a pre-defined
threshold ζ. The value of ζ is fixed at a high value if the traffic
load of the network is high and new flow-rules are frequently
installed. The time complexity of RSMA is composed of two
parts — the time complexity for the formation of S

′′
and the

time complexity for the reduction of rule-space usage in the
overloaded switches. Each flow is visited to identify the set of
switches for inclusion in S

′′
. This operation is completed in

O(|F
′
|) time. The rule-space reduction process takes O(|S|) time

because, in the worst case, the reduction must be performed for
all switches. Therefore, RSMA run in O(|F

′
|+ |S|) time.

D. Consistent Flow Migration
The set of to-be-updated switches for update stage m, is

Sm =
⋃|F ′

|
j=1 S

′
(fj), where χ(fj ,m) = 1. For consistent flow

migration, in each update stage m, DART processes the old
packets and starts buffering the new packets at the switches
in Sm. This step ensures packet consistency. After processing
all the old packets, new flow-rules are installed, and old flow-
rules are deleted. This step addresses the rule-space capacity
constraint of the SDN switches as only a single version of a rule
is installed at a time. After the installation of all the required
flow-rules, DART processes the buffered packets [26]. A to-be-
updated switch sa ∈ Sm uses buffer of a suitable neighbor
switch to store the new packets if the buffer of sa is full.
In this case, sa receives queued packets from the neighbor
switch after stage m is complete [26]. For sa ∈ Sm, the
increase in packet queueing delay due to flow migration is

qa = 1
µ

(
− 1+QρQ+1−(Q+1)ρQ

(1−ρ)(1−ρQ+1)
+ 1+Q(ρ

′
)Q+1−(Q+1)(ρ

′
)Q

(1−ρ′)(1−(ρ
′
)Q+1)

)
,

7

where µ denotes the service rate at the switch, Q is the size of
the switch buffer, ρ is the traffic intensity at the switch before
stage m starts, and ρ

′
is the traffic intensity at the switch after

stage m completes [26].

Theorem 3. Flow migration in DART is blackhole free.

Proof: Let fj ∈ F
′

be a flow that is scheduled to be migrated
in stage m. In stage m, new flow-rules are installed in all switches
in S

′
(fj). However, the old packets are processed by the old flow-

rules before updating the first switch in stage m. As the update
of the first switch in stage m starts, the new packets are queued
until all switches in stage m complete update. Once stage m
completes update, the queued packets are handled by the new
flow-rules. Therefore, all packets that enter a switch belonging
to the old path P (fj) or to the new path P

′
(fj) is equal to the

packets that leave the switch. Since, no packet of a flow fj is
dropped, the flow migration process in DART is blackhole free.

Theorem 4. Flow migration in DART is loop free.

Proof: All the old packets of a flow fj ∈ F
′

are processed
by old rules entirely. New rules are installed to all switches in
S

′
(fj) before processing the new packets. Therefore, each packet

in fj either follows the old path P (fj) or the new path P
′
(fj).

Since, no packet is processed by incorrect flow-rules, the flow
migration in DART is loop free.

V. PERFORMANCE EVALUATION

A. Simulation Settings
We evaluate the performance of DART by implementing a

mesh network with 12 switches using OMNeT++. The source and
destination of each traffic flow are generated randomly and the
packets in each flow follow Poisson’s distribution. Additionally,
we set the packet arrival rate per switch as 0.005−0.025 million
packets per second (mpps) [26]. We set the bandwidth of each
traffic flow to 0.0001 − 0.39 Gbps [28]. The maximum link
capacity is set to 9.92 Gbps [28]. For the simulation, we consider
that 80% flows are latency-sensitive with the maximum allowable
delay 1−200 ms [29]. Table II shows the simulation parameters.

B. Benchmark Schemes
We compare the performance of DART with two benchmark

schemes — two-phase update [12] and Chronicle [19]. The two-
phase update is not incremental and schedules all traffic flows
simultaneously for migration. The two-phase update scheme
updates the ingress switches after updating the internal switches.
Chronicle partitions each migrating flow into update blocks and
the first switch in each update block is updated. We select
the two-phase update as one of the benchmark schemes to
show the effectiveness of incremental flow migration. We select
Chronicle to show the importance of considering flow-specific
QoS requirements along with the link capacity constraint.

C. Performance Metrics
• Flow migration duration: The migration duration of a traf-

fic flow is defined in Definition (4). This metric quantifies
the time required for a flow to change its path from old to
new.

• Maximum data link bandwidth usage: This metric shows
the maximum bandwidth usage of the data links during
flow migration. A high bandwidth usage signifies that the
possibility of link congestion is high.

• Rule-space usage for flow migration: This metric measures
the rule-space required for the flow migration process.

This metric is important because of the rule-space capacity
limitation of SDN switches.

• QoS violated flows: QoS violated flows are flows that have
a migration duration greater than the maximum allowable
delay. This metric shows the QoS-awareness of DART.

• Packet queueing delay: DART queues the new packets
during an ongoing flow migration. We measure the average
packet queueing delay to quantify the increased latency for
flow processing.

D. Result and Discussion
1) Flow Migration Duration: We estimate the average

migration duration by varying the number of flows. From Figure
3a, we observe that the average flow migration duration for
DART with 400 flows is 26.02% less than that of two-phase
update. According to Definition 3, the average flow migration
duration depends on the flow that consumes the maximum time
among all flows of an update stage. DART achieves better per-
formance because and DART migrates the flows incrementally
in multiple update stages and places time-consuming flows in
later update stages so that the latency-sensitive flows are not
affected. However, two-phase update migrates all flows at a time
and the migration process completes after all flows are migrated.
Moreover, we observe that the average flow migration duration
of Chronicle is similar to that of DART. This is because the
Chronicle is a time-triggered approach where controllers send
update messages in advance and the to-be-updated switches are
updated at the time scheduled for the corresponding update
block.

Figure 3b portrays the effects of LSI on the flow migration
duration for 400 traffic flows. For this experiment, we form 5
groups, each having 80 flows. The maximum allowable delay of
the flows in the group 1, group 2, group 3, group 4, and group 5
are [1, 200] ms, [201, 400] ms, [401, 600] ms, [601, 800] ms, and
[800, 1000] ms, respectively. We observe that the average flow
migration duration for both DART decreases as the latency-
sensitivity of migrating flows increases. In particular, for DART,

8

the average migration duration of the flows in the group 1 is
18.43% less than the flows in the group 5. However, the variation
of latency-sensitivity does not affect the migration duration
of benchmark schemes. Therefore, it is evident that DART
prioritizes latency-sensitive flows and schedules their migration
earlier to satisfy the QoS demands.

2) Maximum Data Link Bandwidth Usage: We analyze
the maximum data link bandwidth usage as it is the primary
contributor to the data plane load. Figure 4 sketches the
maximum data link bandwidth usage with varying number of
flows. We observe that the maximum data link bandwidth usage
is less for both DART and Chronicle because both schemes
reduce the possibility of link congestion. As mentioned in FMSA,
DART prepares the feasible flow migration schedule considering
the link capacity constraint. Therefore, for high traffic load,
DART proves to be a reliable scheme that reduces data loss
caused by link congestion.

3) Rule-Space Usage for Flow Migration: For DART and
the benchmark schemes, we estimate the additional rule-space
requirement because of the flow migration process. Figure 5
shows the average rule-space usage with varying traffic load. We
observe that DART uses 53.85% and 40.18% less rule-space as
compared to the two-phase update and Chronicle, respectively.
This is due to the fact that RSMA deletes the required number
of less popular rules to accommodate new flow-rules, and DART
performs consistent flow migration where old flow-rules are not
stored redundantly.

4) QoS Violated Flows: We analyze the amount of QoS
violation considering heterogeneous traffic where each flow fj
has a different QoS requirement in terms of the maximum
allowable delay Tmaxj . From Figure 6, we observe that QoS
violation in DART is 33.89% less than the same using the two-
phase update and 21.69% less than Chronicle. This is because
DART migrates the traffic flows in order of the LSI values so
that each flow satisfies the QoS demand. In Addition, DART
considers the link capacity constraint and schedules feasible
flows together.

5) Packet Queueing Delay: DART preserves packet consis-
tency by buffering new packets arriving at the to-be-updated
switches until the corresponding update stage completes. Figure
7 shows the average packet queueing delay for DART with
varying packet arrival rate. The simulation result implies that
although DART queues packets for ensuring packet consistency,
the packets are processed with a consistent rate.

From the above analysis, it is evident that the proposed
scheme, DART, significantly reduces the peak load of the data
links and additional rule-space usage for flow migration with
acceptable flow migration duration. Additionally, it is notewor-
thy to observe that DART achieves remarkable performance
in terms of addressing QoS demands of heterogeneous flows
considering heterogeneous traffic as an essential parameter of
realistic networks.

We solve the ILP formulated in Equation (4) using Gurobi
Optimizer [30]. Figure 8 shows the comparison between the
ILP solution and the proposed heuristic approach, DART. We

observe that DART achieves performance similar to the ILP
solution while having low computation time. In particular, for
80 flows, the average flow migration duration for DART is 2.37%
more compared to the ILP solution. This is because DART
solves the LFMP by forming coalitions based on the utility
function expressed in Equation (12) which aims to include the
maximum number of latency-sensitive flows in each coalition or
each update stage.

VI. CONCLUSION

In this paper, a traffic-aware flow-migration approach for
data plane load reduction in SDN was presented. The proposed
scheme, named DART, migrates traffic flows in different update
stages. Each update stage is formed based on the QoS demand of
the flows, and bandwidth usage of the links. DART also addresses
the rule-space capacity constraint so that no switch reaches its
rule-space capacity limit as a result of a flow migration. We
performed a detailed analysis of the performance of DART,
considering traffic load and QoS demand. Simulation results
show that DART reduces the additional rule-space usage by
53.85%, and QoS violation by 33.89% compared to the two-
phase update. To summarize, DART is computationally efficient
and is capable of addressing the challenges of the next generation
networks, which require QoS-aware processing with acceptable
performance.

In the future, we plan to extend this work considering
compressed rules. We also plan to study the impact of network
disruptions such as link failure and traffic spike. Additionally,
the future extension of this work includes the reduction of packet
queueing delay and controller overhead.

ACKNOWLEDGEMENT

A preliminary version of this work is published in
IEEE ICC 2020, Dublin, Ireland (June 7-11, 2020), DOI:
10.1109/ICC40277.2020.9148983.

REFERENCES

[1] A. Mondal, S. Misra, and I. Maity, “Buffer Size Evaluation of
OpenFlow Systems in Software-Defined Networks,” IEEE Syst. J.,
vol. 13, no. 2, pp. 1359–1366, Jun. 2019.

9

[2] S. Bera, S. Misra, and N. Saha, “Traffic-Aware Dynamic Controller
Assignment in SDN,” IEEE Trans. Commun., vol. 68, no. 7, pp.
4375–4382, 2020.

[3] M. Gharbieh, H. ElSawy, A. Bader, and M. Alouini, “Spatiotem-
poral Stochastic Modeling of IoT Enabled Cellular Networks:
Scalability and Stability Analysis,” IEEE Trans. Commun., vol. 65,
no. 8, pp. 3585–3600, Aug. 2017.

[4] K. Foerster, L. Vanbever, and R. Wattenhofer, “Latency and
Consistent Flow Migration: Relax for Lossless Updates,” in IFIP
Networking Conference, 2019, pp. 1–9.

[5] N. Saha, S. Misra, and S. Bera, “QoS-Aware Adaptive Flow-Rule
Aggregation in Software-Defined IoT,” in Proc. IEEE GLOBECOM,
2018, pp. 206–212.

[6] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “PIAS:
Practical Information-Agnostic Flow Scheduling for Commodity
Data Centers,” IEEE/ACM Trans. Netw., vol. 25, no. 4, pp. 1954–
1967, 2017.

[7] OpenFlow Switch Specification Version 1.5.1, Open
Networking Foundation, Accessed: May, 2020.
[Online]. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf

[8] I. Maity, A. Mondal, S. Misra, and C. Mandal, “Tensor-Based
Rule-Space Management System in SDN,” IEEE Syst. J., vol. 13,
no. 4, pp. 3921–3928, Dec. 2019.

[9] F. Yaghoubi, M. Furdek, A. Rostami, P. Öhlén, and L. Wosin-
ska, “Consistency-Aware Weather Disruption-Tolerant Routing in
SDN-Based Wireless Mesh Networks,” IEEE Trans. Netw. Service
Manag., vol. 15, no. 2, pp. 582–595, Jun. 2018.

[10] M. T. I. Ul Huque, G. Jourjon, C. Russell, and V. Gramoli,
“Software Defined Network’s Garbage Collection With Clean-Up
Packets,” IEEE Trans. Netw. Service Manag., vol. 16, no. 4, pp.
1595–1608, Dec. 2019.

[11] N. Bogdanović, D. Ampeliotis, and K. Berberidis, “A Coalitional
Game Theoretic Outlook on Distributed Adaptive Parameter Esti-
mation,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 2, pp.
416–429, Jun. 2017.

[12] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for Network Update,” in Proc. ACM SIGCOMM, New
York, NY, USA, 2012, pp. 323–334.

[13] R. McGeer, “A Safe, Efficient Update Protocol for Openflow
Networks,” in Proc. HOT SDN, New York, NY, USA, 2012, pp.
61–66.

[14] T. Mizrahi, E. Saat, and Y. Moses, “Timed Consistent Network
Updates in Software-Defined Networks,” IEEE/ACM Trans. Netw.,
vol. 24, no. 6, pp. 3412–3425, Dec. 2016.

[15] J. Lu, H. Xiong, F. He, Z. Zheng, and H. Li, “A Mixed-Critical
Consistent Update Algorithm in Software Defined Time-Triggered
Ethernet Using Time Window,” IEEE Access, vol. 8, pp. 65 554–
65 565, 2020.

[16] A. Basta, A. Blenk, S. Dudycz, A. Ludwig, and S. Schmid, “Efficient
Loop-Free Rerouting of Multiple SDN Flows,” IEEE/ACM Trans.
Netw., vol. 26, no. 2, pp. 948–961, Apr. 2018.

[17] A. Ludwig, J. Marcinkowski, and S. Schmid, “Scheduling Loop-
Free Network Updates: It’s Good to Relax!” in Proc. ACM PODC,
2015, p. 13–22.

[18] S. Vissicchio and L. Cittadini, “FLIP the (Flow) table: Fast
lightweight policy-preserving SDN updates,” in IEEE INFOCOM,
2016, pp. 1–9.

[19] J. Zheng, B. Li, C. Tian, K. Foerster, S. Schmid, G. Chen, J. Wu,
and R. Li, “Congestion-Free Rerouting of Multiple Flows in Timed
SDNs,” IEEE J. Sel. Areas Commun., vol. 37, no. 5, pp. 968–981,
2019.

[20] S. A. Amiri, S. Dudycz, M. Parham, S. Schmid, and S. Wiederrecht,
“On Polynomial-Time Congestion-Free Software-Defined Network
Updates,” in IFIP Networking Conference, 2019, pp. 1–9.

[21] X. Wen, B. Yang, Y. Chen, L. E. Li, K. Bu, P. Zheng, Y. Yang, and
C. Hu, “RuleTris: Minimizing Rule Update Latency for TCAM-
Based SDN Switches,” in Proc. IEEE ICDCS, 2016, pp. 179–188.

[22] A. Dalgkitsis, P. Mekikis, A. Antonopoulos, and C. Verik-
oukis, “Data Driven Service Orchestration for Vehicular Net-
works,” IEEE Trans. Intell. Transp. Syst., pp. 1–10, 2020, doi:
10.1109/TITS.2020.3011264.

[23] M. W. Baidas and A. B. MacKenzie, “Altruistic Coalition Forma-
tion in Cooperative Wireless Networks,” IEEE Trans. Commun.,
vol. 61, no. 11, pp. 4678–4689, 2013.

[24] W. Saad, Z. Han, M. Debbah, and A. Hjorungnes, “A Distributed
Coalition Formation Framework for Fair User Cooperation in
Wireless Networks,” IEEE Trans. Wireless Commun., vol. 8, no. 9,
pp. 4580–4593, Sep. 2009.

[25] M. Ahmed, M. Peng, M. Abana, S. Yan, and C. Wang, “Interference
Coordination in Heterogeneous Small-Cell Networks: A Coalition
Formation Game Approach,” IEEE Syst. J., vol. 12, no. 1, pp.
604–615, Mar. 2018.

[26] I. Maity, A. Mondal, S. Misra, and C. Mandal, “CURE: Consis-
tent Update With Redundancy Reduction in SDN,” IEEE Trans.
Commun., vol. 66, no. 9, pp. 3974–3981, Sep. 2018.

[27] A. F. Tayel, S. I. Rabia, and Y. Abouelseoud, “An Optimized Hybrid
Approach for Spectrum Handoff in Cognitive Radio Networks With
Non-Identical Channels,” IEEE Trans. Commun., vol. 64, no. 11,
pp. 4487–4496, Nov. 2016.

[28] Abilene Dataset, Accessed: May, 2020. [Online]. Available:
http://www.cs.utexas.edu/ yzhang/research/AbileneTM

[29] S. F. Abedin, M. G. R. Alam, S. M. A. Kazmi, N. H. Tran, D. Niyato,
and C. S. Hong, “Resource Allocation for Ultra-Reliable and
Enhanced Mobile Broadband IoT Applications in Fog Network,”
IEEE Trans. Commun., vol. 67, no. 1, pp. 489–502, Jan. 2019.

[30] Gurobi Optimizer, Gurobi Optimizer Reference Manual, Accessed:
May, 2020. [Online]. Available: http://www.gurobi.com

