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Abstract—In this paper, we propose a region-based pricing
scheme, named as RegPrice, for provisioning safety-related
decisions dynamically to the end-users. Typically, heterogeneous
type of sensor nodes are present in the device layer of Safe-
aaS. Considering the case of safety in road transportation, we
compute the fixed and variable costs incurred in procurement,
deployment, and maintenance for each of these different types
of sensor nodes. We introduce the concept of tariff cost, which
varies with the type of road in different regions and presence
of similar homogeneous sensor nodes deployed in that region.
Finally, we estimate the utility of a sensor node, which is a
function of the sensing area, ratio of the fixed cost to total
cost incurred, responsiveness factor, and rating given by an
end-user for that sensor node. The SSPs provide rent to the
sensor/vehicle owners for taking their sensor nodes on lease.
In order to formulate the interactions among the SSPs and
sensor owners, we apply first-price, sealed-bid auction-based game
theoretic approach, where SSPs act as bidders. Based on the
outcome of the auction, the sensor owners decide to which SSP
their sensor nodes are to be rented. Exhaustive simulation results
depict that the proposed pricing scheme, RegPrice, is capable of
reducing the expenses of a SSP by 7.51% and 9.71% compared
to the existing pricing schemes [1] and [2].

Keywords—Safety-as-a-Service (Safe-aaS), Region-based pric-
ing, Tariff cost, Auction, Feedback, Road transportation, IoT.

I. INTRODUCTION

IN the past few years, a growing interest is observed across
the different industries for integration of diverse IoT-based

technologies to improve product quality, efficiency, and reduce
downtime of machines [3]. On the other hand, in case of road
transportation industry, with the increase in number of on-road
vehicles, the number of road accidents have increased signif-
icantly. Therefore, provisioning of safety services to the end-
users is an important aspect of concern [4]. Various advanced
technologies such as Advanced Driver Assisstance Systems
(ADAS) [5] and Intelligent Transportation Systems (ITS) [6]
are developed for traffic management and congestion control.
However, prior intimation of safety-related information may
reduce on-road accidents. Safety-as-a-Service (Safe-aaS) [4]
infrastructure provides safety-related customized virtualized
decisions as services to multiple end-users simultaneously.
Therefore, we consider road transportation as an application
scenario of the Safe-aaS platform and propose a region-based
pricing scheme.

The end-users register to the Safe-aaS infrastructure and
request for certain decision parameters through a Web portal.
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Depending upon these selected decision parameters, the de-
cisions are provided to them. A SSP is a centralized entity
which manages the different activities of the Safe-aaS plat-
form. Additionally, the SSP pays certain amount of money as
rent to the sensor/vehicle owners and receives payment from
the end-users for delivering the decisions to them. Therefore,
complex monetary transactions are controlled by the SSP.
The complexity increases further in the presence of multiple
SSPs, where some of the SSPs may possess the tendency to
exploit the sensor/vehicle owners. Considering these issues,
we propose a pricing scheme to meet the requirements of the
SSPs as well as sensor/vehicle owners. The vehicle owners
may be active or passive. Active vehicle owners possess
inbuilt sensor nodes in their vehicles. On the other hand,
sensor nodes are externally placed into the vehicles of passive
vehicle owners. Based on the type of road and number of
homogeneous sensor nodes present in the region, we introduce
the concept of region-based cost, termed as tariff cost, which
varies for each of the passive vehicle owners. The proposed
scheme, RegPrice, imposes a fair price offered by the SSPs
and demanded by the sensor node owners.

The Safe-aaS architecture provides customized safety-
related decisions dynamically to the end-users, as per their
requests. These decisions are generated after processing,
analysis, and combination of multiple sensor data. Further,
the sensed data are generated from the sensor nodes taken
on lease by the SSP from various sensor/vehicle owners.
The SSP provides rent to these sensor/vehicle owners and
receives payment from the end-users. Therefore, complex
monetary transactions are involved among the actors of Safe-
aaS. In the presence of multiple SSPs, the situation becomes
complicated. The sensor owners may cumulatively set a high
price and unethically force SSPs to pay them the amount.
On the other hand, the SSPs may cumulatively set a lower
price for the sensor nodes and the sensot/vehicle owners may
incur substantial loss. Additionally, with the variations in the
mobility of the passive vehicles, the presence of homogeneous
sensor nodes and type of road may also vary across different
regions. Therefore, to address these issues, we propose a
region-based pricing scheme, which optimizes the profit of
the sensor/vehicle owners and the SSPs.

In this paper, we aim to address the following questions: (a)
How the fixed and variable costs change with different types
of sensor nodes? (b) How much amount is demanded by the
passive vehicle owners, which vary with the different road
conditions? and (c) How the sensor/vehicle owners select the
appropriate SSP among the multiple SSPs to rent their sensor
nodes? To address these questions, the proposed region-based
pricing scheme for provisioning safety services is useful,
while considering the profit of SSPs and rent paid by the end-
users. The specific contributions of this work are as follows:
• We propose a region-based pricing scheme among mul-

tiple SSPs and sensor owners, considering the presence
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of both the static and the mobile sensor nodes. Further,
we compute the fixed and the variable costs associated
with the static and mobile sensor nodes, respectively.

• The Safe-aaS architecture comprises various actors such
as sensor/vehicle owners, SSPs, and end-users. Addi-
tionally, the vehicle owners are categorized as active
and passive. We introduce the concept of tariff cost
paid to passive vehicle owners, which vary with the
road conditions of a particular region and the number
of homogeneous sensor nodes preset in that region.

• We compute the utility for each type of sensor nodes
based on (a) the effective sensing area, (b) the effective
evaluation element, (c) the responsiveness factor, (d)
the costs incurred due to procurement and maintenance,
and (e) the service cost for each sensor nodes. As the
responses provided by an active sensor node is continu-
ous in nature, we apply the beta distribution function to
estimate the expected value of responsiveness factor for
each of these nodes. Based on the feedback provided by
the end-users, we rate the performance of each sensor
node and compute the effective evaluation element.

• In order to formulate the interactions among the SSPs
and sensor node owners, we apply first-price sealed bid
auction-based game theoretic approach, where the SSPs
act as bidders. The winner SSP at the previous time
instant acts as the auctioneer. Based on the outcome
of the auction, the sensor owners decide to which SSP
these sensor nodes are to be rented.

• Extensive simulation results illustrate that the proposed
scheme, RegPrice, helps to reduce the expenditure of
service provider, and ratio of fixed cost to total cost
of the sensor nodes, compared to the existing pricing
schemes DOPHS [1] and CLABACUS [2].

II. RELATED WORK

This section discusses the prior research works done in the
domain of safety services in road transportation [3]–[5], [7]–
[9] and pricing for cloud services [2], [10]–[14], in general.
Certain schemes were proposed for maintenance of trust in
distributed networks [15], [16]. Safety is an essential aspect
of concern for both drivers and vehicles on rural as well as
urban roads. Further, the presence of horizontal curves on
rural roads act as one of the potential threats for drivers.
Karaduman et al. [9] proposed a model for prediction of
risks associated with curved roads using rear and front end
cameras installed on the vehicle. On the other hand, in urban
environment, the presence of pedestrians on road may affect
the vehicle platoons. Flores et al. [8] proposed a cooperative
system to predict the trajectory of the pedestrians to execute
speed reduction or emergency braking system. Similarly, Roy
et al. [3], [4], [7] proposed a unique platform, Safety-as-a-
Service (Safe-aaS), for provisioning customized safety-related
decisions to the end-users, as per their request. The authors
consider the presence of both static and mobile sensor nodes.

In the mobile cloud computing (MCC) environment, the
computational tasks are offloaded to the servers. Shah-
Mansouri et al. [10] addressed the problem of taking deci-
sion regarding the scheduling of tasks and price of services
provided. From the mobile users perspective, the authors
consider energy consumption, delay, and price of cloud ser-
vices, and for cloud service provider (CSP), their profit was
considered. Therefore, the authors jointly optimize the task
scheduler and pricing strategy of the CSP in a dynamic

MCC scenario. Similarly, Son and Sim [11] proposed a
negotiation mechanism for reservation of price and time slot
between CSPs and consumers. They allowed multiple agents
to concurrently make multiple proposals during a negotiation
round for different time slots. Further, Dabbagh et al. [12]
proposed an online pricing scheme for resource allocation in
cloud. The authors considered minimizing the energy con-
sumption, while maximizing the profit of the service provider
through the reduction of on-time of the servers. Therefore, a
trade-off is maintained between the energy consumption and
profit of a service provider. In another similar online pricing
mechanism proposed by Mashayekhy et al. [13], different type
of resources are considered and VM instances are allocated
dynamically. Further, in the domain of cloud computing,
the service provider possesses a tendency to increase their
profit and end-users have the desire to pay fair prices for
the resources. Sharma et al. [2] proposed a pricing scheme
termed as Clabacus (Cloud-Abacus) to satisfy the service
providers and clients. They proposed a general formula to
record the technological advances of cloud resources, ad
inflation and depreciation rate. In a service market model,
a reverse auction occurs, where any service provider gains
profit, if the prices set by that CSP is cheaper compared to the
other CSPs. Considering this scenario, Tanaka and Murakami
[17] proposed a possible solution based on Vickrey-Clarke-
Groves mechanism. They solved the service selection problem
in quasi-polynomial time and provided a satisfactory solution.

Synthesis : In the above discussed research works related
with pricing for provisioning cloud services in the IoT sce-
nario reveal that there exists a research lacuna on region-
based pricing. Further, Safe-aaS is a unique platform, which
is based on the concept of decision virtualization. With the
change in location of the vehicles, the sensor nodes attached
with the vehicles of passive vehicle owners attain mobility.
Additionally, the road conditions vary with different regions.
Therefore, the price charged by these passive vehicle owners
differ with the regions, where they provide services. None of
the existing pricing schemes consider mobility of the sensor
nodes or change in prices with regions. Therefore, we design
a region-based pricing scheme for provisioning customized
safety services to the end-users.

III. PROBLEM DESCRIPTION

A. Problem Scenario
We consider the case of Intelligent Transportation System

(ITS) scenario with Safe-aaS infrastructure implemeted. Safe-
aaS architecture is a unique platform in providing customized
safety-related decisions as services to multiple end-users. The
main actors of Safe-aaS are sensor owners, vehicle owners,
safety service provider (SSP), and end-users. The sensor and
vehicle owners rent their sensor nodes and vehicles to the
Safe-aaS architecture. Based on their profit and necessity, the
SSPs lease these sensor nodes and provide safety services to
the end-users. There are five layers in Safe-aaS – device, edge,
decision, decision virtualization, and application. The device
layer comprises heterogeneous types of static and mobile
sensor nodes, which sense and transmit data to the edge
node/cloud, based on the time-sensitive nature of the data.
Therefore, these sensor nodes may possess non-identical sens-
ing range and data transmission/reception rate. Static sensor
nodes are mostly used for continuous monitoring purposes,
therefore, the expenses incurred in their maintenance and
energy consumed is quite high compared to the mobile sensor
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nodes. The mobile sensor nodes are active only with the
variation in the geographical location of the vehicles. The
primarily processed sensor data are transmitted to the decision
layer, where the decision is generated. The logical mapping
of the decision parameters requested by the end-users and
decision to be delivered to them is done at the decision virtu-
alization layer. Further, the end-users register to the Safe-aaS
infrastructure and request certain decision parameters through
a Web portal. The application layer acts as the interface
between the end-users and the infrastructure. In real-life, the
road conditions may vary with various geographical regions,
as illustrated in Fig. 1. Therefore, the amount to be paid to
the passive vehicle owners belonging to different regions such
as hills and planes, fluctuates. Considering, the presence of
different types of roads, the sensing radius of sensor nodes,
and fluctuation of different fixed and variable costs associated
with these sensor nodes, we propose a pricing scheme for
the selection of the appropriate sensor node to provide safety
services. In addition to this, we compute the profit of the SSPs
depending upon the decisions to be virtualized.

B. Problem Formulation
We consider the presence of heterogeneous types of sensor

nodes in the device layer of the Safe-aaS architecture. These
nodes are either deployed at different geographical locations
or placed into the vehicles. We represent the set of sensor
nodes as S = {s1, s2, · · · , sn}, where si is the ith sensor
node. In our problem scenario, we consider sensor/vehicle
owners and multiple SSPs as the preliminary participants.
Let k sensor owners rent their n sensor nodes to the Safe-
aaS infrastructure. The set of sensor owners is denoted as
O = {o1, o2, · · · , ok}. Further, each of the sensor owners
owns multiple sensor nodes of different types. However, we
consider that each of the sensor nodes is not owned by
multiple sensor owners. These sensor owners rent their sensor
nodes to the SSPs. We denote any SSP as pi, such that
∀pi ∈ P and 1 ≤ pi ≤ m, where P denotes the set of SSPs.
The sensor owners may rent their sensor nodes to multiple
SSPs. Based on the type of sensor node, the price incurred
by a sensor owner varies. Therefore, the total expenses, Ci,jT ,
for the deployment, procurement, and other associated costs
of the ith sensor node incurred by the jth sensor owner is
mathematically expressed as:

Ci,jT =


Cs,iT = Cs,ifixed + Cs,ivari, static
Cme,iT = Cme,ifixed + Cme,ivari , externally-placed
Cmi,iT = Cmi,ifixed + Cmi,ivari , innate

(1)
In case of static sensor nodes, there are two types of fixed

costs – procurement (Cs,ip ) and deployment (Cs,id ) associated
with the purchase and deployment of the ith sensor node.
Therefore, Cs,ifixed = (a% of Cs,ip + Cs,id ). The procurement
costs may vary by a%, depending upon the time duration for
which the sensor node is active during the past t time instants.
The variable costs (Cvari) associated with the static sensor
nodes involve maintenance costs (Cs,im ), which is the amount
required for maintenance, and the expenses corresponding to
the ith sensor node, which may vary with time. On the other
hand, the mobile sensor nodes are categorized as – innate
and externally placed. The fixed costs associated with the
innate sensor nodes are significantly low or may be neglected.
The vehicles which have inbuilt sensor nodes incur only

Fig. 1: RegPrice: The System Architecture

maintenance costs (Cmi,im ). Therefore, Cmi,ivari = Cmi,im . In case
of externally placed type sensor nodes, fixed costs, Cme,ifixed

include procurement (Cme,ip ) and deployment (Cme,id ) costs.
Cme,ifixed = (x% of Cme,ip + Cme,id + Cme,it ), where x denotes
the variation in the procurement costs every time the sensor
node is rented. This fluctuation in the procurement cost of an
externally placed sensor node depends upon the condition of
the vehicle and the time duration for which the sensor node
was active during the past time instants. The variable costs
for externally placed sensor nodes comprise tariff (Cme,it ) and
maintenance (Cme,im ) costs, which is expressed as Cme,ivari =
(Cme,it + Cme,im ).

Definition 1. Tariff cost refers to the amount claimed by a
passive vehicle owner from the sensor owners for deploying
and carrying the externally placed sensor nodes to various
geographical locations.

Theorem 1. The tariff cost demanded by the passive vehi-
cle owners for the sensor nodes externally placed on their
vehicles vary with different regions.

Proof: In Safe-aaS, passive vehicle owners possess ve-
hicles with sensor nodes externally placed on them. The
passive vehicle owners receive rent from the sensor owners for
carrying their node to the respective locations. With the vari-
ation in the geographical region, the maintenance and other
associated costs fluctute. Therefore, the tariff cost demanded
by the passive vehicle owners also change. The driving and
maintenance of vehicle is easier in plane regions compared
to hilly areas. In addition to this, the maintenance costs
associated with these externally placed sensor nodes are more
for hilly regions. Therefore, based on the road conditions,
the passive vehicle owner may demand different rents. We
compute tariff cost, Cme,it , depending on two factors – (a)
route-grade (road conditions), and (b) presence of alternate
nodes in the region.

Route-Grade (RG): This represents the type of road and
friction between the road and vehicles. The various factors
that affect on-road friction are – (a) the type of pavement
(such as bituminous, concrete, and gravel), (b) the maximum
radii of road curves (ρ), and (c) super elevation (%) of the
road. With the decrease in friction, RG increases. However,
on-road friction lies within the specified range (fmax, fmin).
On the other hand, the vehicle owners maintain a certain
velocity, ν, to avoid accidents. As discussed in [18], the
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relationship between ν and ρ, %, and f is expressed as –
%+f = ν2

127ρ . With the increase in the radii of road curves and
super elevation, RG decreases. Therefore, RG is represented
as a four tuple, 〈ρ, %, f, Tp〉, where Tp is the type of pavement.
Mathematically:

Tp =


a− x, for bituminous
x− y, for concrete
y − b, for gravel

(2)

where a > 0, b < 1. The values of x and y (a < (x, y) < b)
are determined through mutual agreement between the passive
vehicle owner and the sensor owner.

Alternate-nodes (αe): With the mobility of the passive
vehicle owner through any geographical region, the other ho-
mogeneous sensor nodes present in that region are termed as
alternate-nodes. With the increase in the number of alternate-
nodes, the sensor owners possess multiple options to acquire
the sensed data from these nodes. Therefore, the vehicle
owners demand increased amount of rent for regions with
fewer number of alternate-nodes. The tariff cost varies directly
with RG and inversely with αe. Therefore, Cme,it = κRG

αe
,

where κ is a weight factor such that 0 ≤ κ ≤ 1. As the value
of RG and αe vary with regions, the tariff cost also fluctuates
with the change in the location of the vehicle.

Utility Computation: The sensor owners rent their nodes to
the SSPs. On the other hand, the SSPs utilize the data sensed
from these rented nodes to provide customized safety services
to the end-users. Therefore, the SSPs analyze the quality of the
sensor nodes, before they lease them. We measure the quality
of a node using the utility of the node. Further, we denote the
utility of a sensor node as a function of the effective sensing
area (Aes), responsiveness factor (Rf ), effective evaluation
element (Eeffe ), and the total cost incurred by the sensor
owner (Ci,jT ). We have, U = f(Aes, Rf , E

eff
e ,Ci,jT ).

Definition 2. Effective Sensing Area (Aes): The effective
sensing area of a node is defined as the ratio of the sensing
area of the node to the maximum possible sensing area of any
sensor node present in that region. Therefore, Ae,is =

Ai
s

As,max
,

where, Ais = πr2 and As,max = πr2
max, r and rmax represent

the sensing radius of the ith sensor node and the maximum
sensing radius of any sensor node present in that region,
respectively.

In order to generate a decision for the decision parameters
selected by the end-users, the SSPs request data from the
sensor node. Practically, a sensor node may not respond
properly due to adverse atmospheric conditions or any fault.
Therefore, we define a parameter, the responsiveness factor
(Rif ), of the ith sensor node. The responsiveness nature of
the ith sensor node is represented as: RF i = 〈0, 1〉, where
1 or 0 denotes that the sensor node is responsive or not.
The amount of positive and negative responses of any ith

sensor node is denoted as αi and βi, respectively. We use
the beta distribution function to compute the responsiveness
factor of any sensor node. The beta distribution function
is expressed as, f(p|αi, βi) = Γ(αi+βi)

Γ(αi)Γ(βi)
pαi−1(1 − p)βi−1,

where 0 ≤ p ≤ 1 and (α, β) ≥ 0, such that the probability
p 6= 0, if α < 1, and p 6= 1, if β < 1 [19]. Therefore, the
expected value of the beta distribution function, which gives
the value of Rif , is expressed as:

Rif = E(p) =
αi

αi + βi
(3)

Thus, the responsiveness factor predicts the response of the
sensor nodes. The feedback provided by the end-users also act
as an important factor to improve the efficiency of the safety
services. Considering this fact, we design a feedback system
to rate the performance of the sensor nodes. The feedback
provided by an end-user is processed to estimate the rating of
the sensor nodes involved in the decision generation process.

Feedback System: In order to compute the individual per-
formances of the active sensor nodes, we define a parameter
termed as evaluation element (Eie). Based on the feedback
of the end-users, the evaluation element is computed. The
end-users rate the decision provided to them in the form of
numeric values {1, 2, 3, 4, 5}, such that 1 and 5 denote the
minimum and highest rating, respectively. As the experience
of the end-user improves, the rating increases. Further, the
SSP updates the rating of the sensor nodes involved in the
particular decision generation process. Therefore, each time
the end-users receive decision, the grade of the sensor nodes
related with decision generation is updated. Let us consider
that the ith sensor node is involved in the generation of
n decisions during the past D days. Therefore, the ratings
for n decisions are represented as: ri = {ri1, ri2, · · · , rin}.
The rating, rk corresponds to the kth decision, where k =
1, 2, · · · , n, where the value of rik varies from 1 upto 5. The
evaluation element for the ith node is, Eie = 1

n

∑n
k=1 r

i
k.

Definition 3. Effective evaluation element (Eeffe ): Effective
evaluation element of a node is the ratio of the evaluation
element of the node to the maximum rating (rmax) that the
end-user provides. Therefore, Eeff,ie =

Ei
e

rmax
.

The utility (Ui) of a sensor node is directly proportional
to the effective sensing zone (Aes), responsiveness factor
(Rif ), effective evaluation element (Eeff,ie ), and indirectly
proportional to the expenses incurred in deployment and
maintenance of that node. We have,

U ti =
Aes ×Rif × Eeff,ie

e

(
1+

C
x,i
fixed

C
x,i
T

) (4)

where x in Cx,ifixed and Cx,iT represent the static, innate, and
externally placed type sensor nodes.

Algorithm 1 Computation of utility for each sensor node

INPUTS:
1: Cs,ifixed, Cs,ivari, C

me,i
fixed, Cme,ivari , Cmi,ifixed, Cmi,ivari

OUTPUT:
1: U ti - utility for each sensor node

PROCEDURE:
1: for i = 1 to n do . n - total number of sensor nodes
2: Compute Cifixed and Civari costs, based on their type,

as per Equations 1 and 7.
3: Compute Ae,is as per Defn. 2
4: Compute Rfi as per Equation 3.
5: Compute Eeff,ie as per Defn. 3.
6: Compute U ti as per Equation 4
7: end for

Distribution of sensor nodes among multiple SSPs: We
design our pricing scheme considering the profit of sensor
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owners and SSPs. Based on the decision parameters selected
by the end-users, the safety-related decisions are generated
and provided to them from the Safe-aaS infrastructure. On the
other hand, the sensed data are processed at the edge/cloud
to generate the decisions. Using the concept of decision
virtualization, a single decision is delivered to multiple end-
users at the same time. However, the end-users are completely
unaware of the back-end process of decision generation. Moti-
vated by the concept of the costs incurred for the creation and
maintenance of virtual machines, as proposed by Chatterjee
et al. [1], we design the expenses incurred by the SSP to
generate a virtual decision as Φvi = (Φci + Φmi (t − to)).
The combination of virtual decision creation (Φci ), and virtual
decision maintenance cost Φmi (t− t0) during the time period
(t − t0) results in Φvi . If bi represents the number of sensor
nodes involved in the generation of the ith decision, the
SSP spends Φv

i

bi
amount for each virtual decision. In order

to provide virtual decisions to multiple end-users, the only
expense incurred by the SSP is the maintenance of virtual
decisions. With the increase in the number of end-users’
requests for the same decision, the profit of the SSP increases.
As the same decision is virtualized among multiple end-
users, the amount charged by the SSP for that decision at
different time instants is miimized. In case the same decision
is virtualized to the ith and uth end-user at the time instant t
and (t+ 2), the amount paid by the uth end-user reduces by
a%. Therefore, the amount paid by the uth end-user,

Pju = P ji
(
1−

a×P j
i

100

P ji

)u
(5)

In Safe-aaS, various sensed data are collected, analyzed,
processed, and combined to generate a decision. On the other
hand, different decisions may be produced utilizing the same
sensor data. The net profit earned by a SSP for the ith

sensor node depends on the number of decisions generated
using the data of the ith sensor node. During the registration
process, the end-users select certain decision parameters and
make payment. As per the initial and destination points
selected by the end-users, decisions are delivered to them.
However, each of these end-users have the illusion that the
decision is generated only for them. Let n number of decision
parameters are present in the Safe-aaS architecture, which are
represented as a set, ρ = {ρ1, ρ2, · · · , ρn}. Suppose, the per
unit price for each of these decision parameters be denoted as,
ω = {p1, p2, · · · , pn}. If the jth end-user selects k decision
parameters, the price paid by him/her per unit distance is
Pjk =

∑k
j=1 pj . The payment given by the jth end-user as,

P ji =

{
(Fr + d× Pjk × t), for newly registered end-user
(d× Pjk × t), for already registered end-user

(6)
where, d is the distance for which safety service is re-

quested by the jth end-user and Fr is the registration fee
charged from the end-users. If the ith virtual decision is
delivered to e end-users, and each of them pays an amount,
P ji , then the total profit of the kth SSP for the ith virtual
decision is PTi,k =

∑e
j=1(P ji )− Φvi . Therefore, for Θ sensor

nodes involved with the generation of the ith virtual decision,
the total profit of the SSP per sensor node is PTi,k =

PT
i,k

Θ .
As the Safe-aaS platform provides safety-related decisions

to the end-users, any form of delay occurring during the data

transmission is undesirable. Considering this and motivated
by the concept of penalty cost [4], we consider service cost,
Ci,kS , for each of the sensor nodes. Based on the timely data
transmitted by the ith sensor node, the kth SSP pays Ci,kS to
the associated sensor owner. After evaluating the performance
of the ith sensor node for the entire day (24 hours), the amount
is paid by the SSP to the sensor owner. However, when the
ith sensor node is not capable of transmitting data during the
(0− tth) time duration, the SSP deducts a part of the amount
to be paid to the sensor owner. Let the time required for data
transmission be denoted as t. Further, let tth be the threshold
time up to which the delay is allowed by the SSP. Therefore,
the total amount of fine levied upon the sensor owner by the
SSP for ν days is,

Ci,kS =
(
Cif

(t− tth)

tth
)
× ν (7)

where, Cif represents the fine amount for per unit delay.
Therefore, the profit of the jth sensor owner at time instant,
t, is P j,kt =

∑x
i=1

(
Ci,kS +Rik − C

i,j
T

)
, where x denotes the

number of sensor nodes rented by that sensor owner and Rik
is the rent paid to the SSP.

IV. SOLUTION APPROACH: GAME THEORY - AUCTION
WITH INCOMPLETE INFORMATION

In our problem scenario, we formulate the interactions
among the SSPs and the sensor owners using first-price,
sealed-bid auction. Each of the SSPs acts as the bidders and
decides the price to be paid by them to the sensor owners.
The price/bid set by the SSPs are sealed and handed over to
the auctioneer. On the other hand, the SSP who was declared
as the winner in the auction, during the previous time instant,
(t− 1), acts as the auctioneer.

Definition 4. The process of bid submission done by the
bidders to the auctioneer is termed as action. Therefore,
action space for each of the kth bidders is denoted as the
Ak = [0,∞).

Definition 5. Type, T , for each of the bidder/SSP participat-
ing in the first-price, sealed-bid auction is the bidding value
submitted by each of the players. Therefore, type space for
the kth bidder is Tk = [0, vmax].

The maximum valuation provided by any bidder/SSP is
denoted as vmax. Therefore, based on the bids of other
bidders, the kth SSP/bidder tries to maximize its payoff.
Moreover, each of the bidders gives a bidding value, which
is assumed to be uniform and independent. We discuss in
Section IV-A the justification for adopting an auction-based
game theoretic approach.

A. Auction with incomplete information: Justification
As discussed in Section III, we consider a problem sce-

nario with heterogeneous sensor nodes belonging to different
sensor/vehicle owners. These sensor nodes sense and transmit
data to the edge layer/cloud, based on the time-critical nature
of data. Further, the decision is generated from the primarily
processed data and provided to the end-users. On the other
hand, the SSP rents these sensor nodes from the sensor owners
to provide safety services. The SSP may possess the tendency
to earn higher amount of profit and rent these sensor nodes at
a lower price. In the presence of multiple SSPs, a competition
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b∗k(vk) = β(vk, b−k(.)) = argmax
bi,k

ˆ vmax

0

PFk(b, v)f(v−k)dv−k = argmax
bi,k

(vi,k − bi,k)Pr(bi,k > bi,−k(vi,−k))+

1

n
(vi,k − bi,k)Pr(bi,k = bi,−k(vi,−k))

(9)

exists among the SSPs for the price charged by them. As a
result, the amount earned by the sensor owners decreases.
Therefore, there exists a competitive market scenario among
the sensor owners and the SSPs. The amount paid by any
of the SSPs to the sensor owners and the conditions involved
may be publicly available to the other SSPs. Considering these
facts, we position our problem scenario in an auction based
framework with incomplete information. The SSPs submit
non-negative sealed bids simultaneously. Thus, the chances
of using unfair means by these SSPs are avoided.

B. Game Formulation
In our problem scenario, the SSPs compete among one

another to rent a sensor node from the sensor owners. A SSP
participating in the auction submits the non-negative sealed
bid, bi,k. However, the other bidders/SSPs are aware of the
bid put forth by that SSP. Depending upon (a) the amount
end-users agree to pay for the decision generation, and (b)
the profit of the SSP, the bid is submitted by that SSP. The
SSP who submits the highest bid is declared as the winner.
In case multiple SSPs submit the same bid, the auctioneer
randomly selects the winner. However, both the SSPs and
sensor owners are bounded by some bidding rules such as
maximum/ceil price pc

1 and minimum/floor price, pf 2. We
consider that the kth bidder/SSP sets a value vi,k for the
ith sensor node. Further, the price paid to the auctioneer is
represented as – p = bi,k. Therefore, the utility of the kth

SSP is (vi,k − bi,k). The valuation, vi,k, for the ith sensor
node placed by the kth SSP is dependent on the minimum
price demanded by the sensor owner, Ci,k, and the utility of
the sensor node. Therefore, vi,k = (Ci,k+γkU

t
i ), where γk is

the weight factor that varies for different SSPs, and depends
on the maximum amount to be charged for the ith sensor
node. Based on the bidding value and valuation, the pay-off
function for the kth SSP is computed. Thus, we have,

PF(b, v) =


vi,k − bi,k, bi,k > bi,−k
vi,k−bi,k

n , bi,k = bi,−k,

0, bi,k < bi,−k

(8)

1The maximum price above which none of the SSPs claims to rent a sensor
node is termed as the ceil price

2The minimum price below which none of the SSPs pays rent for a sensor
node is termed as the floor price

where, bi,−k is the bid value submitted by the other
SSPs/bidders for the ith sensor node and n is the number
of sensor nodes present. We consider B as the set of bidders
participating in the auction, except the kth SSP, such that
B ∈ P. Further, the action of the kth bidder is represented
as bk(vk). Therefore, the best response of the kth bidder is
shown in Equation (9). f(v−k) denotes the probability density
function of the bidding values of other bidders, (v−k) and m is
the number of bidders/SSPs participating in the auction at that
time instant. Further, bi,−k(vi,−k) is the action of the other
bidders participating in the auction. The valuation of other
bidders/SSPs is denoted as vi,−k. Therefore, the Bayesian
equilibrium is expressed as: b∗k(vk) = β(vk, b

∗
−k(.)) and the

b∗−k(v−k) = β(v−k, b
∗
k(.)). In case other bidders place their

valuation, therefore, Pr(bi,k = bi,−k) = 0. The strategies of
the ith player/SSP in auction is denoted as,

bk(vi,k) = θk(vi,k − CLi,k) (10)
where CLi,k is the lease cost for the ith sensor node offered by
the kth SSP and θk is a positive constant (θk > 0). Similarly,
the strategies of other SSPs participating in the auction is
expressed as: b−k = (vi,−k) = θ−k(vi,−k−CLi,−k). Therefore,
the best response of the kth SSP is
b∗k(vk) = argmax

bi,k

(vi,k − bi,k)Pr(bi,k > bi,−k(vi,−k)) (11)

Further, on solving Equation (11), we obtain Equation (12).
Therefore, the best response of the kth bidder is obtained from
the optimality conditions computed after solving Equation
(11). The first order derivative of Equation (11) with respect
to bi,k is expressed as follows:

∂

(
(vi,k − bi,k)

((
bi,k+θ−kC

L
i,−k

)
θ−k

)(n−1))
∂bi,k

= 0 (13)

On solving Equation (13), we obtain the optimal value of
the bid put forth by the kth SSP, as given in Equation (14).

Algorithm 1 provides insight regarding the computation of
utility for each sensor node. In order to find utility of sensor
nodes, the fixed and variable costs associated with their type
are estimated. Further, the effective sensing area, effective
evaluation element, and responsive factor, for each of the
sensor node is estimated in steps 3–6. This value of utility acts
as the input to the computation of vi,j for each of the sensor
nodes, as mentioned in the step 2 of Algo. 2. Additionally, the

Pr
(
bi,k > bi,−k(vi,−k)

)
= Pr

(
bi,k > (θ−k(vi,−k − CLi,−k))(n−1)

)
= Pr

(
vi,−k <

(bi,k + θ−kC
L
i,−k

θ−k

)(n−1)
)

=

(
bi,k + θ−kC

L
i,−k

)
θ−k

(n−1) (12)

b∗k(vk) = β(vk, b−k(.)) =


θ−kC

L
i,−k−(n−1)vi,k

(n−2) , if θ−kCLi,−k > vi,k and n > 2
θ−kC

L
i,−k

(n−2) , if θ−kCLi,−k < vi,k and n > 2
(14)
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payoff function and best response of the bidder is determined
in the steps 3 and 4. The optimal value of the bid placed by
each of the bidders is computed in step 5 of Algo 2.

Algorithm 2 Auction-based game-theoretic approach

INPUTS:
1: U ti , Ci,k

OUTPUT:
1: Appropriate SSP is declared as winner by auctioneer

PROCEDURE:
1: for j = 1 to k do . k - total number of SSPs
2: Compute vi,j for each ith sensor node put forth by
jth SSP, based on Ci,k and U it

3: Compute PF(b, v) for each of the SSPs
4: Compute best response for each SSP, as per Equation 11
5: Find the optimal value of the bid set by the jth bidder/SSP
6: end for

V. PERFORMANCE EVALUATION

A. Simulation design
In real-life evironment, there are three types of road –

concrete, bituminous, and gtavel, depending upon the con-
struction material used. We consider two types of geograph-
ical region – plane and hilly. To analyze and evaluate the
performance of our proposed scheme, we combine the types
of road and regions into six types – (a) R1: plane region
with bituminous road, (b) R2: hilly region with bituminous
road, (c) R3: plane region with concrete road, (d) R4: hilly
region with concrete road, (e) R5: plane region with gravel
road, and (f) R6: hilly region with gravel road. We estimate
the tariff cost incurred by any sensor owner for these six
different regions. We use Matlab R2020B to simulate our
proposed scheme. In our simulation environment, we consider
the presence of both static and mobile sensor nodes, which
vary from 100–1000, within a simulation area of 10 × 10
km2. The mobile type sensor nodes attain mobility with the
variation in the geographical location of the vehicles. In order
to model the mobility of the vehicles and compute their speed
and velocity, we apply the Gauss-Markov mobility [20] model.
The speed (V tj ) and direction (Dt

j) of the jth vehicle is:

V tj = αV
(t−1)
j + (1− α)V̄j +

√
(1− α2)V

r(t−1)

j (15a)

Dt
j = αD

(t−1)
j + (1− α)D̄j +

√
(1− α2)D

r(t−1)

j (15b)
where α is the tuning parameter and 0 < α ≤ 1. The mean
value of speed and direction of the jth vehicle is represented
as V̄j and D̄j . The velocity and direction of the vehicle in the
immediate preceding time instant, (t−1) is denoted by V (t−1)

j

and D(t−1)
j respectively. The Gaussian random variables are

represented as V
r(t−1)

j and D
r(t−1)

j , respectively. Additionally,
we consider 95% confidential interval to reveal the variance
in the results for 100 simulation runs.

B. Benchmark Solution:
We compare the proposed pricing scheme, RegPrice, with

the existing dynamic and optimal pricing scheme for pro-
visioning Sensors-as-a-Service (Se-aaS) [1] and cloud-based
pricing scheme, considering both the service providers and
customers [2]. We termed the pricing schemes as DOPHS
[1] and CLABACUS [2]. The pricing scheme proposed by
Chatterjee et al. [1] considers the quality of information

TABLE I: Simulation Parameters

Parameter Value
Simulation area 10× 10Km2

Number of sensor nodes 100–1000
Range of payment 100–1500
Range of bituminous 0.10–0.25
Range of concrete 0.25–0.50
Range of gravel 0.50–0.75
sensing region 100–200

received to determine the expenses and the service cost.
On the other hand, Sharma et al. [2] computed the cloud
resource prices through mapping of the cloud parameters
with the option pricing parameters. However, sharing the
similar decision among multiple end-users using the concept
of decision virtualization is not considered in the existing
pricing schemes.

C. Results

We evaluate the performance of RegPrice, after detailed
experimentation, using the following metrics:
Total payment by end-users: Fig. 2, illustrates the variations
in the total payment done by an end-user with the increase
in the number of end-users from 10–200, while the initial
amount paid by an end user is varied from 500–1500 units.
Further, we consider the presence of three different SSPs -
SSP1, SSP2, and SSP3, who provided reduction factor of 1%,
3%, and 5% respectively. We observe that with the increase
in the number of end-users, the total amount paid by an end-
user follows a decreasing trend. Additionally, we observe that
in case of initial payment of the end-user as 1500 units and
allowable reduction factor as 5%, the slope of reduction in
the total amount paid by the end-users is greater compared
to the reduction factor of 1% and 3%. As the number of
end-users increases, the decision parameters selected by them
may overlap. The time required for processing and generation
of decision reduces. Therefore, the expenses incurred for
generation and maintenance of virtual decisions decreases.
This is one of the possible reasons behind the drop in the
total payment with the increase in the number of end-users.
Therefore, we conclude that the region-based pricing scheme
is beneficial for the end-users. Further, Fig. 3 depicts the
variation of total amount paid by the end-users for a virtual
decision with time. We vary the time from 10– 200 seconds
along the x-axis, in case of initial payment of 500, 1000, and
1500 units done by the end-user. We observe random varia-
tions in the total amount paid by the end-users. The number
and type of decision parameters requested by the end-users
may change with time. Further, same decision parameters may
be requested by different end-users. However, with time, the
decision parameters requested by the end-users may change.
On the other hand, through decision virtualization, a generated
decision may be simultaneously shared among multiple end-
users. Therefore, as the number of end-users requesting the
same decision parameter/s vary, randomness is also observed
in the amount paid by them.

Utility of a sensor node: As described in Equation 4, the
cost of the sensor nodes acts as one of the important factors
in determining the utility of that sensor node. Fig. 4 depicts
the variation in average utility of the sensor nodes with the
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increase in fixed cost associated with that node, and the ratio
of the fixed cost to total cost. We observe that in both the plots,
the average utility follows a decreasing trend in the presence
of 200, 400, and 600 sensor nodes. The average utility reduces
by 0.4% and 0.6% with the increase in fixed cost, in the
presence of 400 and 600 sensor nodes, compared to 200
sensor nodes. On the other hand, the average utility reduces
by 0.06% and 0.07% with the increase in the ratio of fixed
cost to total cost incurred for a sensor node, in the presence
of 400 and 600 sensor nodes, compared to 200 sensor nodes.
One of the possible reasons behind such variation of average
utility is that the utility of any sensor node is independent of
the presence of other sensor nodes.

Figs. 5(a) and 5(b) illustrate the effect of effective evalua-
tion on utility, with the help of pie charts, in the presence of
500 and 1000 sensor nodes. In both the cases, we observe that,
with the increase in the value of effective evaluation element,
its effect on utility increases from 2% to 18%. The reason
behind such behavior is that, with the increase in the value
of effective evaluation element, the rating provided by the
end-users for the decisions provided to them is high. Further,
each of the decisions is generated after combining different
data of sensor nodes. Therefore, these sensor nodes is more
likely to be trusted and selected for decision generation, and
its utility increases. However, both the pie charts illustrate
similar variations, which confirm the fact that the utility of
single sensor node does not depend upon the total number of
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sensor nodes participating in the bidding process.
Total cost: Fig. 6 demonstrates the variations in the to-

tal cost incurred by a sensor owner for innate, static, and
externally placed sensor nodes. We vary the number of
sensor nodes in the range 200–1000 along the x-axis. We
observe that the total cost is minimum for innate type sensor
nodes. The probable reason behind this is that the fixed costs
incurred for innate sensor nodes are negligible or minimum,
as these types of nodes are inbuilt into the vehicles. On the
other hand, the fixed costs incurred for static and externally
placed sensor nodes include procurement, deployment, and
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TABLE II: Summary of performance evaluation of bench-
marks compared to RegPrice

Parameter DOPHS CLABACUS Remarks
Service cost 0.78% 0.37% reduced
Expenditure of SSP 9.71% 7.51% reduced

maintenance costs. Therefore, we conclude that the total costs
incurred in case of static and externally placed sensor nodes
is always greater compared to the innate type sensor nodes.
Moreover, the total cost of a sensor node is independent
of the number of sensor nodes present in the simulation
environment. Additionally, it is inferred that the sensor owners
do not interact among themselves during bidding.

Tariff cost: One of the objectives of the proposed solution
is that the proposed pricing scheme should vary in different
geographical regions. In our simulation environment, we con-
sidered 6 different regions over which the heterogeneous types
of sensor nodes are deployed. Fig.7 illustrates the variations in
the tariff cost of any sensor node with the increase in the total
number of sensor nodes for the regions – R1, R2, R3, R4, R5
and R6, as described in Section V-A. We observe that the tariff
cost varies negligibly with the increase in the total number
of sensor nodes. However, the value of tariff cost fluctuates
region-wise. The possible reason behind this phenomenon is
that the tariff cost demanded by the passive vehicle owners
belonging to different regions is different. Additionally, the
tariff cost increases in case the road construction material is
bituminous, gravel, or, concrete. We also observe that the tariff
cost is higher for hilly regions, as compared to the planes,
probably due to the presence of less number of homogeneous
sensor nodes in that region.
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Expenses of end-users: Fig. 8 illustrates the comparison
of the proposed pricing scheme, RegPrice, with the existing
pricing schemes [1], [2]. We observe that the cumulative
service cost increases with the increase in the number of

TABLE III: Summary of performance evaluation of RegPrice

Parameter Remarks
Total payment (Re-
duction factor 1%,
3%, and 5%)

reduces with increase in number of
end-users

Total payment randomly varies with time
Average utility reduces with increase in fixed costs

and ratio of fixed and total costs
Total cost innate < static < externally placed

sensor nodes
Tariff cost R1 < R2 < R3 < R4 < R5 <

R6

service days. Further, the cumulative service cost reduces by
0.78% and 0.37% compared with DOPHS and CLABACUS.
However, in case of our proposed scheme, the cumulative
service cost increases due to the fine amount charged by a
SSP for per unit delay. On the other hand, the expenditure of
the service provider is reduced by 9.71% and 7.51% compared
to DOPHS and CLABACUS. On the other hand, in case
of RegPrice, the ratio of fixed cost to total cost follows a
decreasing trend with the increase in the number of days. The
ratio of fixed costs to total cost follows a decreasing trend for
DOPHS and seems to be increasing in case of CLABACUS.

VI. CONCLUSION

In this paper, we proposed a region-based pricing scheme,
RegPrice, for provisioning customized safety services to the
end-users. Based on the different regions, the rent demanded
by the passive vehicle owners may fluctuate. Considering this
fact, we introduced the concept of tariff cost. After finding
the cost of each sensor nodes, we estimate their utility. We
considered the presence of multiple SSPs in our scenario.
In order to model the interactions among the sensor owners
and SSPs, we applied first-price sealed bid auction-based
game-theoretic approach, where SSPs act as bidders. For
the distribution of sensor nodes, we considered auction with
incomplete information, where the SSPs only possess infor-
mation about their own bid and do not have any information
regarding the other bidders. The bidding process distributes
the sensor nodes among SSPs maximizing the profit of both
owners and SSPs. Extensive simulation results showed that
the proposed scheme reduces the expenses incurred by a SSP
compared to the existing pricing schemes.

In future, we plan to extend our work by considering the
dynamic distribution of sensor nodes among the SSPs. Our
proposed pricing scheme increases the feasibility of real world
implementation of Safe-aaS as it optimizes the profit of SSPs
as well as sensor owners. Therefore, we plan to implement
the proposed pricing scheme with the Safe-aaS infrastructure
in real-life environment.
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