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Abstract—In this paper, we propose a trustworthy service pro-
visioning scheme for Safety-as-a-Service (Safe-aaS) infrastructure
in IoT-based intelligent transport systems. Typically, a Safe-
aaS infrastructure provides customized safety-related decisions
dynamically to multiple end-users using the concept of decision
virtualization. We consider road transportation as the application
environment of Safe-aaS to generate trustworthy decisions. On
the other hand, the efficiency and accuracy of the decisions
generated depend on the security, privacy, and trustworthiness
of the participating sensor nodes and the route through which
data transit. We propose a trust evaluation model to compute the
trustworthiness of the data generated from these nodes. Further,
we consider direct and indirect trust mechanisms for each of the
sensor nodes and update their trust measures at regular intervals
of time. Based on these measures, we evaluate the trust of each
data item sourced from the network. We formulate an integer
linear programming (ILP) model to select the optimal data for
decision-making, while alleviating the effects of illegitimate sensor
nodes. Further, we show that the formulated ILP problem is
NP-hard and use a dynamic programming approach to solve
the problem. Experimental results show that our proposed trust
evaluation model exhibits more than 8% attack detection rate
and 13% reduction in false attack detection rate in a network
with 50% malicious nodes, compared to the benchmark schemes.
The proposed trustworthy data selection algorithm outperforms
different existing greedy approaches.

Index Terms—Safety-as-a-Service, Safety services, Trust, Sen-
sor network, IoT, Industrial IoT, Industrial safety, Road trans-
portation

I. INTRODUCTION

NTERNET of Things (IoT)-based solutions can provide
I improved safety to individuals and machines across various
industries by integrating different advanced technologies [1],
[2]. These solutions can assist in providing proper information
to the customers in a timely manner by integrating edge com-
puting technologies [3]-[5]. The Safe-aaS platform provides
safety-related customized decisions as services to the end-users
[6], [7]. Considering the road industry as one of the application
scenarios, we propose a trustworthy safety service provisioning
scheme for the Safe-aaS infrastructure. Efficient and error-
free decision making depends on the security, privacy, and
trustworthiness of the participating sensor nodes deployed for
collecting and forwarding the sensed data [8], [9]. Due to the
sensitivity of the road safety-related decisions, any incorrect
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or unauthentic data used for decision generation may lead to
compromised road safety situations.

In this paper, we propose a trustworthy service provisioning
scheme, T-Safe, based on the trustworthiness of the sensed
data. In order to evaluate the trustworthiness of the sensed
data, we first propose a trust evaluation model and then design
a trust update method for the sensor nodes. Based on the role
and network activity, we consider different trust parameters
of the sensor nodes for trust evaluation. Thereafter, depending
on the trust values of the nodes, we assess the trust for every
unit of data collected from the nodes by considering the entire
data path. Additionally, due to the high data analytics cost
charged by the service providers, selecting only meaningful
and trustful data for decision making and other processing
is very crucial [10]-[12]. We apply a dynamic programming
approach to solve this problem and achieve the trust level
requirement with reliable and minimum volume of data.

A. Motivation

With the adoption of IoT in the transportation industry,
vehicle riders have access to different road safety-related in-
formation. However, there always exist concerns related to the
privacy, security, and trustworthiness of the information. Safe-
aaS provides safety-related customized decisions for the end-
users, as per their requests. As the trust of the data increases,
the trustworthiness of the safety decisions improve. Therefore,
the risk of the influence of attacking agents is minimized.
Different existing trust management schemes consider different
trust models to evaluate the trust parameters of each sensor
node uniformly, irrespective of their role and participation.
However, in various industrial applications such as the road
transportation industry, the sensed data is transmitted to the
cloud through multi-hop paths. Further, data transmission paths
vary with time due to different aspects such as the presence
of neighbor nodes, their trust values, and distance between the
nodes. Therefore, trust evaluation of the sensed data collected
typically at cloud is necessary. Additionally, various character-
istics of the sensor nodes and network parameters of the other
nodes, which take part in the decision generation process are
required to be considered. Moreover, the trust values of the
sensor nodes need to be updated in a timely manner, such that
their performances and behaviors are reflected. The sensed data
with their updated trust scores help in trustworthy data selec-
tion. These trust scores help in discarding the malicious and
untrustful data and reducing the data processing costs. On the
other hand, trustworthy data selection helps to maximize the
effectiveness of the decisions, while considering the limitations



on trust requirement and data analytics cost, depending on the
data volume. Considering the above mentioned trust-related
constraints for decision making, we propose a trust model to
assess the trustworthiness of each node. Unlike the existing
trust-based approaches, we categorize the nodes as data source
nodes and data forwarding nodes.

B. Contribution

In this work, we consider different aspects of the sensed
data for Safe-aaS infrastructure, starting from the data source
to the server, with an aim to provide trustworthy services for
the decision-generation process. In particular, for road safety
scenarios, where the cloud, typically, performs various data
analytics and generate safety-related decisions, the proposed
solution accounts for the following: a) non-identical trust
evaluation for data source node and data forwarding node,
b) window-based trust update method, c) assessment of data
trust, and d) optimal selection of trustworthy data for decision
making. In summary, the specific contributions of this paper
are as follows:

e We propose a trust evaluation model to assess the trust-
worthiness of the participating nodes. We consider both
the intrinsic characteristics and the roles of the nodes in
making the data available at the cloud.

e We evaluate the direct and indirect trust values of the
sensor nodes in each time slot, based on their participation
in data forwarding and performances. Further, considering
the window period, we propose a sliding window-based
trust update method and update the trust values of the
nodes.

o We assess the trustworthiness of data coming from each
data source node based on the entire path the data tran-
sited through. We formulate the trustworthy data selection
problem as an ILP problem and since the ILP is NP-hard
to solve, we present a dynamic programming algorithm
to solve the problem efficiently. Further, we evaluate
the proposed trust model and optimal data selection
algorithms.

o Extensive experimental results show that in a system
with 50% malicious nodes, our proposed model, T-Safe,
achieves more than 8% malicious node detection rate
and 13% reduction in false detection, compared to the
state-of-the-art. The data selection algorithm also achieves
improved results when compared to different existing
greedy approaches.

The remainder of this paper is organized as follows. In
Section II, we discuss and analyze the related state-of-the-art.
In Section III, we present the system architecture followed
by the evaluation and trust update mechanism in Section IV.
Section V solves the problem of trustworthy data process-
ing with limited resources using the dynamic programming
heuristic approach. In Section VI, we present the performance
evaluation, and finally, conclude the paper in Section VIL

II. RELATED WORK

In this Section, we discuss the existing researches done
for the evaluation of trust and risk of the network. Trust is

modeled as one of the important parameters in the domain of
network security. Theodorakopoulos and Baras [13] evaluated
the trust evidence in ad-hoc networks. Further, the authors
modeled the trust evaluation process as a directed graph, where
the nodes represent the entities and the edges as the trust
relations. Additionally, they proved their proposed scheme
as robust in the presence of the attackers in the network.
Similarly, Can and Bhargava [14] designed an algorithm to
compute the trustworthiness in a peer-to-peer system, based
on past interactions. Additionally, the authors showed that the
proposed model was capable of reducing 16 different malicious
attacks. A machine learning-based trust evaluation model was
proposed by Han et al. [15] for underwater acoustic sensor
networks. The authors used the K-means algorithm and the
support vector machine-based supervised learning for attack
classification.

In a multi-cloud environment, various issues such as re-
source scaling, security, and service complexity may arise due
to the centralized architecture. Wahab et al. [16] proposed a
three-fold solution to the centralized cloud platform — trust-
establishment architecture, bootstrapping method, and a hedo-
nic coalition game, to provide a distributed form of trustworthy
multi-cloud community. The authors performed experiments
with real-life data sets and showed that the number of mali-
cious services is minimized. Another game theoretic approach
was proposed by Rani et al. [17] to detect malicious activities
in an IoT environment. In the proposed scheme, the authors
used a cluster formation game to promote the sensor nodes to
participate in the game, and then, based on the minimum set of
recommendations, maintain the trust value inside the clusters.
Subsequently, for anomaly detection, the activity-based trust
dilemma game is used.

On the other hand, wireless multimedia sensor network
(WMSN) comprise of camera and scalar sensors, which may
be prone to security issues. Considering these issues and topol-
ogy management in WMSNs, Mali and Misra [18] designed
a trust-based topology management scheme. They utilized the
signal strength of the control packets to set up the distributed
topology. In the recent work proposed by Wang er al. [19],
a trust model for trustworthy data collection for mobile fog
computing was proposed. In this work, the evaluated trust
values of the nodes are used by the mobile fog nodes to
selectively consider the data from the cluster heads. In an IoT
environment, a massive volume of sensitive data is accessible
in the ecosystem. Recently, Jayasinghe et al. [20] proposed
an intelligent trust computational model by introducing the
concept of trust for humans and services to avoid uncertainty
and risks. Further, the authors computed the individual trust
attributes and proposed a machine learning-based algorithm
to categorize the extracted trust features and merge them to
generate the final decision. In another recent work, Razaque et
al. [21] proposed a trust-based model for risk management in
the cloud using fuzzy mathematics and gray relational theory.

Synthesis: From the detailed analysis of the state-of-the-
art, we find that a research lacuna exists on the trustwor-
thiness of the data that undergo data analytics and decision-
making processes. The existing trust evaluation approaches
only consider the node trust, irrespective of the data either
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Figure 1: T-Safe: The system architecture

sensed or forwarded by them for further analysis at the cloud.
However, in real scenarios, such as the road transportation
industry, where sensitive safety decisions fully depend on
the data collected, both node and data trust assessment are
required, while considering the intrinsic characteristics of the
nodes, their functionalities, and behaviors in the network.
Further, considering the high cost charged by the cloud service
providers for IoT data analytics [10]-[12], there exists a
requirement to consider minimum data with higher trust values
for the decisions to be effective and reliable.

III. SYSTEM ARCHITECTURE

We consider an intelligent transport system, which provides
safety services to the on-road vehicle riders and other users,
as shown in Figure 1. In our proposed scheme, we adopt
the Safety-as-a-Service architecture [6] throughout the process
of data collection and decision generation. Safe-aaS follows
the concept of service-oriented architecture in which the end-
users request safety-related services. The four main actors of
Safe-aaS are the end-users, the sensor owners, the vehicle
owners, and the safety service provider. Typically, a Safe-
aaS infrastructure comprises five distinct layers — device, edge,
decision, decision virtualization, and application.

Heterogeneous types of static and mobile sensor nodes are
either deployed at a particular geographical location or on
the vehicles in the device layer. These nodes at the device
layer sense the data, and then, based on the time-sensitiveness,
transmit them to the edge layer or cloud. Sensor nodes
embedded in the vehicles send the sensed values along with
the timestamp and present coordinates. Further, the decisions
are generated from the primarily processed data in the decision
layer. The timely reports collected from the cloud make the
decisions more efficient. The decision virtualization layer maps
the decision parameters requested by the end-users and the
decisions to be provided to them. Multiple end-users receive
the same decision simultaneously using the concept of decision
virtualization. On the other hand, the application layer acts as
the junction for communication among the end-users and the
Safe-aaS architecture. The end-users register, select specific
decision parameters, and pay rent through the web portal.

Further, the end-users remain completely agnostic of the back-
end process of decision generation.

Typically, in a practical scenario, the data sensed by the
sensor nodes are either directly transmitted to the cloud or
forwarded through the relay nodes, as shown in Figure 1.
Further, the data sensed by the nodes are vulnerable to attacks
and are prone to security threats. The integrity of this data may
be reformed or modified by any attacker during the process of
data transmission. In such a situation, the decisions generated
from these sensor data may be misleading in nature. Therefore,
we design a trustworthy decision generation scheme, while
considering the trust of the data collected from the sensor
nodes.

A. Mathematical Formulation

In the Safe-aaS architecture, heterogeneous sensor nodes are
present in the device layer. We consider S = {S1, Sa,- -+, S, }
as the set of sensor nodes deployed at different geographical
locations or vehicles. We define the tuple of time epochs
{0,7}, where p represents the data collection epoch, during
which every node sends the sensed values to the cloud, and ~
represents the decision epoch consisting of K data collection
epochs. During data transmission, some sensor nodes act as
data source nodes and the other intermediate nodes act as the
nodes. Suppose, S and R represent the set of source nodes
and relay nodes, respectively. Therefore, {S, R} € S. Further,
we consider that each of the sensor nodes possesses two trust
values — direct and indirect trusts. Based on the role involved
during data transmission, the trust values are assigned to the
nodes. ‘

Definition 1 Direct trust (m7): Direct trust of node j is the
trustworthiness of data source node denoted as a four-tuple
(S, D, E, A), which are security and privacy parameters, data
trust, energy trust, and data acceptance rate.

Definition 2 Indirect trust (7r1]- ): Indirect trust of node j is
the trustworthiness in data forwarding denoted as a triplet
(S, R, E), which are security and privacy parameters, referral
trust evaluated by neighbors, and energy trust. ,

We consider both the direct () and indirect trust (m))
values within [0, 1]. For each decision epoch, these values
are evaluated and updated for all the nodes. During a data
collection epoch p, the data sent by each node j is assessed
and assigned a data trust value DZ,. After completing K such
data epochs, the total data trust value for the entire K data
collection epochs is computed. Considering the minimum data
trust requirement D for reliable decision-making, we choose
only the trustworthy data with minimum data volume for
further processing. For the trust evaluation of sensor-enabled
vehicles, we consider the vehicles which remain active for at
least one decision epoch.

IV. T-SAFE: TRUST EVALUATION MODEL
A. Trust Parameters
1) Security and Privacy: Security and privacy play a sig-
nificant role in an industrial IoT environment, where starting
from the data capturing end devices to the decision layer,
everywhere there exists the possibility of threats and attacks.



In this scenario, we consider — confidentiality, integrity, and
availability — known as the triad of a security architecture [22].

i) Confidentiality: We categorize the confidentiality require-
ments in a Safe-aaS architecture into confidentiality at the
endpoints (C.) and confidentiality of communication (Cp,).
The first parameter considers how the data collecting sensor
nodes store the keys and other confidential data information
in the device itself — termed as confidentiality of data-at-
rest. The second parameter deals with the data encryption
method to secure data-in-motion. Different end devices have
different confidentiality mechanisms with varying security
strength levels. Confidentiality, considering encrypted data
storage and encrypted communication technique, is calculated
as S¢ = C, + C,,, where C, and C,, represent the level of
the confidentiality mechanism used.

ii) Integrity: We consider endpoint integrity (i.e., I.), which
ensures the authentication of endpoints through mechanisms
such as certificate-based authentication, password and key-
based systems. On the other hand, Integrity of communication
(i.e., I,,) reports the data modification during transit through
mechanisms such as MAC and digital signatures. So, the
integrity is expressed as S; = I. + I,,,, where I, and I,
represent the level of integrity mechanism used.

iii) Availability: Availability is computed based on the
security and privacy primitives realized during data collection
by the server against the service level agreement (SLA) and
privacy level agreement (PLA) of the device. If, during a
time period 7', the successful number of times SLA and PLA
followed is S, and the corresponding failure number is F7,
then the availability trust can be computed as Sy = SLSTLFL

During a decision epoch, if a sensor node actively sends
data for ¢ number of times, then the security and privacy trust
of the sensor node is expressed as Ts = (S¢ + S7)t + Sa.

2) Data Quality Trust: The sensed values from a node
may be modified accidentally or intentionally over the com-
munication channel or by any attacker. Additionally, due to
sensor failures and the use of low-quality sensors, the collected
data may not be trustworthy enough for real-time applications.
However, this is the sole responsibility of the source node
to send the correct values to the server. In a particular
geographic location, for a certain period, data coming from
all the sensor nodes for a common event possess temporal and
spatial correlations. Data values related to the same event, in
general, follows normal distribution [23]-[25]. For simplicity,
we use the normal distribution to evaluate the data trust based
on the similarities among the data values. The mean value of
a set of sensor data is supposed to be the most trusted in this
scenario. Therefore, we adopt the data trust mechanism, which
is proposed by Han ef al. [23]. To eliminate the dishonest
data, first, the outliers are discarded using the median absolute
deviation and then the mean value is computed. Finally, the
data trust of each node is evaluated as [23]:

TQ:1f2/ dx72/ fla (1)

where, f(x) is the probability density function of the
data item having the numerical value of v, represented as

(2=
fl@) = Jeme ot

avant 2 - Here,' u and o represent the mean
and standard deviation, respectively.

3) Energy Trust: After each decision epoch, all the sensor
nodes inform their available residual energy to the server.
A sensor node having a reputed trust value with no energy
cannot involve itself for the sensing and transmission of data.
However, a sensor node can pretend to have more energy to
maintain its reputation. At time ¢, suppose a node reports its
residual energy as E; and after the time slot from ¢ to ¢ + 1,
it reports the value as F,, ;. The server has all the statistics
for the node in terms of workload (L) in that duration and
maximum energy consumption for each load (e). Besides, the
server knows the charging behavior of each node and knows
within that time, how much minimum energy (E£¢) a node can
absorb. If the energy value Ej.; is less than the minimum
required energy for a node to operate smoothly in the next
epoch, the energy ftrust is evaluated to zero. Otherwise, the
truthfulness on energy (¢) is calculated as:

E
t+1 2
E,—(Lxe)+ Ec
Considering the threshold for the truthfulness deviation Ea,
the energy trust for a node is computed using Equation 3.

Sp:

0, if0<¢<land (1—¢)<Ena
Te=<c1-(p—1), ifpo>1land (p—1) < Ena
0, otherwise
3)

4) Data Acceptance Trust: To assess the success rate
of a node in terms of its data considered for the decision
making process, the server keeps track of the node history
and maintains the data acceptance (S,) and rejection (S,)
counts. From these parameters, the trust on data acceptance

can be expressed as Ty = g b:sf's .
a ™

5) Referral Trust: Every sensor node in the network records
the behaviors of its neighbor nodes. These parameters are
the availability of nodes (i.e., On or Off based on the signal
strength) and success and failure data delivery rates (S}, F}).
After each decision epoch, a node sends the neighbor trust for
all nodes placed one hop away. The success rate of node j
considered for data transmission, calculated at each node z in
the neighbor set Z is expressed as:

N __Onj
X(Z,])<Sj+Fj)/(Onj+Offj) @

For other nodes except j, which are not considered for
data transmission, are given the neighbor trust ~——rd
o, e 8 & o Ot Off

The server receives neighbor trust for node j from all of its
neighbor € Z. Then, the referral trust for node j is computed

based on the indirect trust of the neighbors as:

2, mix(z7)
_ z€
Tr = TS o)

z2€Z



6) Involvement Trust: Each node in the network participates
in forwarding the data one hop close to the server. The involve-
ment trust specifies the number of times a node involved in
data forwarding in an entire decision epoch, compared with the
average involvement of the nodes in its neighborhood, which
is expressed as:

K
(21%3)(Z|%n
=1
T = _ (©)
§j§j FC: 4+ FCy
2€7Z o=1

where, FCZ represents the data forwarding count of node j
for data epoch p and the denominator values render the same
for the neighbor nodes. For trust evaluation, nodes having 177 >
1 are considered with value 1.

B. Trust Evaluation

For trust evaluation of the nodes, we consider the intrinsic
characteristics of the nodes and their timely behaviors. Dur-
ing network initialization, we consider the initial direct and
indirect trust values as represented in Equation (7) and (8),
respectively.

772 :nd(ce+cm+le+lm) (7)
! =ni(Ce + I) (8)

To normalize the trust values within [0,1], we use
the system parameters 7y and 7; for direct and indi-
rect trust values, respectively. The system parameter 7y =
0maz+0mawl+1mw+1mar’ where, C7***, C* 1" and
I thaz represent the maximum value of confidentiality and
integrity trust values of a node, i.e., C., C,,, I, and I,,,. Sim-
ilarly, the mathematical expression of ; is, 17; = W
After each decision epoch, both the direct and indirect trust
values are evaluated, as depicted in Algorithm 1.

We use an array of linked lists, where all the trust values of
a node are stored in the array and the neighbor node values are
stored in their linked lists, respectively. In the trust evaluation
algorithm, Steps 1-4 compute the data quality trust for each
data source node. Since we evaluate the data quality trust based
on the sensed values, we have considered the sensor nodes
according to their types. In Step 6, the total data forwarding
count for each node is computed. We find out the maximum
data quality trust for each sensor node type in Step 8 and
with reference to the maximum value, compute the data trust
for each node in Step 10. Steps 11-17 compute the referral
trust, involvement trust, and energy trust. Using the weighting
factors, we compute direct and indirect trust in Step 20 and
Step 22, respectively. Considering n number of nodes and
decision epoch of size K, Steps 1-6 take O(nK) time. Steps
11-14 has a time complexity of O(Z). Due to the outer loop
in Step 7 and Step 9, Steps 7-17 take O(nmZ) < O(n?).
Both the loops starting at Step 18 and 21 take O(n) time in
the worst case. Conclusively, the total algorithm complexity
becomes O(nK +n? +n +n) =~ O(n?).

Algorithm 1 T-Safe Trust Evaluation

INPUTS: Trust values, neighbor referred trust values, and
weighting factors. ‘ ‘
OUTPUT: Direct trust 77 and Indirect trust 7} of each node
j for a particular decision epoch
PROCEDURE:
1: for Each node type m do
2: for Each data epoch p do
3 for Each node j € m do
4 Compute T3¢ « 27 f(z)dx
. Ty Th Ty
6: FC’ «+ FC7 + FC)
7: for Each node type m do
8
9

Compute best < max {Té}
jeEM

for Each node j € m do

10: Compute T] bTe S,

11 while z < |Z| do, z is from 1 to |Z]
12: T}« ThL+ T x(2,7)

13: T? « T7 +T7

14: FCZ<—FCZ+FCj

15: T} < T}/ TE

16: T} « FCI(|Z| +1)/FC% + FCY
17: Compute 7', using the value of ¢

18: for Each node j do
19: if j 6 {S} then © S is the set of data source nodes

20: — (C, + 1) )T] S%wy + Thwe + Thwg

21: if j e {R} then > R is the set of relay nodes
22 — (C + INTIw; + Thw, + Thw,

23: Return T and T}

C. Updating Trust Values

After each decision epoch, the trust values of the nodes must
be updated to reflect their current network behaviors. Updating
the trust values based on the current assessment and the last
epoch trust value is not a good approach because a node might
have performed very well in past epochs, except the last one.
Hence, we use a weighted window-based approach, where all
the previous trust values in that window are considered. Based
on the trust values, we evaluate the cumulative change in the
rate of trust towards the total sum trust value of the network.
We consider the weighting parameter wy, and the length of the
sliding window H, to update the trust values (7, 7). Note
that the the value of wy, decreases linearly towards the end of
the window.

H Tgwh
max TJ
Wfi' — w 9)
Z wp,
h=1
Similarly, the indirect trust value of a node j is updated.

The updated trust values are then used for trustworthy data
selection.



V. TRUSTWORTHY DATA SELECTION

For each node j € S, we have the direct trust value ’/T; and
for each node j € R, we have the indirect trust value Wf . At
each data collection epoch, the data values from a node may
travel different routes. Hence, based on the direct trust values
of the data source nodes and the indirect trust values of the
data forwarding nodes in the route, the data trust of node j
for data epoch p is computed as:

Dg = 71'2 + min {77-1 2, .. mP

29 gy ey ity

(10)

where, {1,2,...p} represent the set of all the nodes in the
path through which data transited from node j to the server.
During the process of data selection, the server may require
data with trust values at least 7 and the data volume V
should be as minimum as possible, considering the resource
constraints. For each data epoch, the size of the data packet
L{) for each node j depend on the communication protocol,
security mechanisms used, and the sensing parameters. The
objective function for trustworthy data selection considering
the data volume and the trust value is expressed as:

n K

%ingﬁj Za{,Lg) (11a)
7j=1 o=1

st. Y B> DI>T, (11b)
j=1 o=1

Vi, Bj,ad €{0,1} (11c)

where, 3; represents a binary decision whether to consider
data of node j for decision making process and o, represents
the data transmission flag of node j for the decision epoch p.

If we reduce the problem (1la)-(11¢c) and find its dual
then we get the 0-1 Knapsack problem, which is a well
known combinatorial optimization problem proven to have NP-
complete computational complexity [26]. It implies that the
trustworthy data selection problem is an NP-complete problem.
To solve this problem, we use a modified 0-1 Knapsack-
based dynamic programming approach [27], which follows the
tabulation method to solve the problem in pseudo-polynomial
time. The tabulation method of dynamic programming follows
a bottom-up approach to compute the optimal result. Starting
from the initial cell of the table (a 2D array), in a row-major
fashion, the algorithm compares the result in every step and
fills each cell with optimal values (Step 11 in Algorithm 2).
Finally, the last cell in the table gives the required optimal
output of the algorithm. For applicability, we use absolute
value of data trust, which do not have more effect on the
results. In Algorithm 2, the initialization loops from Steps 1-4
take O(7 + n) time. In the bottom-up dynamic programming
approach, we check for the required trust value 7 with
minimum data volume possible, and hence, consider the values
of each node. So, Steps 6-13 take O(7n) time. In Steps 16-
20, we find out the nodes giving the best solution with O(n)
time. Considering the whole algorithm, the time complexity
becomes O(Tn+ Tn+n)~ O(Tn).

Algorithm 2 T-Safe Data Selection

INPUTS: 7,n,9[1,....n],DI1,...n]
OUTPUT: V and Selected |1, ...,n]
PROCEDURE:
1: for j < 0 to 7 do
Vol [0,j] + oo
: for i <— 1ton do
Vol [i,0] + oo
: Netr <0
for i < 1 ton do
Nety < min(Netr + D[i], T)
if Net7 < T then
Vol[i,Netr,...,T] + oo
10: for j < Netr down to 1 do
1: if Vol[i — 1,7 = abs(D[i])] +9[i] < Vol[i — 1, j]
then
12: Volli, j] «+ Vol[i — 1,5 — abs(D[i])] + 9[¢]
13: Decli,j] + 1
14: V + Vol[n, T]
15: Nety < T
16: for i <~ n down to 1 do
17: Selected|i] < Decli, Netr]
18: if Decli, Net7] == 1 then
19: Nety < Nety — Dli]
20: Return V and Selected] ]

D A A i

Table I: Simulation Parameters

Number of nodes 500
Simulation area 1000m x 1000m
Transmission range of a node 100m

Transmission and reception power | 24.75,13.5mW [28]

Data rate 40kbps [28]
Initial energy 1J [29]
Sensor types 4

1 decision epoch 24 data epochs

VI. PERFORMANCE EVALUATION
A. Simulation Settings

We assess the performance of our proposed trust model
and data selection algorithm using MATLAB R2018a. We
considered an area of 1000m x 1000m with 500 randomly
deployed nodes, of which 100 nodes are selected as the
data source nodes. We considered four types of sensor nodes
to evaluate the data trust values. The different parameters
considered for our experiments are mentioned in Table I.

B. Attack Model

We consider three types of attacks, namely data manip-
ulation (DM), biased referral trust (BRT), and biased data
forwarding (BDF). Data source nodes perform DM attacks
by sending incorrect sensed data values, which may affect
the entire decision-making process. In BRT attack, the nodes
refer biased trust values to their neighbors with an intention



to strengthen or weaken their indirect trust values. The data
forwarding nodes or the relay nodes that choose selective
nodes for data forwarding are named as BDF attackers. For
each attack type, we define several rules and then use rule-
based classification to detect the attacking nodes. Further, we
create different attack vectors and verify the detection of the
malicious nodes using the attack detection rules.

C. Results and Discussion

1) Effect of Weight Distribution on Trust Values: Trust
evaluation results due to the use of different distributions
of the weighting parameters are shown in Figure 2(a) and
2(b). For direct trust, we have three weighting parameters for
data quality trust (w,), energy trust (w.), and data acceptance
trust (w,). Similarly, for indirect trust, along with the energy
trust, we consider weights for data forwarding involvement
(w;), and referral trust (w,). For an easy understanding of
the figure, divide six lines into three groups, having one
weighting parameter unchanged in each group. If we consider
the weight distributions [0.6, 0.1, 0.3] and [0.1, 0.6, 0.3], where
w, remains unchanged in both, we can see the large gap
between them in all the iterations, except the second iteration.
This behavior shows that the data quality trust is very high
compared to the energy trust, and the reverse situation occurs
in the fourth iteration. In the second iteration of 2(a) and the
fourth iteration of 2(b), it is worth mentioning that all the lines
are very close due to the existence of almost close values of the
trust parameters. Hence, there is no effect of the multiplication
with the weight factors.
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Figure 2: Effect of weight distribution on trust parameters

2) Trend of Trust Values in Legitimate and Malicious Nodes:
Our proposed trust model considers both direct and indirect
trust according to the node functionality. On the functionality
basis, a data source node or a data forwarding node may act
maliciously. In Figure 3, we present the trust value variation
tendency of both legitimate nodes (LN) and malicious nodes
(MN). In Figure 3(a), considering the weighting factors (w, =
0.6, w. = 0.3, w, = 0.1) for direct trust, LN1 and LN2 have
an increasing tendency in trust values. We can observe that
LN2 has a slower increase compared to LN1, which is due to
the lower data acceptance and energy trusts. On the contrary,
the node MN1 has a sudden decreasing trend due to malicious
behavior in data values. However, MN2 behaves maliciously
with residual energy, and due to the low valued weighting
factor for energy trust, the trend decreases slowly.

Similarly, in Figure 3(b), we consider the weighting param-
eters w; = 0.6, w,, = 0.3, and w, = 0.1 for involvement trust,
referral trust, and energy trust, respectively. The legitimate
nodes, LN3 and LN4, have growing indirect trust value. How-
ever, the reason for the gap between them is due to the lower
referral trust of LN4. The node LNS5 has low data forwarding
involvement, and hence, the neighbor nodes recommend low
referral trust. Low trust values for data forwarding involvement
and referral trust decreases the indirect trust of the node in
each decision epoch. In the plot for NMNI1, we observe that
the node has high forwarding involvement but due to the biased
low trust recommendation by the neighbors, the indirect trust
decreases. In this case, the neighbors are treated as malicious
who are involved in the BRT attack. When a node is involved
in biased data forwarding, low trust value is recommended
by many of its neighbors and hence, incurs slow decrease in
indirect trust like MN3.
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(a) Trend of direct trust value (b) Trend of indirect trust value

Figure 3: Trend of trust values in legitimate and malicious
nodes

3) Malicious Node Detection Rate: To evaluate the system
resistance against the malicious nodes, we inject different
attack vectors to the system and verify the attack detection
rate. In case of DM attacks, first, we adopt the median
absolute deviation (MAD) rule to discard the outliers and then
compute the mean value. Thereafter, we consider the nodes
with Tg) < 0.9 as the attacker nodes, where Tg2 represents
the data quality trust of node j. From Figure 4(a), we observe
that when the number of data manipulating nodes increases,
the DM detection rate decreases. This is because increase in
number of malicious nodes affects the data mean value, which
eventually reduces the detection rate.

For BRT attack detection, first, we find out the nodes who
refer biased trust values to their neighbors. Thereafter, to detect
the attackers, we use the involvement trust and the referral
trust value of the neighbor nodes. Considering a node j and
its neighbor node z, to detect the malicious nodes, we take
two cases — 1) x(z,7) = low when T% = high and T} = high
and ii) x(z,j) = high when T}, = low and T} = low. When
most of the neighbor nodes recommend biased values for a
node, the BRT detection rate decreases. In case of BDF attack
detection, we classify the nodes, who are involved in high
data forwarding activity but possess low referral trust as the
attackers. Here, when the trust value is less than 0.3, we label
it as low and label it as high when the trust value is greater
than 0.7. However, our system fails to detect the nodes that
have low forwarding involvement and high referral trust value.
The attack detection thresholds are set while considering the



optimal rate of true positive and false negative attack detection.
We evaluated for various threshold values like grid search
tuning [30] and then, finalized the thresholds that yield optimal
results.
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Figure 4: Malicious node detection

4) Attack Detection Rate: We compare the attack detection
rate of T-Safe with two benchmark schemes — i) utility-based
trustworthy data collection (UTDC) [19] and ii) a support
vector machine-based trust model (STMS) [15]. Figure 5(a)
and 5(b) illustrate the comparison of true attack detection rate
and false attack detection rate between T-Safe, UTDC, and
STMS. In Figure 5(a), we observe that UTDC has lowest
attack detection rate. This is because UTDC fails to identify
the BRT and BDF attacks due to the unavailability of the
involvement trust parameter. However, in T-Safe, involvement
trust and referral trust together help in achieving the highest
detection rate. From Figure 5(b), we infer that the false attack
detection rate is highest in STMS. This is due to the fact that
the STMS approach uses the trust evidence collected from
the sensor nodes and uses the K-means algorithm to classify
the evidence into two classes, namely, good and bad nodes.
Further, the classified data are used for training and fed to the
SVM algorithm. However, it divides the sensor nodes with
very close values into two classes, where legitimate nodes
also fall into the attack class, which eventually increases the
false detection rate. In T-Safe, first, we use the MAD rule to
remove the outliers to reduce the affect of data manipulating
nodes. Moreover, during referral trust computation, we use the
indirect trust values of the nodes to reduce the bad influence
from the malicious nodes, which helps in reducing the false
detection rate of BDF and BRT attacks.
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Figure 5: Malicious node detection accuracy

5) Trust Value and Volume of Trustworthy Data: The server
selects trustful data with threshold conditions on the data trust.

For simplicity, we consider the number of data packets selected
as the data volume. We compare the proposed scheme, T-Safe
with first come first select (FCFS) approach based on node ID
ordering, minimum data volume first (Greedy1), and maximum
trust value first (Greedy 2), as shown in Figure 6. The Greedy
2 approach fails to give better result against our scheme
as there may be some data with minimum volume remain
unconsidered once the trust condition is satisfied. Increasing
with the threshold value, all the schemes have closer outcomes
because all the schemes traverse till end of the lists to satisfy
the trust requirement.
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Figure 6: Data trust

VII. CONCLUSION

In this paper, we proposed a trustworthy decision generation
scheme for intelligent transport system, where safety decisions
need to be reliable and free from both internal and external
attacking agents. We evaluated different parameters for trust
assessment and assign both direct and indirect trusts for each
node. Based on the trust values and data path, we evaluated
the trust for each data sent by the nodes. Subsequently, we
proposed a weighted window approach for trust updating after
each decision epoch. Due to the huge data volume from the
nodes, the server (or the cloud) has the option to select the min-
imum data volume satisfying the required trust threshold. Since
the data selection with resource and trust level constraints
is an NP-hard problem, we used a dynamic programming
approach for optimal results. Experimental results showed that
the proposed method can filter out malicious data to have
trustworthy road safety decisions. The proposed scheme has
better malicious node detection rate due to the individual
assessment of direct and indirect trust parameters.

In this work, we considered trustworthy safety service pro-
visioning, where all the operations are performed at the cloud
server. However, for some real-time safety services which are
handled by the edge devices, an instant trust assessment is
required. Therefore, as an extension to this work, we plan to
propose a delay-aware trust model for real-time safety service
provisioning in intelligent transport systems.
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