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Abstract—In this paper, we propose a dynamic load balancing
scheme, EdgeSafe, for provisioning Safety-as-a-Service (Safe-
aaS) [1]. Typically, in a Safe-aaS infrastructure, the sensor
nodes are either static or mobile in nature. With the variation
in the geographical location of the vehicles, the sensor nodes
attached to them attain mobility. Consequently, the distance
between the mobile sensor node and the edge nodes present
within their vicinity changes. Further, the average number of
processes executed at the edge nodes varies with the type of
edge nodes and time. As the data is time-critical, it is necessary
to be primarily processed at the edge nodes. Considering
road transportation as the application scenario of Safe-aaS, we
perform load balancing in two stages. In the first stage, we
calculate the preferred capacity ratio of the edge nodes present
within the communication range of the sensor nodes. We apply
Markowitz Portfolio Selection Theory in the second stage to select
the appropriate edge node. The profit return and risk incurred
in their selection is calculated to design the portfolio of the edge
nodes. Thereafter, the utility of each edge node is computed.
We formulate an optimization function to obtain the minimum
value of the utility of the edge nodes, considering their risk
incurred and remaining memory. Further, we apply Lagrangian
Multiplier to solve and reformulate the optimization function.
Existing research works on provisioning safety services consist
of shortcomings in consideration of dynamic load balancing
among the edge nodes. Extensive simulation results show that
the proposed scheme, EdgeSafe, is capable of improving the data
rate by 41.37%, 35.64%, and 21.05% respectively, compared to
the existing schemes, HO [2], MLB [3], and Honeybee [4].

Keywords—Road transportation, Safety-as-a-Service, Ingress
component, Egress component, Load balancing, Markowitz Port-
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I. INTRODUCTION

IN order to provide safety services across different in-
dustries such as manufacturing, transportation, and power

generation, the integration of Internet of Things (IoT)-based
technologies is an essential aspect of concern [5]. For ex-
ample, in the transportation industry, road safety applications
include intimation of road safety information, detection of
drowsiness of drivers [6], detection of manhole covers [7],
and assessment of road safety threats.

A Safe-aaS [1] infrastructure provides customized safety-
related decisions to multiple end-users simultaneously. The
end-users request the decision parameters through a Web
portal, according to their requirement. In a Safe-aaS archi-
tecture, heterogeneous types of static, and mobile sensor
nodes are present in the device layer. The static sensor nodes

are deployed at a particular geographical location and the
mobile sensor nodes are deployed into the vehicles. With the
mobility of the vehicles, the number and type of edge nodes
present within their vicinity vary. As a result, the load/volume
of time-critical sensed data at these edge nodes fluctuates.
Additionally, the volume of time-critical data generated from
these sensor nodes may vary with time. Therefore, the dy-
namic distribution of load/time-sensitive data among the edge
nodes is necessary. Further, the edge nodes may vary from
one another with their type, storage capacity, and process
execution capability. Considering road transportation as the
application scenario of Safe-aaS, we proposed a dynamic load
balancing scheme for provisioning safety services.

With the increase in the number of on-road vehicles, various
safety measures are adopted in the existing literature for
the safety of both the drivers and vehicles. In Safe-aaS, the
edge nodes primarily processes the time-critical data. Hence,
timely delivery of the requested decisions to the end-users
is necessary. In a critical scenario, such as a severe road
accident and any natural calamity, colossal volume of time-
sensitive data is available for processing at the edge nodes.
Considering this facts, we design the load sharing mechanism
for Safe-aaS platform. As the data are time-sensitive in nature,
it is important to process them quickly. Further, the volume of
data present in the system also fluctuates with time. Therefore,
there is a possibility of variable load among the edge nodes.
The major restriction to the situation is that each edge node
does not compute beyond their maximum capacity. If any
of the neighboring edge nodes of a sensor node attains its
maximum capacity, then the sensor nodes search for other
neighboring edge nodes with the allowable capacity. Further,
Safe-aaS provides customized decisions to multiple end-users,
founded on the concept of decision virtualization. None of
the existing load balancing schemes provides customized
decisions and considers the time-criticality of data. Therefore,
we propose a scheme for dynamic load balancing among the
edge nodes for provisioning safety-related decisions.

The primary contribution of this work is to design a scheme
for dynamic load balancing among the edge nodes. The
proposed scheme performs load balancing in two levels –
(a) computation of preferred capacity ratio of the edge nodes
within the proximity of each of the sensor nodes, and (b) load
balancing among the edge nodes based on the optimal value
of memory utilized by the edge nodes. More specifically, the
detailed contributions of this work are:

• We consider the edge flow-rate, cloud flow-rate, ingress
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component, and egress component of the edge nodes to
compute the preferred capacity ratio of the edge nodes.
We introduce a mapping rule to map the ingress and
egress components of the edge nodes.

• We derive the maximum capacity of the edge nodes by
solving the modeled optimization function. We use the
Lagrangian multiplier to reformulate the optimization
function and apply KKT conditions to find the maxi-
mum capacity of the edge nodes.

• We use Markowitz Portfolio Selection Theory (MPST)
to uniformly share the load among the edge nodes based
on the process execution capability, reputation, profit
return, and risk incurred the selection of the edge nodes.
The justification for the choice of MPST is given in
Subsection III-C. We design an optimization function
to find the minimum value of the utility of the edge
nodes. We apply a Lagrangian multiplier to reformulate
the optimization function and use KKT conditions to
obtain the optimal value of the utilized memory of the
edge device.

• Extensive simulation results illustrate that the proposed
scheme, EdgeSafe, performs better in terms of the varia-
tion in datarate, capacity, and average residual energy of
the edge nodes compared to the load balancing methods
for wireless networks [2], downlink LTE networks [3],
and work sharing algorithm for mobile edge nodes [4].

II. RELATED WORK

In this section, we discuss the existing research works on
the problems of load balancing in mobile networks and safety
in road transportation. Load balancing among the edge nodes
is an emerging concept in the road transportation industry.
The edge nodes process the data, which are time-critical in
nature. We discuss the existing researches on load balancing
in wireless networks and cloud considering the transfer of
load, the energy consumption of electric vehicles, and the
throughput [2], [8]–[15].

Park et al. [2] proposed a method for self-organizing
wireless networks based on mobility load balancing (MLB).
The authors considered that an overloaded cell transfers the
load to the least loaded neighboring node without evaluating
the amount of load acceptable by the neighboring node.
However, in this proposed work, we estimate the maximum
capacity of any edge node. Thereafter, the available volume
of time critical data is shared with the neighboring edge
nodes depending upon their preferred capacity ratio. Consid-
ering the middleware nodes in the IoT application layer as
brokers, Sun and Ansari [8] designed a method for traffic
load balancing. They proposed a mechanism to cache the
popular resources from the highly loaded to the lightly loaded
brokers. Additionally, the authors formulated the resource re-
caching problem to minimize the average delay and proved
the reallocation problem is NP-hard. Similarly, Toumpis and
Gitzenis [10] proposed a load balancing approach in wireless
sensor network depending on the Wireless Minimum Cost
Problem. However, the authors did not consider the quan-
titative analysis of communication and computation overhead
because of memory constraints.

On the other hand, Han and Ansari [11] designed a traffic
load balancing framework with the primary aim of stabilizing
the network utility. Additionally, the simulation results depict
that the on-grid power consumption and average delivery
latency reduces. In another recent work, Takulder et al.

[12] proposed a Dual Threshold Load Balancing approach
to select the best machine for migration of the process in
the SDN-based system. The authors demonstrated that their
scheme yields energy-efficient load balancing to improve the
throughput and response time. Jijin et al. [9] proposed the
concept of Virtual Fog Access Points (FAPs), where FAPs
act as service nodes for processing the task of end-users.
The authors modeled the end-user’s tasks as a task graph
and service nodes as an edgeless service graph. Dai et
al. [15] proposed a solution to the joint load balancing as
well as offloading problem in the vehicular edge computing
environment. Further, the authors modeled the offloading
problem as a mixed integer non-linear program to maximize
the system utility. Roy et al. [1], [16], [17] proposed a unique
platform for provisioning customized safety-related decisions
to the end-users on pay-per-use basis. Based on the time-
criticality of the data sensed by the sensor nodes deployed
at various geographical locations and into the vehicles, the
primary processing is done at the edge nodes or cloud. On the
other hand, the sensor nodes present in the vehicles become
mobile with the change in the location of vehicles. Therefore,
an appropriate selection of edge nodes is necessary.

Synthesis: In the existing literature, the authors proposed
different solution approaches on load balancing in wireless
sensor networks and IoT. However, there is research lacuna
on dynamic load balancing among the edge nodes, to impart
safety-related decisions to the end-users in Safe-aaS. The
existing approaches do not consider the mobile nature of
sensor nodes, preferred capacity ratio of the edge nodes,
and dynamic varying distance between the mobile sensor
nodes and the edge nodes within their proximity. Therefore,
dynamic sharing of load among the edge nodes in Safe-
aaS, is challenging in nature. We propose a load balancing
scheme based on the preferred capacity and process execution
capability of the edge nodes.

Fig. 1: Dynamic load balancing

III. EDGESAFE: DYNAMIC LOAD BALANCING AMONG
THE EDGE NODES FOR SAFE-AAS

A. Problem Scenario
We consider an Intelligent Transportation System (ITS) en-

vironment where Safe-aaS infrastructure [1] is implemented.
A Safe-aaS architecture provides customized safety-related
decisions to the registered end-users. The end-users select
certain decision parameters, as per their requirement, through
the Web portal. On the other hand, based on the decision
parameters selected, the safety service provider (SSP) delivers
safety-related decisions to the end-users. Heterogeneous types
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of static and mobile sensor nodes are either deployed at a
particular geographical location or are placed on the vehicles
in the device layer, as depicted in Fig. 1. The number and
type of edge nodes present within the vicinity of the static
sensor nodes remain constant, while they vary in mobile
sensor nodes. The reason behind this is that the sensor nodes
attached to these vehicles attain mobility with the change in
the geographical location of the vehicles. These sensor nodes
sense and transmit data to the edge nodes/cloud, based on
the time-critical nature of the data. The raw sensed data are
primarily processed at the edge nodes/cloud. Thereafter, the
primarily processed data is transmitted to the decision layer,
where the decision is generated. The volume of time-critical
data present in the system may vary with time. Depending
on the storage capacity and process execution capability, the
edge nodes are categorized into different types. On the other
hand, each type of edge nodes possesses a restricted amount
of storage capacity. A probable solution to this problem is
sharing the load among the edge nodes present within the
proximity of the sensor nodes. In such a scenario, when
the neighboring edge nodes of a sensor node attain their
maximum capacity, the sensor node searches for the nearest
neighboring edge node with the permissible capacity for
sharing the load. We apply Markowitz Portfolio Selection
Theory to select the appropriate edge node and dynamically
share the load among them from the multiple edge nodes,
present within the proximity of the sensor node.

B. Problem Formulation
We consider the presence of heterogeneous types of static

and mobile sensor nodes in a Safe-aaS infrastructure which is
represented as, S = {Sst, Smo}, where Sst and Smo denote
the set of static and mobile sensor nodes respectively. Further,
S = {Sj |1 ≤ j ≤ p} and Sj =⇒ (Sst ∨ Smo). We consider
E = {e1, e2, · · · , en} as the set of edge nodes. The capacity
of these edge nodes is represented as C = {c1, c2, · · · , cn}.
We consider that the static and mobile sensor nodes transmit
beacons to the edge nodes. The edge nodes present within the
communication range of these sensor nodes, which receive
this beacon, are considered to be within the neighborhood
of that sensor node. Each data packet consists of - (i) id of
the sensor node, (ii) distance between the sensor node and
the edge nodes within its proximity, and (iii) sensed data.
Therefore, the edge nodes present within the communication
range of static/mobile sensor nodes are referred to as the
“neighboring edge nodes” of that sensor node. In case of a
static sensor node, the corresponding neighboring edge nodes
of the sensor node always remains same. However, the list of
neighboring edge nodes of a mobile sensor node vary with
the mobility of the vehicle.

Efficacious Distance (Dt,eff
ij ): We compute the distance

between the edge node, ei and the sensor node, Sj within
a particular geographical region at any given time instant,
t using the Euclidean distance formula. Suppose, the po-
sition of the jth sensor node, Sj is denoted as posjsen =
{latsenj , lngsenj } and the position of the ith edge node, ei is
represented as φi = 〈lati, lngi〉. The distance between Sj
and the edge nodes present within its vicinity is denoted
as Dt

ij . Suppose, D = {Dt
1j , D

t
2j , · · · , Dt

kj} denotes the
set of euclidean distances of the neighboring edge nodes
of the jth sensor node. Therefore, the efficacious distance
is mathematically represented as, Dt,eff

ij =
Dt

ij

max(D) , where

max(D) returns the maximum value of distance between the
sensor node and its neighboring edge node. To balance the
load or available volume of time-critical data among the edge
nodes present within the vicinity of mobile sensor nodes, we
consider their capacity. We calculate the input capacity of
the edge nodes in terms of the ingress component and edge
flow rate. Similarly, the output capacity of the edge nodes is
computed in terms of their egress component and cloud flow
rate.

Definition 1. Edge flow-rate (EFRtij): The edge flow-rate of
an edge device is expressed as a function of the distance,
Dt,eff
ij between the sensor node, Sj and the edge node,

ei within its proximity, and the average packet forwarding
rate from the jth sensor node to the ith edge node, pfavg,tij .
Mathematically,

EFRtij =
pfavg,tij

Dt,eff
ij

(1)

Similarly, we compute the cloud flow-rate, (CFRtiC) con-
sidering the data transfer between the ith edge device and
cloud, C as a single hop.

Definition 2. Cloud flow-rate (CFRtiC): Cloud flow-rate is
expressed as a function of the efficacious distance between the
edge node and the cloud and the average packet forwarding
rate from the ith edge node to cloud, pfavg,tiC . Therefore, the
cloud flow-rate is represented as,

CFRtiC =
pfavg,tiC

Deff
iC

(2)

Efficacious distance between the edge node and the cloud:
We consider that each of these edge nodes, ei, is deployed
over a particular geographical position, φi. Therefore, φi =
〈lati, lngi〉, where lngi and lati are the longitude and latitude
of the edge node, ei, respectively. Due to the spherical nature
of the Earth’s surface, we compute the distance between any
two points using the concept of haversine distance [18]. The
efficacious distance between the ith edge node and cloud, C
as the Haversine distance between them.

DeffiC = Hi(φa, φb)
π

180◦
,∀a, b ∈ {1, 2, · · · , n} (3)

where Hi(φa, φb) is the Haversine distance between the
edge node, a and the cloud server, b. The Haversine distance,
Hi(φa, φb) is computed as:

Hi(φa, φb) = 2Er sin−1

√
hav
(
Hi(φa, φb)

2Er

)
(4)

In Equation (4), Er represents the radius of the Earth.
Further, hav(Hi(φa, φb)) is represented in Equation (5).

hav(Hi(φa, φb)) = sin2

(
∆latab

2

)
+

cos(lata) cos(latb) sin2

(
∆lngab

2

) (5)

where ∆(latab) = (lata − latb), ∀a, b ∈ {1, 2, · · · , k} and
∆(lngab) = (lnga − lngb), ∀a, b ∈ {1, 2, · · · , k}.

To estimate the mean flow-rate of the overall network, we
consider the average value of edge and cloud flow-rate. In
order to provide an overview of the average volume of the
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time-sensitive data flow in the network, we took the mean of
the data flow-rate from the sensor nodes to the edge nodes
and edge nodes to the cloud.

Average flow-rate (Ψt
i): Average flow-rate is the mean of

the edge flow-rate, EFRti and the cloud flow-rate, CFRti ,
which is expressed as Ψt

i = 1
2 (CFRtiC + (EFRtij)). In other

words, the average flow rate of the ith edge node as Ψt
i

denotes the mean of the volume of data entering and leaving
the ith edge node.

Ingress component of edge device (ICi) : We represent the
ingress component as a tuple of data input ports, dinp input
queue, eqin , and control input ports, cinp [19]. We consider that
each of these parameters possesses a real value. Considering
this fact, the parameter ingress component is also a real
number. ICi is expressed as a 3-tuple ICi = 〈eqin , dinp , cinp 〉.

Egress component of edge device(ECi) : The egress com-
ponent of an edge device comprises the packet output queue,
eqout , data output ports, doutp , and a control output port, coutp

[19], and is expressed as a 3-tuple ECi = 〈eqout
, doutp , coutp 〉.

Further, to map the arrival and transmission rates of the
data packets at the edge nodes present within the vicinity of
the sensor nodes, we introduce the mapping rule.

Definition 3. Mapping rule: Mapping rule of any edge node
is the rule based on which the ingress component, ICi of the
ith edge node is mapped with the egress component, ECi of
that edge node. It is expressed as a 2-tuple – the arrival rate
of data, ARijd from the jth sensor node to the ith edge node
and the transmission rate, TRtiC of the ith edge node to the
cloud server. Mathematically, emt = 〈ARijd , TRtiC〉.

Typically, in a Safe-aaS infrastructure, different types of
edge nodes are present. Therefore, ingress component, ICi,
egress component, ECi, edge flow-rate, EFRt, and cloud
flow-rate, CFRt differ for each type of edge nodes. To
compute the capacity, ctij of an edge node, we consider the
ingress component, egress component, edge flow-rate, and
cloud flow-rate of the edge node.

Capacity (ctij): We express the capacity of the ith edge node
as a function – cti = f(ICi, ECi, (EFR

t
ij), CFR

t
i), where

cti ∈ C. The input capacity of an edge node is expressed
as directly proportional to the ingress component (IC) as
well as edge flow rate (EFR). cti is mathematically ex-
pressed as – capij,tin ∝ ICi and capij,tin ∝ EFR

t
ij . Therefore,

(capi,tin)2 ∝ (ICi × EFRtij), and capi,tin ∝
√
ICi × EFRtij .

Similarly, the output capacity function is also proportional
to the egress component (EC) and cloud flow rate (CFR
and is expressed as – capi,tout ∝ ECi and capi,tout ∝ CFRti .
Therefore, (capi,tout)

2 ∝ (ECi × CFRtij), and capi,tout ∝√
ECi × CFRtij . The capacity of the ith edge node, ei is

expressed as:

capij,tin = k1

(
ICi × (EFRtij)

EFRdij,max

) 1
2

(6a)

capi,tout = k2

(
ECi × CFRti
CFRti,max

) 1
2

(6b)

where k1 and k2 are the proportionality constants.
(EFRdij,max) and CFRti,max denote the maximum value
of the edge flow-rate and cloud flow-rate of the ith edge
device respectively. Therefore, the average capacity of the

edge device is represented as ctij =

(
capij,tin +capi,tout

)
2 .

The set of capacity of the edge nodes present within the
vicinity of the jth sensor node is represented as, Cj =
{f1(IC1, (EFR

t
1j), EC1, CFR

t
1), f2(IC2, (EFR

t
2j),

EC2, CFR
t
2), · · · , fn(ICn, (EFR

t
nj), ECn, CFR

t
n)}.

Theorem 1. The input and output capacity function of an
edge node is concave in nature, provided that the ingress
component, egress component, edge flow-rate, and cloud flow-
rate vary with time.

Please refer to the supplementary file for the proof.
Due to the concave nature of the input and output capacity

functions, we design the optimization function to maximize
the average capacity value. As the average flow-rate, Ψt

i of
the ith edge device varies with time, therefore, to compute the
maximum capacity of the edge node, ei, at any time instant,
t, we formulate the maximization function as,

Maximize ctij (7)

subject to, ECi > ICi, EFRtij < EFRdij ,max, CFRti <
CFRdmax, and CFRti > EFRtij . In order to solve and
reformulate the optimization problem, we apply Lagrangian
function, which is expressed as,

L = −ctij + µ1(ECi − ICi) + µ2(EFRtij − EFR
d
ij,max)+

µ3(CFRti − CFRdmax) + µ4(EFRtij − CFRti)
(8)

where µ1, µ2, µ3, µ4, µ5, and µ6 denote the Lagrangian
constants. Further, we constrain the optimization function
and compute the maximum capacity of the edge node, using
Karush-Kuhn-Tucker (KKT) conditions. Equation (9a) and
(9b) represent the dual feasibility and complementary slack-
ness conditions.

∇xL =−∇ctij +∇
∑
i

µiyi = 0 (9a)

µiyi = 0 and µi ≥0, ∀i = {1, 2, · · · , 6} (9b)
where x represent the parameters such as

ICi, ECi, k1, k2, EFR
t
ij , and CFRti of the Equation

(7). The constraints of the Equation (7) are denoted as
yi. On solving the Equations (9a) and (9b), we obtain the
maximum value of the capacity. Further, from Equation
(7), we obtain the maximum value of capacity of the edge
nodes, which are present within the neighborhood of any
sensor node. We represent the maximum capacity of the
edge nodes present within the proximity of the jth sensor
node as a set, Smax,tj,cap = {cmax,t1j , cmax,t2j , · · · , cmax,tnj }. From
the set Smax,tj,cap , we find the maximum capacity value and
compute the effective maximum capacity, ceff,tmax . Therefore,
ceff,tmax = max

(
Smax,tj,cap

)
.

Preferred Capacity Ratio (Cpre,ti ): Preferred capacity ratio
of each edge device is represented as the ratio of the differ-
ence between the maximum capacity, cmax,ti and the present
capacity of the ith edge device, cti to the effective maximum
capacity, ceff,tmax of the edge devices present within the vicinity
of the jth sensor node. Therefore, the preferred capacity ratio

of each edge device is computed as Cpre,tij =

(
cmax,t
i −ctij

)
ceff,t
max

.

We consider Spre,tj,cap = {Cpre,t1 , Cpre,t2 , · · · , Cpre,tn } as the set
of computed preferred capacity ratio of the neighborhood
edge nodes of the jth sensor node. Further, we select the
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appropriate edge node in terms of their maximum preferred
capacity ratio. Preferred capacity ratio is one of the essential
inputs required to calculate the profit return of the edge nodes.
In order to share the load among the edge nodes, we apply
Markowitz Portfolio Selection method [20]. Finally, we find
the utility of these edge nodes. The edge node which possess
minimum utility at an optimal value of utilised memory is
selected for load sharing.

Algorithm 1 EdgeSafe: Computation of Preferred capacity
ratio
INPUTS:

1: NLj - Neighborhood of the jth sensor node
OUTPUTS:

1: Ceffmax and Cpreij
PROCEDURE:

1: for ∀ei ∈ NLj do
2: EFRtij , CFR

t
i , ICi, and ECi are estimated for the

ith edge node.
3: ctij is computed for each ei.
4: end for
5: ceff,tmax is computed.
6: Cpre,tij of the ith edge node is computed.

Algorithm 1 provides insights regarding the computation of
the preferred capacity ratio of the edge nodes present within
the proximity of a sensor node. Based on the location of the
sensor node (static or mobile), the neighboring edge nodes of
the sensor node are computed. Thereafter, in Steps 2 and 3,
the capacity of each of these edge nodes is estimated based
on their EFR, CFR, IC, and EC. Step 6 computes the
preferred capacity ratio of each of these edge nodes, as per
the expression derived in Section III-B. Further, the utility is
computed from the preferred capacity ratio, process execution
capability, risk incurred in selecting that edge node, and spare
memory of the edge node in Algorithm 2. Algorithm 1 runs
NLi times to estimate the effective capacity of the edge
nodes present within the neighborhood of the ith sensor node.
Further, the utility of these edge nodes are estimated and the
appropriate edge node is selected for sharing the load using
Algorithm 2. Therefore, the running time of Algorithm 2 is
NLi. The total running time complexity of Algorithms 1
and 2 are O(NLi) + O(NLi) = O(NLi). As there are p
sensor nodes present in the scenario, the overall running time
complexity of the proposed scheme is O(pNLi). Therefore,
the proposed dynamic load balancing approach is scalable.

C. Solution Approach

In our problem scenario, we consider the presence of a huge
volume of time-sensitive data in the Safe-aaS infrastructure.
Therefore, the selection of the appropriate neighboring edge
node of the sensor node to dynamically share the load among
them is necessary. We assume that the edge nodes receive an
incentive from the Safety Service Provider (SSP) in the form
of profit whenever the edge nodes are selected. We apply
Markowitz Portfolio Selection Theory [20]–[22] to select the
appropriate edge node for sharing the load. Thereafter, we
compute the utility for each of the neighboring edge nodes of
the sensor node. Finally, based on the optimum value of the
memory utilized by the edge node, we select the edge node
for load balancing.

Justification for Markowitz Portfolio Selection Theory: The
primary aim of using Markowitz Portfolio Selection Theory
is to dynamically share the available volume of time-critical
data among the edge nodes, such that the risk incurred in
selecting them is minimized. In case any delay is incurred in
sharing the time-critical data among the edge nodes or the
selected edge node is not capable for processing the data,
then the decision generation time increases. Therefore, the
selection of the appropriate edge node among the other edge
nodes present within the communication range of the sensor
node is essential. We map this scenario with the portfolio
selection theory. We design the portfolio of each of these edge
nodes in terms of their process execution capability, available
remaining memory, profit return, and risk incurred. Further, to
estimate the risk incurred in the selection of an edge node, we
consider the relative variation in the profit over consecutive
time slots, process execution capability, and effective spare
memory. The amount of memory utilized by an edge device
acts as an essential factor for edge node selection. Therefore,
the risk incurred in selection of the edge node increases with
the increase in their amount of utilized memory.

We consider the set of end-users as U = {u1, u2, · · · , uy},
where ∀ux ∈ U . We divide each day into q equal time-
intervals, assuming the duration of Safe-aaS services pro-
vided to the end-users. Therefore, the set of time intervals
DT d = {t1, t2, · · · , tq}.

Lemma 1. There are at least
⌈ N
K

⌉
end-users, who have

requested for the safety services if N number of end-users
request for Safe-aaS services during the K different time-slots
in a day.

Please refer to the supplementary file for the proof.
We assume that the SSP possesses the information con-

cerning the average packet delivery ratio, the number of
data packets successfully delivered, the number of times load
shared with other edge nodes, and the incentive received by
the edge node.

Definition 4. Process execution capability of the edge device
(PECtki ): The process execution capability of the ith edge
device is expressed as the ratio of the number of processes
executed (Ptki ) per unit time on the dth day till the time instant,
tk, to the maximum number of processes executed, Pmax,Ni
per unit time during the past N days. Therefore,

PECdi =

q∑
k=1

PECtki =

q∑
k=1

Ptki
Pmax,Ni

(10)

where Pmax,Ni = max(Pxi ), where Pxi denotes the maxi-
mum number of processes executed by the ith edge node on
the xth day. The process execution capability of the ith edge
device is represented as PECdi .

Effective Spare Memory (ESM tk
i ): We represent the effec-

tive spare memory of the ith edge node as the ratio of the
unused memory, Mrem,tk

i of the ith edge node at the tthk time
instant to the total memory, MT

i of that edge device.

ESMd
i =

q∑
k=1

ESM tk
i =

q∑
k=1

Mrem,tk
i

MT
i

=

q∑
k=1

MT
i −M

ut,tk
i

MT
i

(11)

where Mut,tk
i is the amount of memory utilized at the tthk

time instant and ESMd
i represents the effective spare memory
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of the ith edge node.

Definition 5. Reputation of edge node (Rtkij ): Reputation of
the ith edge node is the ratio of the probability of the number
of data packets, Ptki successfully delivered by the ith edge
node at the time instant, tk, and the response transmitted
from the end-user/vehicle, to the number of times the node
failed, Ftki till the dth day. Therefore, Rdij =

∑q
k=1 R

tk
ij

Rtkij =


αPtk

i N
tk
ij

Ftk
i

, node has failed

αPtki N
tk
ij , node has not failed

(12)

where α is the proportionality constant and 0 ≤ α ≤ 1. In
case the ith edge node has not failed once till the tthk time
instant, then we calculate reputation according to the second
case. Thereafter, we estimate the reputation of the ith edge
node for serving the jth end-user during each of the tthk time
instants. Based on the value of Ptki , α varies. The number of
data packets transmitted as response from the jth end-user to
the ith edge node is represented as N tk

ij . We consider the total
number of data packets transmitted by the edge device as N tk

and the number of data packets which successfully reaches the
cloud as ntks . The probability of transferring the data packets

from the edge node to the cloud is denoted by ptk =
pf

tk
i

pfmax,d
i

,

where pf tki and pfmax,di represent the packet forwarding rate
at the tthk time instant and the maximum packet forwarding
rate of the ith edge device on the dth day. Therefore, we
compute the probability of successful transfer of ntks data
packets using Binomial distribution. Mathematically,

Ptki =
N tk !

ntks !(N tk − ntks )!
× ptk,n

tk
s (1− ptk)(N

tk−ntk
s ) (13)

Definition 6. Profit return of the edge node (P tkij ): The profit
return of the edge node at any time instant, tk is expressed as
the chances of the edge node to get selected for load balancing
and the incentive received by the edge node from the Safety
Service Provider (SSP).

P dij =

q∑
k=1

P tkij =

q∑
k=1

(
Stki × I

tk
i +

(
Rtkij ×C

pre,tk
ij ×λtki

))
(14)

where Cpre,tkij is the preferred capacity ratio of the ith edge
node. Practically, each of the edge nodes may be present
within the proximity of multiple sensor nodes. In case the
selected edge node processes these data, then the neighboring
edge nodes with the permissible capacity shares the load
among them. Considering these facts, we introduced λtki while
designing the profit return formula. Stki is the number of times
the ith edge node was selected for load balancing till the last
time instant, (tk − 1). The incentive received by the ith edge
node for being selected at the tthk time instant is denoted as
Itki .

Definition 7. Risk Incurred (RItki ): The expected risk in-
curred by the ith edge node for sharing load is expressed
in terms of the process execution capability, PECtki , effective
spare memory, ESM tk

i , and the relative variation in the profit
return, σtkij , of the ith edge node during the last N days.

Therefore,

RIdi =

q∑
k=1

RItki =

q∑
k=1

min(σtkxy)

PECtki
× eESM

tk
i (15)

The co-variance of an edge node over the past N days is
expressed as the sum of the deviation in the profit of that edge
node from the mean profit value, between any xth and yth

time slots on the dth day is mathematically defined as,

σtkxy =
1

N

( N∑
d=1

((
P tx,dij − P d,meanij

)(
P
ty,d
ij − P d,meanij

)))
(16)

where the mean value of profit return during the dth day
upto the tthk time instant, is denoted as P d,meanij . σtkxy is a
matrix of order q × q, where q denotes the number of time-
slots in a day.

To distribute the load among the edge nodes present within
the vicinity of any sensor node, we calculate the preferred ca-
pacity, effective spare memory, profit return, and risk incurred
in selecting the edge node. Further, we compute the preferred
capacity in terms of the volume of available time-critical
data present at the input ports and the volume of primarily
processed data to be transmitted to the cloud/server. Finally,
we formulate the utility of these edge nodes in terms of
the above-mentioned parameters and design an optimization
function.

Utility (U tki ): The utility function is composed of the risk
incurred and effective spare memory. On the other hand, the
edge node with the minimum value of utility possesses the
slightest risk in their selection. The least deviation in the profit
return (co-variance) per unit process execution capability of
an edge node is the expected risk incurred in selecting them.
Moreover, deducting the effective value of spare memory from
the risk incurred in choosing that edge node determines their
utility. Further, utility denotes the usefulness in terms of the
processing of time-critical data. Considering these facts, we
formulate the utility function as,

U tki = RItki − βlog(ESM tk
i )

m
(17)

Algorithm 2 EdgeSafe: Dynamic edge node selection

INPUTS:
1: DT d and cpreei

OUTPUT:
2: U tki - Minimum utility of ei

PROCEDURE:
1: PECtki , PECdi , ESM tk

i , ESMd
i , Rtkij , Rdi , Ptki , Pdi , and

RItki are computed for the ith edge device.
2: The minimum value of U tki of the ith edge device and

optimal value of utilized memory is computed, according
to Equation (18).

Lemma 2. There exist real roots for the optimal memory
utilized by the edge node, such that the utility of the edge
node is minimum.

Proof: In our problem scenario, we use the Markowitz
Portfolio Selection Theory to select the appropriate edge node
for load balancing, based upon the optimal value of the
amount of memory used by that edge node. The optimization
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function is mathematically represented as,
argmin
M

ut,tk
i

U tki (18)

subject to, Mut,tk
i < MT

i , Ftki > 0, 1 > Ptki > 0, Stki ≥ 0,
0 < Cpre,tki < 1, Itki > 1, λtki ≥ 1.

The Lagrangian form of Equation (18) is mathematically
represented in Equation (19). In order to solve Equation (18),
we apply KKT conditions.

L = U tki + µ1(MT
i −M

ut,tk
i )− µ2Ftki + µ3(1− Cpre,tkij )

−µ4S
tk
i + µ5(1− Ptki ) + µ6(1− Itki ) + µ7(1− λtki )

(19)
The dual feasibility and complementary slackness of the

KKT conditions are given in Equations (20a) and (20b).

∇
M

ut,tk
i
L =0 (20a)

µi(X) = 0, and µi ≥0, ∀i = {1, 2, · · · , 8} (20b)
where µi(X) represent the Lagrangian multipliers. In the

Equation (20b), X represents the constraints of Equation (18).
On solving the KKT conditions, we obtain the optimal value
of Mut,tk

i for which the utility of the edge node is minimum.

Further, the condition,

((
min(σ

tk
xy)

PECtk
i ×MT

i

)2

− 4βmµ1

)
≥ 0

depicts the presence of real roots. Therefore, the optimal value
of the utilized memory obtained is represented in Equation
(21).

Mut,tk∗
i =

1

2µ1

(√√√√( min(σtkxy)

PECtki ×MT
i

)2

− 4βmµ1

)

−
(

min(σtkxy)

PECtki ×MT
i

)) (21)

IV. PERFORMANCE EVALUATION

A. Simulation Design
To evaluate the performance of the proposed scheme,

EdgeSafe, we consider the presence of 100–1000 heteroge-
neous static and mobile sensor nodes and 45–75 edge nodes
randomly deployed over the simulation area of 10km×10km.
We assume that the cloud/server is placed near the ith edge
node. In Safe-aaS, the mobility of the mobile sensor nodes
is an important causal factor for load balancing among the
edge nodes present within their proximity. We consider that
the cloud is centrally placed in the simulation environment.
We consider that 10 time instants are present in each day for
a period of 20 days. We estimate the speed of the sensor node
using the Gauss-Markov mobility model [23]. The speed of
any mobile sensor node is computed as:

sn = αsn−1 + (1− α)s̄+
√

(1− α× α)× sxn−1
(22)

where α is the tuning parameter and s̄ is the mean speed.
sxn−1 represents the random variable from a Gaussian dis-
tribution that assigns randomness to the speed of the sensor
node. The different parameters considered for simulation are
listed in Table I. Further, in each iteration, we estimate the
number of edge nodes present within the communication
range of each edge node.

B. Benchmark
We evaluate and compare the performance of the proposed

scheme, EdgeSafe with three existing schemes proposed by
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TABLE I: Simulation Parameters

Parameter Value
Type of sensor nodes 5
Number of end-users 10-100
Communication Range 25− 80m
Bandwidth of the data [24] 10− 20MHz
Packet forwarding rate [25] 4− 8 kbps
Frequency of the data packet [24] 800− 2600 MHz
Velocity of mobile sensor node [26] 25− 105 Kmph
Incentive received (Itki ) 20− 30 units

Lobinger et al. [3], Park et al. [2], and Fernando [4]. Park
et al. [2] proposed a self-organizing mobility load balancing
method to stabilize the network as well as improve the
efficiency of the resources. On the other hand, Lobinger et al.
[3] considered a long-term-evolution (LTE) communication
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system and proposed a self-optimizing load balancing algo-
rithm. Similarly, Fernanda et al. [4] proposed a load sharing
algorithm among the nearby heterogeneous mobile devices
through the adoption of the work stealing algorithm. However,
none of these existing schemes consider the capacity of the
devices before sharing/distributing the load among them. We
label the algorithm proposed by Lobinger et al. [3] as HO,
Park et al. [2] as MLB, and Fernando et al. as Honeybee. Fig.
2(a) illustrates the variations in the execution time of the edge
nodes with the increase in their capacity from 2–11.5 with an
interval of 0.5 along the x-axis. We consider the presence
of 45 edge nodes in the simulation environment. We observe
that the execution time reduces by 7.95%, 8.35%, and 11.32%
respectively, compared with the HO, MLB, and Honeybee
algorithms. Additionally, we observe that the execution time
reduces by 6.01% with the integration of our algorithm into
the existing Safe-aaS architecture. Further, we observe that the
execution time follows a decreasing trend with the increase
in the capacity of the edge nodes.

In Fig. 2(b), we analyze the variations of data rate in
case of EdgeSafe, HO [3], MLB [2], and Honeybee [4]
algorithm. We vary the number of end-users from 20–100
with an interval of 20. We observe that the average data
rate increases by 53.13% and 36.4%, in the case of HO
and MLB. However, the average data rate is much higher in
amplitude in our proposed algorithm, EdgeSafe. In addition
to this, the packet forwarding rate of the edge nodes varies
with the increase in the number of end-users in the simulation
area.

We represent residual energy of a sensor node at any time
instant, tk as the remaining energy of that node. We com-
pare the average residual energy of the proposed algorithm,
EdgeSafe, with the existing algorithms, HO, MLB, and
Honeybee. In Fig. 3, we observe that the residual energy
reduces with the increase in the number of end-users. We
increase the number of end-users from 10–100 along the x-
axis. The probable reason behind this decreasing pattern is
that the amount of energy consumed to provide safety-related
decisions increases with the increase in the number of end-
users. Therefore, the average residual energy decreases.

C. Results
We study and analyze our load balancing scheme among the

edge nodes through several experimental conditions, which
are discussed considering the following performance metrics:

Variation of capacity and flow-rate of edge nodes: Fig. 4(a)
illustrates the variation of capacity of the edge nodes present
in the neighborhood of the selected sensor nodes. Along the
x-axis, we vary the number of sensor nodes starting from 200
up to 1000, with an interval of 200. Fig. 4(a) demonstrates
the variations in the input, output, and average of the edge
nodes. We observe that the input, output, and average capacity
of the edge nodes improves by 5.77%, 12.89%, and 6.05%
with the increase in the number of edge nodes from 45–75.
The probable reason behind such a trend is that the input
capacity function and output capacity function depends on
the edge flow rate, ingress component, cloud flow rate, and
egress component. Moreover, with the increase in the number
of sensor nodes, the data arrival rate and the number of data
packets transmitted from the sensor nodes to the edge nodes
within their proximity vary.

Fig. 4(b) illustrates the variations of the average flow rate of
edge nodes present in the neighborhood of the active sensor

 0.1038

 0.104

 0.1042

 0.1044

 0.1046

 0.1048

100 200 300 400 500 600 700 800 9001000E
ff

ec
ti

v
e 

p
a

ck
et

s 
 d

ro
p

p
ed

Number of sensor nodes

Mobile sensor nodes

Fig. 5: Variation of packet dropped by mobile sensor nodes

nodes. Along the x-axis, we increase the number of sensor
nodes starting from 100 upto 1000, in steps of 100. We
observe that the edge, cloud, and average flow-rate increases
by 0.5%, 1.87%, and 1.96% with the increase in the number
of edge nodes from 45–75. Interestingly, we notice that the
rate of increase in the flow-rate drops after a certain number
of sensor nodes. One of the factors behind such a trend is the
distance between the edge node and the mobile sensor node
varies with the mobility of the vehicles. Consequently, we also
observe that there exists more randomness in the cloud flow-
rate in case of CFRei , rather than in the case of EFRei in
the presence of 45, 60, and 75 edge nodes in the scenario. The
probable reason behind this is the average packet forwarding
rate from the edge nodes to the cloud is comparatively higher
than the packet forwarding rate of the sensor nodes to the
edge nodes.

Effective packets dropped: Fig. 5 illustrates the effective
packet dropped by the mobile sensor nodes in the presence
of 100–1000 sensor nodes in the scenario. We define effective
packets dropped as the ratio of the number of data packets
dropped by the sensor node to the number of data packets
transmitted by that node. We observe that the effective packet
drop ratio does not fluctuate significantly with the increase in
the number of sensor nodes. Therefore, the effective packet
drop ratio is independent of the number of sensor nodes
present in the scenario.

Profit return by the edge device: Fig. 6 demonstrates the
profit return of the edge devices in the presence of 100, 200,
and 300 sensor nodes. We vary the number of edge nodes
from 45–180, in steps of 15, along the x-axis. We observe
that the profit of the edge nodes fluctuates randomly. The
probable reason behind this is that the incentive received by
the edge nodes depends upon the number of times the edge
node was selected for load balancing. Further, the probability
of the number of data packets successfully delivered by any
edge node also varies with time. Therefore, we conclude that
the profit of the edge nodes is independent of the number of
sensor nodes present in the simulation area.

Risk incurred in selecting the edge node: Fig. 7 demon-
strates the analysis of the risk incurred in selecting the edge
node for load balancing. Along the x-axis, we represent the
number of edge nodes present in the simulation environment.
We vary the number of edge nodes from 45 to 180 with an
interval of 15. We observe that the risk incurred in selecting
the edge nodes for sharing load vary randomly in the presence
of 100, 200, and 300 sensor nodes. The amount of memory
utilized by the edge nodes depend on the number of processes
executed at any time instant, which may vary randomly. We
compute the risk incurred in selecting the edge nodes using
Equation 15. The profit return of the edge nodes also fluctuate
randomly, therefore, the variation in profit return changes.
Consequently, the risk incurred in selecting the edge nodes
vary.
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Utility of the edge device: Fig. 8 illustrates the utility of
the edge nodes in the presence of 100, 200, and 300 sensor
nodes. We observe a random pattern in the profit return of
the edge nodes in Fig. 6 and risk incurred in selection of
the edge nodes in Fig. 7. Further, we compute the utility of
the edge nodes depending upon the risk incurred in selecting
them for load balancing and their effective spare memory as
given in Equation 17. Therefore, the utility of the edge nodes
do not depend upon the number of edge nodes present in the
simulation area.

Execution time: Fig. 9 demonstrates the variations in the
execution time of our proposed scheme with the increase in
the number of processes being executed at the edge nodes.
We define execution time as the time required to distribute
the available time-critical data dynamically among the edge
nodes. We estimate the execution time in the presence of 15,
30, and 45 edge nodes in traditional Safe-aaS and EdgeSafe
(after load sharing in Safe-aaS). In this figure, we observe
that the execution time in EdgeSafe with 15 edge nodes
in the simulation environment is almost similar to that of
45 edge nodes in Safe-aaS. We observe that the execution
time decreases by 55.24%, 59.98%, and 63.496% in our
proposed scheme, EdgeSafe, compared to the existing Safe-
aaS architecture, in the presence of 15, 30, and 45 edge nodes,
respectively.

V. CONCLUSION

In this work, we propose a novel scheme of dynamic load
distribution among the edge nodes for provisioning Safe-aaS.
With the change in the location of the vehicles, the sensor
nodes deployed in the vehicles attain mobility. Therefore, the
distance between the mobile sensor nodes and the neighboring
edge nodes varies at every time instant. The load in the edge
nodes also varies with time. Additionally, the edge nodes are
heterogeneous in nature and the capacity of the various edge
nodes differ. Thus, dynamic sharing of the resources among
the edge nodes, based on their capacity, is necessary. As per

our knowledge, this is the one of the first attempt in road
transportation industry, where load distribution among edge
nodes is considered.

As per the existing research work, the theoretical model of
the Safe-aaS architecture and cost analysis is proposed. We
plan to implement the Safe-aaS infrastructure with a dynamic
load balancing scheme, EdgeSafe in the real-life scenario. As
multiple steps are involved in the registration process, the type
of end-users, and their demand may vary, we plan to design
the microservice architecture in the Safe-aaS infrastructure to
meet the users’ demand. Safe-aaS platform is proposed for
providing safety-related decisions to the end-user. Therefore,
we plan to incorporate safety and security in the different
layers of the architecture from the users’ and Safety Service
Provider’s perspective.
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