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Abstract—In this work, we propose a dynamic decision
query mapping mechanism, DQ-Map, for provisioning Safety-
as-a-Service (Safe-aaS) [1]. A Safe-aaS infrastructure provides
customized safety-related decisions simultaneously to multiple
end-users. We consider road transportation as the application
scenario of Safe-aaS and termed the safety-related decision to
be delivered to the end-users as decision queries (DQs). These
DQs are generated according to the decision parameters selected
by the end-users. The primary aim of our proposed work is to
reduce the total number of sensor nodes required to generate
the safety-related decisions, which minimizes both energy and
time consumption. Further, the requested DQs are processed and
decision is generated in three different stages. First, the DQs are
categorized as emergency (EDQ) and non-emergency (NEDQ),
depending upon the type of vehicle from where the end-users
have requested for safety services. The EDQs and NEDQs are
mapped with the stored decisions present in the database of the
decision virtualization layer during the second level. In case of
mismatch with the stored decisions in the database, EDQs are
directly executed from the sensor nodes deployed at a particular
geographical location or into the vehicles, in the device layer
of the Safe-aaS infrastructure. In the third level, the similarity
score of NEDQs, which do not match with the parameters of
the stored decisions, are computed. Based on the number of
similar decision parameters present in them, the similarity score
is computed. Extensive simulation results of the proposed scheme,
DQ-Map, depicts that the amount of energy consumed and time
required to generate a decision is reduced by 55.16% and 54.55%
respectively, compared to the traditional Safe-aaS architecture.

Index Terms—Road transportation, Decision Mapping, Safety-
as-a-Service, Decision Query, Safety, IoT.

I. INTRODUCTION

THE integration of Internet of Things (IoT)-based tech-
nologies to be applicable across different industrial sec-

tors have resulted in the automation of the industrial processes
[2]. Internet of Vehicles (IoV) [3], a domain of Industrial
Internet of Things (IIoT), help in controlling traffic and road
congestion. Further, certain applications of IoV such as Intel-
ligent Transportation System (ITS) [4] and Advanced Driver
Assistance Systems (ADAS) [5] help in the reduction of on-
road congestion, pedestrian detection, and assist drivers. How-
ever, the rate of road accidents and casualty have increased
significantly with the increase in the number of on-road
vehicles. Human errors such as drowsiness, driving behavior,
and different socio-economic reasons, act as one of the key
factors in the occurrence of the road accidents [6]. However,

prior delivery of on-road safety-related informations help to
significantly reduce the human errors and other associated
factors which lead to an accident.

In this paper, we propose a dynamic decision query mapping
mechanism, DQ-Map, for provisioning Safety-as-a-Service
[1]. A Safe-aaS architecture provides customized safety-
related decisions simultaneously to multiple end-users, based
on the decision parameters selected by them. Considering
road transportation as the application scenario, we define the
decision to be delivered to the end-users, as per the decision
parameters chosen by them, as Decision Queries (DQs). Our
primary focus is to minimize the total number of sensor access
for the generation of safety-related decisions. In order to
reduce these number of sensor access, we map the parameters
of DQs with the parameters of the stored decisions.

With the increase in the number of on-road vehicles, the
drivers and organizations adopted different safety measures.
A Safe-aaS infrastructure provides customized safety-related
decisions simultaneously to the multiple registered end-users,
founded on the concept of decision virtualization. Typically,
in road transportation, the timely delivery of the requested
decision parameters to the end-users is essential to avoid
congestion and accidents. Based on the decision parameters
selected by the end-users, the decision is provided to them.
However, in a practical scenario, some of the decision pa-
rameters such as number of turns, manholes, and potholes on
the road selected by the end-users, may not vary frequently.
Therefore, multiple time execution of the same parameters
result in unnecessary energy and time consumption. On the
other hand, the sensor nodes are energy-constrained in nature.
This strongly motivated us to propose a scheme for dynamic
mapping of the decision parameters requested by the end-
users with the parameters of the stored decisions present in
the database. The decision to be delivered to these end-users
are termed as decision queries.

In this work, we consider the timeliness of the delivery
of decisions in Safe-aaS, based on the type of decisions
requested. The proposed problem provides solution to the
following: (a) categorization of requested decision parameters
and accordingly serve these requests, (b) dynamic mapping
of decision parameters with the parameters of the stored
decisions, and (c) find the optimal number of sensor nodes
required to generate a decision. The primary contribution of



2

this work is to propose the mechanism to dynamically map
the decision parameters requested by the end-users with the
decisions generated. The specific contributions are as follows:
• We propose a three-level decision query mapping mech-

anism in the decision virtualization layer of a Safe-aaS
architecture. We formulate a integer linear programming
(ILP) to compute the minimum number of sensor nodes
required to generate a decision. Further, we solved the
ILP applying Karush-Kuhn-Tucker (KKT) conditions.

• We classify the safety-related requested DQs into
emergency (EDQ) and non-emergency decision query
(NEDQ). The decision parameters present in the EDQs
and NEDQs are compared with the stored decisions. In
case of mismatch, EDQs are directly executed from the
sensor network. NEDQs are executed through the third
level of decision generation.

• We propose three algorithms for the decision query
mapping procedure – DQ-Class, DQ-Map, and DQ-Sim.
Extensive analysis of our proposed scheme, DQ-Map, de-
picts that the energy consumption and decision generation
time reduces significantly compared to the existing Safe-
aaS architecture, AEB, ACPS, and OBFBT.

II. RELATED WORK

In this section, we discuss the prior research works done
in the domain of road transportation. We discuss the existing
research works depending upon their application scenario such
as heavy and automated vehicles [7], [8], analysis of reasons
leading to accidents [9]–[13], and infrastructures and systems
developed to improve road safety [1], [14]–[20].

Liang et al. [7] proposed an optimized solution to improve
the fuel efficiency of heavy vehicles, by forming platoons with
the neighboring vehicles. In the proposed work, the authors
designed an algorithm such that the road topography has
minimum influence on the vehicles of the same route, when
organized as platoons. Further, as the movement of automated
vehicles can be controlled and co-ordinated, therefore, this re-
sults in minimizing the on-road congestion. Meissner et al. [8]
proposed a coordination-based algorithm, which maximizes
the number of successful exits in a highway and uniformly
distributes the traffic.

There are various causes such as human errors, weather
conditions, and road conditions. Caban et al. [9] studied the
various reasons of accidents, the different type of injuries
related with it, and the engineering materials required for the
treatment. One of the major reasons for accidents is drowsiness
of the drivers during driving. Chui et al. [10] developed an
accurate driver drowsiness classifier using electrocardiogram
genetic algorithm-based support vector machine. The authors
proposed three classifiers – classifier 0, 1, and 2, to detect the
different state of drowsiness of the drivers. In another work,
Dey et al. [11] collected the road weather data from different
sources and suggested intelligent transportation system-based
solutions to minimize the impact of adverse route-specific
weather conditions.

On the other hand, to maintain safe speed and distance
with the other vehicles, Bertolazzi et al. [16] designed a

driver support system, based on the lane curvatures. Similarly,
Amditis et al. [17] proposed a safety framework, called
INSAFES, which worked in three levels – perception, decision,
and action. The proposed framework provides information of
safe distance, lane change, safe speed, and collision avoidance.
Further, Roy et al. [1], [14], [15] proposed an infrastructure,
Safe-aaS, to provide customized safety-related decisions to
the multiple registered end-users simultaneously. Additionally,
authors considered the presence of heterogeneous type of static
and mobile sensor nodes. Mobile sensor nodes are deployed
into the vehicles, while static sensor nodes are deployed at a
particular geographical location. In a Safe-aaS architecture, the
time-critical data are primarily processed at the edge nodes.
With the mobility of the vehicles, the edge nodes present
within their vicinity changes. Therefore, appropriate selection
of edge node is essential. On the other hand, certain privacy-
related problems exist in the Safe-aaS architecture. Consider-
ing these privacy issues, the authors proposed a blockchain-
enabled Safe-aaS architecture to be applicable across different
industrial verticals. Further, the service region of any Safety
Service Provider (SSP) is bounded, which results in the
interruption of safety services provided to the end-users. Roy
and Misra [19] proposed a service handoff scheme to provide
uninterrupted services to the end-users.

Synthesis: Different research works explore various reasons
of accidents, on-road safety issues, and improvement of fuel
efficiency in the vehicles. In the existing literature [16], [17],
the authors proposed an infrastructure to integrate the various
safety aspects such as safe distance, safe speed, and collision
avoidance. Roy et al. [1] proposed the theoretical model
and analyzed the cash inflow and outflow among the various
actors of the Safe-aaS infrastructure to provide safety-related
decisions to the end-users. However, the dynamic mapping
of the end-users’ requests with the decisions stored in the
database present in the decision virtualization layer, is not yet
addressed. This mapping of the requested decision parameters
with the parameters of the stored decisions result in the
reduction of energy and time consumption. Therefore, we
propose the decision query mapping mechanism, prioritizing
the emergency decision requests.

Fig. 1: Decision Virtualization Mapping Framework

III. PROBLEM DESCRIPTION

A. Problem Scenario
In the proposed work, we consider an ITS scenario where

Safe-aaS [1] architecture is implemented. A Safe-aaS infras-
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tructure comprises five layers – device, edge, decision, decision
virtualization, and application. The device layer consists of
heterogeneous types of static and mobile sensor nodes, which
sense and transmit data to the edge layer/cloud, based on the
time-criticality of data. Static sensor nodes are deployed at
a particular geographical location, while mobile sensor nodes
are deployed into the vehicles. The primarily processed sensor
data are transferred to the decision layer for further processing.
Thereafter, the multiple processed sensor data are combined
to generate the decision requested by end-users in this layer.
Further, the logical mapping between the end-users requests
and decision generated is done in the decision virtualization
layer. The four principal actors of Safe-aaS architecture are –
vehicle owners, sensor owners, safety service provider (SSP),
and end-users. The application layer acts as the interface
between the end-users and Safe-aaS. The end-users register
to this architecture through a Web portal and provides their
source and destination. Each of the registered end-users select
certain decision parameters such as location and depth of
potholes, road congestion, and weather conditions, among the
available ones, to the Safe-aaS infrastructure, as demonstrated
in Fig. 1. Based on the decision parameters selected by them,
the decisions are delivered to the end-users. The end-users
enjoy these services on pay-per-use basis. However, the end-
user remains completely unaware of the back-end process of
decision generation.

The primary objective of our proposed work is to reduce
the sensor access frequency, total query execution time, and
maintain the sustainability of the underlying sensor network.
We term the safety-related decisions to be delivered to the
end-users, as per the decision parameters selected by them
as Decision Query (DQ). We propose a dynamic Decision
Query Mapping mechanism in the decision virtualization layer
of Safe-aaS architecture. Fig. 1 illustrates the different stages
of decision query mapping in the Safe-aaS infrastructure.
We map the parameters of DQs requested by the end-users
with the decisions stored in the database. In the first level,
the DQs are categorized based on the Emergency (EDQ)
and Non-Emergency (NEDQ) end-users request. Each of the
DQs are associated with the type of vehicle from where the
decisions are requested. We categorize the DQs requested
from emergency-type vehicles such as ambulance and VIP’s
vehicle as EDQ. The other requested DQs are categorized
as NEDQ. Both EDQs and NEDQs are passed through the
second level, which addresses the mapping of DQs with
the already generated decisions stored in the database. The
EDQs, which does not matches, are directly executed from the
underlying sensor network. In case of mismatch, NEDQs are
only forwarded to the third level, which analyzes the overlap
issues/similarity of decision parameters among the NEDQs.

B. Problem Formulation

We consider that n number of registered end-users are
present in the Safe-aaS architecture at a particular time
instant, t. A set of registered end-users is represented as
EUt = {EU t

1, EU
t
2, · · · , EU

t
n}, where EU t

i is denoted as
the ith end-user at time-instant, t. We assume that each of

the registered end-user requests for a DQ, DQt
i, at the tth

time instant. Further, a set of the number of DQs requested
by the end-users at the time instant, t, is represented as,
Dt = {DQt

1, DQ
t
2, · · · , DQt

n}. Any of the ith registered end-
users’ requests for safety-related decisions from his/er current
location. However, with the mobility of the end-user, the
location of the requested decision parameters changes, which
results in the variation of the generated decision query, DQt

i.
Therefore, the present location of DQt

i associated with the
ith end-user is represented as: locti = {latti, lon

t
i}, where

latti and lonti denote the latitude and longitude of the ith

end-user, respectively. The requested decision query, DQt
i

comprises multiple decision parameters, Dpi, present location
of the end-user, locti, target application area, tri, for which the
service is requested, and time stamp, tsi. Therefore, DQt

i is
expressed as a four-tuple, DQt

i = 〈Dpji , loc
t
i, tr

t
i, tsi〉 where

j ∈ c and c denotes the total number of decision parameters
available in the Safe-aaS architecture. Dpi represents the
decision parameters selected by the ith end-user.

C. Preprocessing Stage

Let us consider DB as the database with m number of
generated decisions at any time instant t, represented as
DBt = {Dt

1, D
t
2, · · · , Dt

m}. We assume that the total number
of decision parameters present in the ith stored decision, Dt

i

is denoted as dpci. Therefore, the total number of decision
parameters present in the stored decisions at any time instant,
t, is represented as Nt. Mathematically:

Nt =

m∑
i=1

dpci (1)

We assume that a hash table, H , keeps record of the count
and type of decision parameters present in the generated
decisions stored in the database, at any time instant t. The
hash key of the table, H represent the number of decision
parameters present in a decision.

Proposition 1. The total number of hash keys stored and the
maximum number of columns present in the hash table, H , at
any time instant, t must not exceed c and m, respectively.

Proof: We consider that the total number of decision
parameters served by the Safe-aaS architecture is denoted as
c. Further, each of the ith hash keys stored in the hash table,
H , comprises of the number of decision parameters contained
in the ith decision, Di. Hence, at any time instant, t, the
maximum number of decision parameters present in any of
the stored decisions does not exceeds c. Therefore, it is proved
that the total number of hash keys in H at the tth time instant
is c.

On the other hand, the total number of decisions stored in
the database is assumed as m. The number of entries in any
row of the hash table, H vary with time. However, the total
number of columns does not exceed m, at any time instant t.
Mathematically,

m =

c∑
i=1

dpi, (2)
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where dpi is the number of decisions present in the ith row
of the hash table, H .

In order to visualize the similarity between the two gener-
ated decisions from the database in O(1) time, we construct a
decision similarity matrix, MDBt , of dimension (m×m). Each
entry in the MDBt denotes the number of common decision
parameters between the ith and jth decision. In other words,
each of the element in the decision matrix represents the
similarity score among the stored decisions (SDij). The MDBt

is symmetric in nature, which is represented as,

MDBt =


SD11 SD12 · · · SD1m

SD21 SD22 · · · SD2m

...
...

. . .
...

SDm1 SDm2 · · · SDmm

 (3)

Therefore, the size of the search space, s is represented as,

s =
m× (m+ 1)

2
(4)

In order to match the requested DQs with the decisions
stored in the decision database, the similarity score, SDij ,
is computed. Further, the decision matrix, MDBt provides the
similarity score among the stored decisions in O(1) time. In
case of mismatch, the NEDQs are forwarded to the third level.

Definition 1. Similarity Score of Non-Emergency Decision
Query (SCij): The similarity score between any two NEDQs, i
and j, is defined as the number of similar decision parameters
existing in the ith and jth NEDQ. Mathematically,

SCij =| spij | (5)

where spij is the number of similar decision parameters
existing in the ith and jth decision query. In order to keep
track of the similarity score among the NEDQs, the SCij

for each NEDQs are stored in the Decision Query Similarity
matrix, Mt

DQ. Further, the matrix Mt
DQ is of the order (n×n)

and is symmetric in nature.

Mt
DQ =


SC11 SC12 · · · SC1n

SC21 SC22 · · · SC2n

...
...

. . .
...

SCn1 SCn2 · · · SCnn

 (6)

In the second level of our proposed approach, we check
whether the decision parameters requested by the end-users
match with the parameters of the decisions stored in the
database. In case of mismatch, we check the similarity among
the requested DQs. Further, the mismatched NEDQs are gen-
erated from the sensor data. The primary aim of this proposed
work is to minimize the total number of sensor access. Further,
the total number of sensor utilized for the generation of n
number of decision queries at any time instant, t, is denoted
as TAt, such that TAt =

∑n
i=1 TA

t
i. We represent TAt

i

as a function of DQt
i and SCij for the ith DQ, such that,

TAt
i = f(DQt

i, SCij). Therefore,

TAt =

n∑
i=1

(f(DQt
i, SCij)) (7)

On the other hand, each DQt
i is a function of the number of

decision parameters of the ith DQ, executed from the database
and the sensor network respectively. NDQi,t

dv and NDQi,t
sn

represent the number of decision parameters executed from
the database and sensor network respectively. Thus, DQt

i =
f(NDQi,t

dv, NDQ
i,t
sn), and Equation 7 is represented as,

TAt =

n∑
i=1

(
NDQi,t

dv +NDQi,t
sn + SCij

)
(8)

Therefore, the ILP is formulated as,
argmin
NDQi,t

sn

TAt (9)

subject to,
NDQt

dv > NDQt
sn and SCij ≤ SCmax

ij (10)
where NDQt

dv and NDQt
sn denote the total number of decision

parameters executed from the database and sensor network
respectively. Further, NDQt

dv =
∑n

i=1NDQ
i,t
dv and NDQt

sn =∑n
i=1NDQ

i,t
sn. SCmax

ij represents the maximum number of
decision parameters of the ith decision query, which match
with the jth decision query. To convert the ILP into simplified
form, we apply Lagrangian function for Equation (9), which
is represented as:

Lt =

n∑
i=1

(f(DQt
i, SCij)) + λ1

n∑
i=1

(NDQi,t
dv −NDQ

i,t
sn)

+λ2

n∑
i=1

(SCmax
ij − SCij)

(11)
where λ1 and λ2 are the Lagrangian multipliers. In order

to find the optimum solution of the Lagrangian function, we
apply Karush-Kuhn-Tucker (KKT) [21] conditions. Among the
DQs requested, the number of DQs executed directly from the
sensor network varies continuously with time, therefore the
function is differentiable for number of DQs executed from the
sensor nodes. Hence, the local optimum solution is obtained at
that point. The dual feasibility and complementary slackness
conditions are represented by Equation (12).

∂NDQi,t
sn
Lt = (1− λ1) +

(n−1)∑
j=1,j 6=i

NDQj,t
sn(1 + λ1) = 0

(12a)
λi ≥ 0 and λiXi = 0,∀i = {1, 2} (12b)
where Xi denote the constraints of Equation (9). Therefore,

the minimum number of sensor access at the tth time instant
is computed from the KKT conditions.

IV. SOLUTION APPROACH

We propose a set-intersection-based algorithm to represent
the mapping of decision queries. We assume that there are
n number of decision queries requested by n users at any
time instant t. Further, we consider that the decision database
stores m decisions. The similarity among these stored deci-
sions are retained in the matrix, MDBt . Algorithm 1 provides
insight towards the task of categorizing the DQs into EDQs
and NEDQs. The EDQs are first matched with the existing
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decisions. Thereafter, in case of mismatch, EDQs are executed
directly from the underlying sensor network, without pre-
processing them in the decision virtualization layer.

Algorithm 1 DQ-Class

INPUTS: DQ, EDQ, NEDQ
OUTPUTS: ndqdv , ndqsn
PROCEDURE:

1: for i = 1 to n do
2: if DQi.type = EDQ then
3: EDQ.enqueue(DQi)
4: ndqsn ← ndqsn + 1
5: else
6: NEDQ.enqueue(DQi)
7: ndqdv ← ndqdv + 1
8: end if
9: end for

Algorithm 2 DQ-Map

INPUTS: DQ, DB, H , M, NEDQ, EDQ
OUTPUTS: ndqdv , ndqsn
PROCEDURE:

1: for i = 1 to n do
2: pi ← count decision parameters (DQi)
3: l← rds(H[pi]) . rds(H[pi]): function to retrieve

decisions from the hash table
4: A = φ . A: null string of maximum length n
5: for Each Decision Dj ∈ l do
6: for Each Decision Dk ∈ l do
7: if M[Dj ][Dk] == pi then
8: A.append(Dk)
9: end if

10: end for
11: end for
12: for each Decision Dj ∈ A do
13: if Dj = DQi then
14: return decision of DQi to user
15: if DQi.type = EDQ then
16: EDQ.dequeue(DQi)
17: ndqsn ← ndqsn − 1
18: else
19: NEDQ.dequeue(DQi)
20: ndqdv ← ndqdv − 1
21: end if
22: else
23: if DQi.type = EDQ then
24: execute DQi in sensor network
25: end if
26: end if
27: end for
28: end for

Proposition 2. The running time complexity of DQ-Class is
O(n), where n represents the total number of decision queries
requested by the end-users at any time instant t.

Proof: The algorithm, DQ-Class, classifies the queries re-
quested by the end-users into two queues – emergency (EDQ)
and non-emergency (NEDQ) queue, which is performed by
the enqueue operation. The loop used to classify the decision
queries iterates n number of times. During each iteration, the
loop compares the DQ type, enqueue it based on the type, and
increment the queue length in the O(1). Therefore, the total
running time complexity of DQ-Class is O(n).

Algorithm 2 maps the DQs requested by the end-users with
the stored decisions in the decision database. During this stage,
the parameters of a DQ are checked with the parameters of
already generated decisions stored in the database, to avoid
repetitive execution of the same query. Further, we maintain
a strict ordering among the decision parameters to nullify the
reordering of the decision parameters, during the computation
of similarity among the DQs.

Proposition 3. The running time complexity of DQ-Map is
O(nm2), where n represents the total number of decision
queries requested by the end-users and m denotes the number
of decisions stored in the database, at any time instant t.

Proof: The proposed scheme, DQ-Map, matches the de-
cision query (DQ) request from the stored decisions in the sec-
ond level. The outer loop of this algorithm iterates n number of
times for n DQs. In Step -3 of Algo 2,we use the rds function
to retrieve the decisions from the hash table on the basis of
parameter count. The running time of this operation is of the
order of O(1). The other operations enqueue, dequeue, and
append represent the insert, delete, and arrange the elements at
the end of the queue. These operations have time complexity of
O(1). We consider that there are m number of stored decisions
present in the database. Therefore, the maximum length of the
list, l, which stores the decisions retrieved from the hash table,
is m. The time complexity is O(m). Algorithm 2 is used to
filter the retrieved list. In the worst case, the lines 5 − 11
of Algorithm 2 has running time complexity of O(m2). The
maximum length of the null string, A, is m, which stores
the filtered list. The complexities of serving the DQs on the
basis of similarity (line 12−27) is O(m). Therefore, the total
running time complexity of Algorithm 2 is represented as:
max(nm2, nm) =⇒ O(nm2).

The non-emergency decision queries which are not served
from the decision database are forwarded to the final stage
of mapping to find out the similarity among them. Algorithm
3 represents the generation of new queries on the basis of
similarities among the decision queries.

Proposition 4. The running time complexity of DQ-Sim is
O(cn2), where c denotes the total number of decision pa-
rameters available with Safe-aaS and n represents the total
number of decision queries requested by the end-users, at any
time instant t.

Proof: The algorithm 3 reforms the NEDQs on the basis
of similarity among them. The maximum size of each decision
query is c. So, the worst case time complexity of two decision
query intersection and difference is O(c). The time complexity
based on the maximum size of the non-emergency queue
is O(n). Therefore, the run-time complexity of DQ-Sim is



6

 200

 400

 600

 800

 1000

 1200

 1400

 1600

50 75 100 125 150 175 200

T
o
ta

l 
n

u
m

b
e
r
 o

f 
s
e
n

s
o
r
 a

c
c
e
s
s

Number of end-users

Safe-aaS with DQ-Map
Safe-aaS without DQ-Map
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O(cn2), in the worst case.
Complexity analysis: Algorithm 1 classifies the DQs as –

EDQ and NEDQ, and it takes O(n) time. The Algorithm 2
maps the DQs with the stored decisions in the database and
runs in O(nm2). Further, in case of mismatch with the stored
decisions, Algorithm 3 finds the similarity among the NEDQs
and takes O(cn2). Therefore, the total running time complexity
of the proposed scheme is O(n) + O(nm2) + O(cn2) ≈
O(n(m2 + n)).

Algorithm 3 DQ-Sim
INPUT: NEDQ
OUTPUT: NEDQ with similarity among the queries
PROCEDURE:

1: for each DQj and DQk in NEDQ do
2: if DQj == DQk then
3: NEDQ.dequeue(DQk)
4: else
5: DQjk ← DQj ∩DQk

6: DQj1 ← DQj \DQjk

7: DQk1 ← DQk \DQjk

8: NEDQ.dequeue(DQj , DQk)
9: NEDQ.enqueue(DQj1, DQ/k1, DQjk)

10: end if
11: end for
12: Forward NEDQs to sensor network for execution

TABLE I: Simulation Parameters

Parameter Value
Simulation area 10 km × 10 km
Number of decision parameters 15
Number of sensor nodes 500
Number of decisions in the database 5 – 15
Number of end-users 50–200
Initial energy of sensor nodes 2 nJ
Deployment type random

V. PERFORMANCE EVALUATION

A. Simulation Design

In this section, we evaluate the performance of our proposed
scheme, DQ-Map, we consider the presence of 500 randomly
deployed sensor nodes over a simulation area of 10× 10km2.
We consider the presence of five types of static and mobile
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sensor nodes in the simulation environment. Static sensor
nodes are deployed at a particular geographical location, while
the mobile sensor nodes are externally placed into the vehicles.
We apply Gauss Markov mobility model to design the speed
vn and direction dn of the mobile sensor nodes at the nth time
instant. Mathematically,

vn = αvn−1 + (1− α)v̄ +
√

(1− α2)× vxn−1 (13a)

dn = αdn−1 + (1− α)d̄+
√

(1− α2)× dxn−1 (13b)

where α is the tuning parameter. v̄ and d̄ denote the
mean speed and direction of the mobile sensor node. vxn−1

and dxn−1 represent the random variable from a Gaussian
distribution that assigns randomness to the speed and direction
of the sensor node at time instant, (n − 1). The different
simulation parameters considered are mentioned in the Table
I. We execute our experiment upto 100 iterations considering
95% confidence interval.

B. Benchmark

We compared our proposed scheme, DQ-Map, with the
existing decision making mechanism [22], traditional Safe-aaS
platform [1], driving pattern analysis [23], and vehicle centric
safety framework [24]. We termed the traditional Safe-aaS
infrastructure as Safe-aaS without DQ-Map and the decision
making mechanism for automatic pedestrian braking system as
AEB. Further, we termed the vehicle-centric safety framework
as ACPS and the on-board feedback-based training analysis as
OBFBT. In Safe-aaS [1], the end-users select certain decision
parameters and register through the Web portal. Based on these
decision parameters, the decision is provided to the end-users.
To deliver these decisions to the end-users, we propose a dy-
namic decision query mapping mechanism. On the other hand,
Rosado et al. [22] proposed a decision making mechanism for
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automatic emergency braking systems. The authors validated
their proposed model with the test results and it can be applied
in real time for its simplicity. However, their proposed decision
scheme does not provide a common platform for provisioning
customized safety-related decisions to the end-users. Pozueco
et al. [23] analyzed a road safety monitoring system, which
is capable of providing real-time feedback and in-vehicle
training. Additionally, the drivers experienced both theoretical
and practical sessions, based on a learning system, with on-
board feedback techniques during their training. On the other
hand, Naufal et al. [24] proposed a vehicle-centric safety
framework to be applicable for autonomous transportation
systems. The framework designed by the authors focuses on
minimizing the probability of collision among the vehicles
during run-time and risks associated with loss of human life
due to accidents. However, these existing schemes do not
consider the decision generation through optimal utilization
of sensor nodes for provisioning safety-related informations
to the end-users. Figs. 4 and 8 illustrate the variations in
the energy consumption and decision generation time with
the increase in number of end-users in the proposed scheme,
DQ-Map, traditional Safe-aaS, AEB, ACPS, and OBFBT. We
observe that the energy consumption is improved and decision
generation time is minimized using DQ-Map.

C. Results

The various performance evaluation parameters are dis-
cussed as follows:

Total sensor access: Fig. 2 illustrates the variation of total
number of sensor access in the Safe-aaS infrastructure with
the proposed scheme, DQ-Map, and without the scheme. We
increase the number of end-users along the x-axis from 50
upto 200, with an interval of 25. Interestingly, we observe
that the total number of sensor access, TAt, increases with
the increase in the number of end-users. However, we observe
that the rate of increase in TAt is lower in Safe-aaS with DQ-
Map. The possible reason behind such trend is the similarity
of the DQs with the stored decisions and similarity among the
NEDQs, in case of DQ-Map.

Number of decision queries: Figs. 3 and 5 depict the
variations in the number of decision queries (DQs) with the
increase in the number of end-users and time. In Fig. 3, we
vary the number of end-users along the x-axis. We observe an
increasing trend in both the emergency decision query (EDQ)
and non-emergency decision query (NEDQ). On the other
hand, Fig. 5 illustrates the variation in EDQs and NEDQs
with time in the presence of 50 and 100 end-users. However,
the number of EDQs and NEDQs varies randomly with time.

Energy consumption: Fig. 4 illustrates the average energy
consumption in the Safe-aaS infrastructure with DQ-Map
and without DQ-Map. We observe that the average energy
consumption increases with the increase in the number of end-
users. However, the rate of increase in energy consumption is
low in the Safe-aaS infrastructure with DQ-Map. On the other
hand, the energy consumption of AEB scheme is increased
by 32.97%, 70.76%, 86.7%, and 82.89% compared to the
traditional Safe-aaS, AEB, ACPS, and OBFBT. The probable

reason behind this is the reduction in the number of sensor
access, based on the similarity score of decision queries with
the stored decisions.

Similarity score: Fig. 6 demonstrates the variations in the
similarity score of NEDQs with the increase in the number
of end-users. We vary the number of end-users from 50-180
with an interval of 10 along the x-axis. We observe that
with the increase in the number of decision parameters in
the system, the similarity score among the NEDQ increases.
Fig. 7 depicts the similarity score of EDQs and NEDQs with
the parameters of the stored decisions. We notice that the
similarity score increases with the increase in the number of
decision parameters in the system. Further, the similarity score
increases with the increase in the number of stored decisions
in the database.

Decision generation time: Fig. 8 de Additionally, we com-
pare our proposed scheme with existing schemes such as AEB,
ACPS, and OBFBT. We observe that the decision generation
time increases with the increase in the number of end-users.
However, the rate of increase in decision generation time
decreases by 28.56% in case of Safe-aaS with DQ-Map. One
of the possible reasons behind this pattern is the reduction
in the total number of sensor access, which results in the
reduction of overall time consumption in decision generation.
On the other hand, we observe that the decision generation
time does not fluctuate significantly, in case of AEB. This is
because the decision is generated for automatic braking in the
presence of pedestrians. add for other existing schemes also

VI. CONCLUSION

In this paper, we proposed a three-level decision query
mapping mechanism, DQ-Map, for Safe-aaS infrastructure.
We aim to reduce the number of sensor access to generate
customized safety-related decisions, as per the end-user’s
requests. Further, to provide importance to the emergency
queries, we categorize the decisions into emergency (EDQ)
and non-emergency (NEDQ) decision query in the first level.
In order to avoid the repetitive execution of decision gener-
ation, the requested decisions are matched with the existing
stored decisions. In case of mismatch with the parameters
of stored decisions, EDQs are executed from the underlying
sensor network. On the other hand, NEDQs are forwarded
to the third level. The similarity among the NEDQs are
determined. In case of mismatch, the DQs are executed from
the sensor network.

In the future, we plan to design the mapping of decision
queries in the presence of malicious and misbehaving nodes.
As various actors are involved in the Safe-aaS infrastructure,
pricing is an essential part. Thus, we plan to design a dynamic
pricing model for the Safe-aaS architecture.
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