
OPTIVE: Optimal Configuration of Virtual Sensor in
Mobile Sensor-cloud

Arijit Roy†, Student Member, IEEE, Sudip Misra‡, Senior Member, IEEE, and Lakshya§
†Advanced Technology Development Centre, ‡§Department of Computer Science and Engineering,

†‡§Indian Institute of Technology Kharagpur, India,
{†arijitroy, ‡sudipm}@iitkgp.ac.in, §lakshya0459.iitkgp@gmail.com

Abstract—In this paper, we propose a scheme, OPTIVE, for
obtaining the optimal configuration of a virtual sensor in the
mobile sensor-cloud (MSC) architecture. The proposed scheme
is capable of selecting the physical sensor nodes to form a
virtual sensor (VS), based on the sensing area coverage in the
application region. We use Markov Decision Process (MDP) to
select the optimal mobile sensor nodes among the available
ones, for configuring the VS in the application area. The MSC
architecture is a new paradigm in which physical sensor nodes
attain mobility by the virtue of mobile devices such as, laptops,
cell phones, and vehicles. In MSC, a mobile device may move or
exit from an application region at any time instant. Consequently,
sensing hole arises in the application area, resulting in undesirable
interruption in the end-user services. As multiple sensor nodes
may be present in the application region, it is not suitable to
allocate any available sensor node randomly to re-configure the
VS for covering the sensing hole. In such a situation, OPTIVE
selects the optimal physical sensor node to allocate in the VS
for ensuring uninterrupted services to the end-users. Simulation
results show that OPTIVE is capable of provides at least 80−90%
coverage in the application area. Additionally, in the presence of
2 to 7 sensor nodes, the number of iterations in MDP change by
19.56%.

Keywords—Mobile Sensor-Cloud, Virtual Sensor, Optimal Sens-
ing Coverage, Markov Decision Process, Percentage of coverage.

I. INTRODUCTION

The sensor-cloud architecture is based on the concept
of virtualization of physical sensor nodes [1], which allows
multiple end-users to receive the services from a single sensor
node simultaneously. The sensor-cloud architecture depletes
the traditional single user-centric view of Wireless Sensor
Networks (WSNs). Typically, in sensor-cloud, a set of static
sensor nodes combine to form a VS for provisioning Sensor-
as-a-Service (Se-aaS) to the end-users. On the other hand,
the Mobile Sensor-Cloud (MSC) explores a new dimension of
cloud computing where mobile sensor nodes are virtualized
to serve end-user applications. In MSC, the sensor nodes
are attached to certain mobile devices, such as laptop, cell
phone, and vehicles. Thus, the physical sensor nodes attain
mobility due to the movement of the devices, to which these
are attached. The MSC architecture comprises of four actors–
sensor owner, device owner, end-user, and sensor-cloud service
provider (SCSP). The sensor owners procure and deploy the
sensor nodes on the mobile devices, which are owned by the
respective device owners. A SCSP manages the entire MSC
architecture using certain algorithms or by manual intervention
and provides Se-aaS to the end-users. On the other hand, the

end-users enjoy the requested services through a Web portal on
payment-basis. Further, SCSP pays rent to the device owners
and the sensor owners using the payment earned from the end-
users. Additionally, SCSP makes his/her profit and earns the
maintenance cost from the payment of the end-users. Typically,
the payment mechanism is maintained with the help of some
pricing schemes. An architecture of MSC is depicted in the
Fig. 1.

In an MSC, the sensor nodes become mobile with the
movement of the devices to which they are attached. In order
to provision Se-aaS for an end-user application, mobile sensor
nodes are required to be allocated to a VS. Also, the coverage
in the application area depends on the location of mobile
devices, which are equipped with sensor nodes. Therefore, the
movement of a device, which serves a certain application area,
from one location to another gives rise to sensing holes in the
application area. This work primarily focuses on the dynamic
allocation of physical sensor node, optimally, for configuring
a VS to cover the sensing holes in an application region.

Fig. 1: Architecture of MSC

A. Motivation

In an MSC architecture, a VS comprises of multiple
physical sensor nodes, which are attached to different mobile
devices. Thus, due to the dynamic movement of these mobile
devices, the application region may become uncovered. Con-
sequently, sensing hole arises in the application region and
the end-users service interrupts. To resume the uninterrupted

ruelia
Typewriter
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. [10.1109/WCNC.2019.8885626]

end-user services, it is essential to allocate other sensor nodes
in the VS. In such a situation, multiple mobile devices,
equipped with different sensor nodes, may be present in the
application region. Thus, these sensor nodes can be used for
reconfiguring the VS to cover the sensing hole. However, the
selection of any random sensor node among the available
ones for reconfiguring the VS is not pertinent. The traditional
sensor-cloud architecture comprises of static sensor nodes, and
therefore, the exiting schemes [2] and [3] for reconfiguring
the VS is not suitable for MSC. Thus, we propose a scheme,
named OPTIVE, which is capable of reconfiguring the VS by
selecting the best possible sensor node, among the available
ones in the MSC architecture.

B. Contribution

In this work, we consider the case of distortion in the
composition of a VS in MSC, due to the dynamic movement
of the mobile devices from an application area. This situation
gives rise to sensing holes in the application area. To address
this problem, we propose a scheme, OPTIVE, which optimally
selects a physical sensor node among the available ones to re-
configure the VS. In Fig. 2, we depict a few possible cases of
movement of mobile devices from the application area. Further,
we use MDP in the solution for allocating the best possible
available sensor nodes in a VS to remove the sensing holes
from the application area. Finally, to evaluate the proposed
scheme, OPTIVE, we performed rigorous simulations and
discussed the results.

II. BACKGROUND

In this section, we discuss different works on sensor-cloud
architecture. Yuriama and Kushida. [4] introduced the concept
of sensor-cloud with the basic architecture. Further, Misra et
al. [1] proposed the theoretical model of senor-cloud in which
the authors elaborately discussed about the different actors
associated with it. Typically, in the sensor-cloud architecture,
end-users pay the price based on the utility of the services.
The payment from the end-users is needed to be distributed in
a fair way among the different actors, such as the SCSP and
the sensor owner. Thus, in order to handle the pricing issues
of sensor-cloud, Chatterjee et al. [5] proposed an optimal
pricing scheme for sensor-cloud architecture. Additionally, a
trust enforcing pricing scheme, DETER, for sensor-cloud is
proposed by Chakraborty et al. [6]. DETER enforces trust
among the sensor owners, while maintaining the quality of
Se-aaS. The authors used Single-Leader-Multiple-Follower
Stackelberg Game for deciding the price to be paid to the
sensor owners. Bose et al. [7] proposed the concept of using
virtual sensors for environment monitoring. Further, Madria
et al. explored the real implementation of sensor-cloud. An
adaptive data caching scheme for sensor-cloud is proposed
by Chatterjee et al. [8], which is capable of minimizing the
service delay to the end-users. Additionally, Roy et al. [9]
came up with a unique scheme of data caching for sensor-
cloud, which is able to cache the data of the destroyed virtual
machines. In another work, Chatterjee and Misra [2] proposed
a scheme for composing virtual sensors dynamically in order
to provide efficient services to the end users. In this work [2],
the authors consider the presence of non-overlapping sensor
deployment region. Further, considering overlapping sensor

node deployment region, Roy et al. [3] designed a scheme
for forming VS with the physical sensor node.

Synthesis: In the existing literature, the authors studied
different problems in sensor-cloud architecture and provided
suitable solutions for addressing these problems. These
works consider the presence of static sensor nodes in the
sensor-cloud architecture. Moreover, the authors in [2] and [3]
proposed their respective schemes for forming a VS optimally
considering only static sensor nodes in the sensor-cloud
architecture. However, in this work, we consider that the VS
is composed of mobile sensor nodes, which are typically
attached to mobile devices. These mobile devices may exit
the application area at any instant of time, which result
in distortion in the composition of the VS. Moreover, the
aforementioned problem itself is different from the problems
of configuring the VS, discussed in the existing literature [2]
and [3]. Consequently, the existing solutions are not suitable
for addressing the problem of formation of VS in MSC,
identified in this work.

III. PROBLEM DESCRIPTION

Mobile Sensor-Cloud consists of mobile devices, which are
equipped with different physical sensor nodes. Thus, physical
sensor nodes attain mobility by the motion of mobile devices.
However, the motion of the devices is controlled by the device
owner.

A. Problem Scenario

We consider a mobile sensor-cloud platform, which con-
sists of heterogeneous physical sensor nodes. In order to pro-
vide sensing coverage to a particular application area, multiple
physical sensor nodes are required. Consequently, multiple
devices are essential to be present inside the application area.
In MSC platform, multiple physical sensor nodes combine to
form a VS. However, due to the movement of mobile devices,
physical sensor nodes may exit from the VS at any time instant.
Thus, in such a scenario, it is essential to re-configure the VS,
in order to provide an uninterrupted service to the end users.

Definition 1. Threshold Percentage of Sensing Coverage (PS)
is defined as the minimum amount of sensing coverage, ex-
pressed in percentage, in an application area, provided by a
SCSP to an end-user.

Fig. 2 depicts the possible cases for which re-allocation of
physical sensor node in a VS is required. In each of the cases,
there are four nodes- 1, 2, 3, 4, which are already covering the
application region and are the part of a VS. However, other
sensor nodes, A,B,C,D, and E are present in the application
area, which are not part of the VS. The possible cases those
arise due to the mobility of physical sensor nodes are as
follows:
Case 1: Physical sensor nodes, 1, 2, 3, 4, cover the application
region more than a threshold value, PS , defined by SCSP.
Case 2: Initially, the physical sensor nodes cover the appli-
cation region more than the threshold value. However, due to
the mobility of the device, node 3 exits the application region.
Consequently, sensing hole arises in the application region and
percentage of coverage drops below PS , defined by the SCSP,
as mentioned in Definition 1.

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Fig. 2: Few possible case, where re-allocation of sensor node is required

Case 3: Due to mobility, the sensor nodes, 1, 2, 3, 4, are aligned
in such a fashion that they are unable to cover the application
area, equal to or above PS value, resulting in sensing hole.
Case 4: In this case, node 4 move in such a fashion that the
sensing range of node 2 and 4 overlaps. Consequently, sensing
hole arises in the application region and percentage of coverage
drops below PS .
We consider the Case 1 to be a normal condition, where the
percentage of coverage is above or equal to PS . For Case 2-4,
we require to re-allocate the physical sensor nodes to the VS, in
order to cover the application area. However, there may exist
other cases also, for which re-allocation of physical sensor
nodes are required.

B. Problem Formulation

Let the set of physical sensor nodes present in the sys-
tem be denoted as S = {s1, s2, s3, · · · , sn}. Let the set
of mobile devices present in the MSC platform be repre-
sented by D, where each di ∈ D be any device, which
is equipped with one or multiple physical sensor nodes.
An application requested by an end-user is depicted as
A = 〈Aid, Aloc, Atype〉, where Aid, Aloc, Atype are appli-
cation id, application location, and application type respec-
tively [1]. A physical sensor node, s, is defined as a tuple,
s = 〈sid, sloc, stype, sdevice, svelocity, sst, senergy, sr〉, where
sid and stype denote the id and type of the physical sensor
node, s. Additionally, sdevice, sloc, and svelocity denote the
device id to which the sensor node is attached, current location
of the sensor node in the application area, and the current
velocity of the device, respectively. senergy and sr represent
the current residual energy and the sensing range of the sensor
node, s. The state of a sensor node is defined by sst. The
possible state of the sensor node is either active or inactive.
If a physical sensor node serves at least one application area,
then we consider the state of the sensor node as active. Thus,
the state of a sensor node, sst, is represented as:

sst =

{
1, if node is active
0, if node is inactive (1)

The set of applications is denoted by A. We define S′(t) as a
set of physical sensor nodes, which are suitable to be used for
serving the application, A, given as:
S′(t) = {s|s.stype = A.Atype and s is located

inside A.Aloc,∀s}, (2)
At any time instant t, V S(t) represents a virtual sensor, such
that V S(t) ⊆ S′(t).

Definition 2. Percentage of coverage (PC) is the total per-

centage of application area covered, by the sensing area of a
set of physical sensor nodes, S, such that S ⊂ S and si ∈ S
∀i.

Let si ∈ S denotes any sensor node. The total number of
nodes present in S is represented by k. The sensing area of
any physical sensor node, si, is denoted by Area(si) = πri

2,
where ri is the sensing radius of si. Let γt denotes the location
set at time instant t, such that γt = {l1, l2, l3, · · · , lk} and li
is the location of si. The percentage of coverage, PC(S, γt),
is calculated mathematically as:

PC(S, γt) =
Area(S, γt)

Areaapp
× 100% (3)

where

Area(S, γt) =

k⋃
i=1

Area(si) (4)

where Areaapp and Area(si) denote the total application area
and the area covered by any physical sensor node, si ∈ S,
respectively. Let, at time instant, t = 0 computation for the
reconfiguration of VS is started, such that:
At t = −ε, PC(S, γε) > PS , and
At t = 0, PC(S, γ0) < PS
where, ε → 0, γ0 is the corresponding location set for S at
t = 0, and γε is the corresponding location set for S at t = −ε.

Therefore, we re-configure the VS, at time instant τ , in
such a way that the percentage coverage of VS is greater than
PS . Mathematically, at t = τ , we have:
PC(S, γτ) > PS , where γτ is the corresponding location set
for S.

IV. SOLUTION APPROACH

Let P denote the probability of the achieved location by a
sensor node after time, τ .

P (s, θ, τ, r) = real value between (0,1) (5)
where θ is the angle of deviation of the location of mobile
device with respect to the current velocity of sensor node, with
range, (0, π) ∪ (−π, 0).

θ =

{
> 0, if θ is clockwise
< 0, if θ is anticlockwise (6)

where r is the distance between the current location of the
mobile device and the location to which the device reaches
after time, τ .

A. Approximation of device motion

The possible values of θ and r, in Equation (5), are infinite
for a particular value of s and τ . Therefore, the process of

computing the probability, P (s, θ, τ, r), of a sensor node, s,
being at any given position (r, θ) after given time (τ), is very
challenging. We can approximate (r, θ), by a set of expected
locations1 of the device owner. We calculate the expected
locations of a sensor node, in terms of expected trajectories and
possible distance, d, traveled by the sensor node in time τ . The
locations of the sensor node after traveling the distance d in
time τ on the expected trajectories are the expected locations.
We use linear regression [10] for calculating the value of d as
d = a+ b · t, where a and b are calculated using the observed
motion data of the device, such that d−(a+b·t) is minimum for
each of the pair (di, ti). We use least square error to penalize
the learning, using Equations (7) and (8), as follows:

δ =

i=n∑
i=1

(di − (a+ b · ti))2 (7)

a, b : mina,b(δ) (8)

where n is the total number of observation recorded for the
device. In order to calculate minimum of δ, we calculate the
partial derivatives of Equation (7) w.r.t. a and b, and equate
them to zero. Thus, we get Equations (9) and (10) respectively.

∂δ

∂b
= −2

i=n∑
i=1

ti · (di − (a+ b · ti)) = 0 (9)

∂δ

∂a
= −2

i=n∑
i=1

(di − (a+ b · ti)) = 0 (10)

Therefore,[
b

a

]
=

[∑
i di∑

i(ti · di)

] n
∑
i(ti · di)∑

i ti
∑
i t

2
i

−1 (11)

P ′(s, τ, l) denotes the probability of a sensor node, s,
for being at expected location, l, after time, τ . Let Li =
{l1, l2, l3, · · · , ln} denote the set of all expected locations of
sensor node, si.

Let L be the set of expected location sets of corresponding
sensor nodes. Thus, we have,

L({s1, s2, s3, ...sz}) = {{l1, l2, l3....., lz}, |li ∈ Li} (12)

B. Markov Decision Process-based Optimal Reconfiguration

In MSC, the devices in which sensor nodes are attached
are mobile and their motion is unpredictable. In such a
scenario, configuring the VS with mobile sensor nodes is a
stochastic process. Therefore, we use the MDP [11], in order
to reconfigure the VS with available physical sensor nodes
in the application region. Typically, MDP has four major
components– state, action, state transition probability, and
reward, which are defined as follows:
State: In this work, we consider state, Ψ is represented
as 3-tuple, < α,M, β >, where α = PC(M,β),
M ⊆ S′(t = 0) and β ∈ L(M). Subsequently, we

1Example: A sensor is attached to cell phone of employee of a company. The
motion of the cell phone will depend on the motion of the employee (as the
employee keeps his/her phone with himself/herself). The possible destinations
of the employee are his desk, his friend’s desk, to a toilet, to a boss office
etc. Moreover, there are some finite paths that he will take (through cabins,
stairs, and lift), to reach a destination. A statistical analysis can be done to
calculate the probability of the employee going to a particular destination
through particular path.

Fig. 3: Possible state transition based on action

define state space={Ψ,∀M∀β}.

Proposition 1. The size of state space is
∏|S′(t=0)|
i=1 (qi + 1),

where qi=|Li|

Justification: Consider β of any state for a particular sensor
node, si, there are (qi + 1) independent choices with respect
to β as:

(i) si ∈ M and it exist in one of the expected locations in
Li. Thus, it generates qi choices

(ii) si /∈M

Each sensor node, si has (qi + 1) independent choices, and
therefore, the size of state space is

∏|S′(t=0)|
i=1 (qi + 1)

Action: An action is one of the following:

• Inclusion of a sensor node , si ∈ (S − Mi), with
expected location, li, which results in change of state
from Statei to Statej , such that (Mj−Mi) = si and
(βj − βi) = li

• Inclusion of a sensor node, si ∈Mi, which results in
no change of state

Mathematically:

A(Statei) =

{
Statei, if included sensor node si ∈M
Statej , such that Mj −Mi = si

(13)
where si ∈ S−M .

Let us consider that there are two states, statei and statej .
The possible state transitions based on the possible actions are
depicted in Fig. 3.

Lemma 1. If the Markov chain is considered to be a directed
graph, then there exists a directed path between two states, ψ1

and ψn, such that M1 ⊂Mn and β1 ⊂ βn.

Proof: We use mathematical induction for justifying this
proposition. In base case, we consider two states, ψ1 and ψ2,
such that M2−M1 = s1 and β2−β1 = l1, where l1 ∈ L1, then
there exists a path between ψ1 and ψ2, consisting of action,
A of inclusion of sensor node, s1, with expected location, l1.

We assume there exist a path between two states, ψ1 and
ψn−1, such that Mn−1 − M1 = {s1, s2, s3, · · · sn−2} and
βn−1 − β1 = {l1, l2, l3, · · · ln−2}, where lk ∈ Lk,∀k ∈
[1, (n− 2)].

If we consider state, ψn, such that Mn − M1 =
{s1, s2, s3, · · · sn−1} and βn−β1 = {l1, l2, l3, · · · ln−1}, where
lk ∈ Lk,∀k ∈ [1, (n−1)], then there exists a path between ψn
and ψn−1, consisting of action, A, of inclusion of sensor node,
sn−1, with expected location, ln−1. Moreover, there exists
a path between states, ψ1 and ψn−1 as per the assumption.

Therefore, we conclude that there exists a path between states,
ψ1 and ψn, given M1 ⊂Mn and β1 ⊂ βn.

Reward: Reward is defined as
R : Ψ→ R (14)

such that

R(Ψ) =

{
λ, if α < PS
α

|M |
, if α ≥ PS (15)

where λ is a negative constant. Moreover, the magnitude of
λ has no impact on the optimal policy. If α ≥ PS , the
reward must be positive and proportional to α, and inversely
proportional to |M |.
State Transition Probability: The state transition probability
associated with the action, A, of inclusion of a sensor node,
si, with expected location, li, is depicted in Equation (16).

A(Statei) =

{
P(Ψi|Ψi,A) = 1, si ∈M
P(Ψj |Ψi,A) = P ′(si, τ, li), si ∈ S−M

(16)

C. Calculating Optimal Policy

For calculation of optimal policy in the proposed problem,
we use value iterations over infinite horizon [12]. Thus, we
calculate policy, such that expected sum of all future rewards
are maximum. Mathematically:

max

{
E

[
t=∞∑
t=0

µtRt

]}
(17)

where µ is the scaling factor to provide an upper bound over
the expected sum of all future rewards, such that 0 < µ < 1.
The value function with respect to policy, π, is given as:

V π(Ψ) = Eπ

[
t=∞∑
t=0

µtRt

]
(18)

The optimal policy corresponds to the optimal value function,
V ∗(Ψ). In order to determine V ∗(Ψ), we use value iteration
method. In this process, we start with Vt(Ψ) = 0, ∀Ψ.
Subsequently, we calculate Vt+1(Ψ) = 0 using:

Vt+1(Ψ)← R(Ψ) + µ ·maxA

{∑
Ψ′

P(Ψ′|Ψ,A) · Vt(Ψ′)

}
(19)

According to Bellman’s theorem, the value function converges
to V ∗(Ψ) in finite number of iterations.

Thus, we get the optimal policy, π∗ as follows:

π∗ = argmaxα

{∑
§′
Pr(§′|§, α) · V ∗(§′)

}
(20)

After achieving the optimal policy, we start the initial state as
Ψinitial =< 0, φ, φ > and follow the policy until we reach to
a state from which further action results in no change in the
state. Let the final state be Ψfinal =< αfinal,Mfinal, βfinal¿,
then the reconfigured VS is equals to Mfinal.

Theorem 1. Re-configured VS always provides coverage
higher than PS , if there exist a state, ψk such that αk ≥ PS .

Proof: Let there exist a state, ψk such that αk ≥ PS . The
policy in MDP tries to optimize Equation (15). Thus, any
state, ψi in MDP state space, must have optimal action, which
leads to a state ψj , such that R(psij) ≥ R(psii). Moreover,
by Lemma 1, there exists a path between ψinitial and ψk.
The optimal action in ψinitial must lead to a state ψfinal,
such that R(ψfinal) ≥ R(ψk). Thus, R(ψk) > PS =⇒

R(ψfinal) > PS . Therefore, we conclude that re-configured
VS always provide coverage higher than PS .

Algorithm 1 OPTIVE
INPUTS:

1: Optimal action(ψ) : Returns optimal action for the input state
ψ w.r.t. optimal policy

2: Apply(ψ,A) : Returns the state, after state transition from ψ due
to A

OUTPUTS:
3: ψfinal : The final state reached by applying optimal policy

PROCEDURE:
1: ψ1 =< 0, φ, φ >
2: while true do
3: A = Optimal action(Ψ1)
4: ψ2 = Apply(ψ1,A)
5: if (φ1 == φ2) then
6: ψfinal = ψ1

7: break
8: else
9: ψ1 = ψ2

10: end if
11: end while
12: return ψfinal

V. PERFORMANCE EVALUATION

To evaluate the performance of our proposed scheme, we
consider the presence of 40−50 sensor nodes, with the sensing
range 90 − 95m over a simulation area of 500m × 500m.
These sensor nodes have equal number of possible expected
locations. We also consider the presence of 3 applications for
the simulation. Mathematically, ∀i, |L|i = k, where k is a
constant. The algorithm for simulating OPTIVE is represented
in Algorithm 1. Fig. 4 depicts the percentage of coverage in
an application region in presence of the total number nodes
4, 5, and 6. We observed that OPTIVE provides at least 80%
coverage, which is significantly higher as compared to the
initial percentage of coverage. Fig. 5 depicts the variation in
number of iterations required by the MDP process, considering
the number of nodes available and number of possible expected
locations of a sensor node. In Fig. 5a, we observed that in the
presence of one sensor node, the number of iterations is less
than 10. The possible reason for such a value is that, to find the
optimal policy, number of actions considered by MDP are only
2. However, in the presence of 2−7 sensor nodes, the number
of iterations is significantly higher as compared to the case with
one sensor node. Moreover, there is no significant change in
the number iterations, when the total number of sensor nodes
varies from 2 − 7. Similarly, in Fig. 5b, we observed that
the number of iterations is 10 when the expected possible
number of locations is one. The possible reason behind this
patten is that, when the number of expected location is one,
the process becomes non-stochastic. Consequently, the number
of iterations is less as compared to the other cases. In the
presence of 2 − 4 expected possible locations, the number of
iterations vary between 25− 35. However, in the presence of
5−9 expected possible locations, the variations in iterations is
significantly less, which is between 45 and 50. Additionally,
we observed from Figs. 5a and 5b that the number of iterations
gets saturated after reaching a certain value of total number
of nodes and possible locations. Fig. 6 shows the change
in number of states with the variation in number of sensor

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10

P
er

ce
n

ta
g

e
co

v
er

a
g

e

Timesteps

Initial coverage
Final coverage

(a) # available sensor nodes=4

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10

P
er

ce
n

ta
g

e
co

v
er

a
g

e

Timesteps

Initial coverage
Final coverage

(b) # available sensor nodes=5

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10

P
er

ce
n

ta
g

e
co

v
er

a
g

e

Timesteps

Initial coverage
Final coverage

(c) # available sensor nodes=6

Fig. 4: Percentage of coverage

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7

N
u

m
b

e
r
 o

f
it

e
r
a
ti

o
n

s

Number of available Nodes

(a) Sensor nodes

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8 9

N
u

m
b

e
r
 o

f
it

e
r
a
ti

o
n

s

Number of Possible locations for a Node

(b) Possible locations

Fig. 5: Change in iterations required for MDP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r
 o

f
s
ta

te
s

Size

Available nodes
Possible locations of the nodes

Fig. 6: Change in states with number of sensor nodes and
number of expected possible locations

nodes and number of expected possible locations. We observe
exponential increase in the number of states in MDP with the
increasing number of sensor nodes. We also observe that the
number of states increases polynomially, with the increment in
expected possible locations. Both the trends are in accordance
with the state space size defined in the Proposition 1.

VI. CONCLUSION

In this work, we focus on the MSC architecture and pro-
posed a scheme, OPTIVE, for configuring a VS. In MSC, the
sensor nodes are attached in the mobile devices and attain mo-
bility. These mobile devices may move dynamically at any time
instant, which causes the distortion in the configuration of the
VS. Consequently, such situation gives rise to the sensing hole
in the application area. However, multiple device, equipped
with sensor nodes, may be present in the application region.
Thus, in such a scenario, our proposed scheme, OPTIVE,
selects the sensor nodes optimally to allocate in the VS and
cover the sensing hole. In future,we plan to extend this work,
considering the Quality-of-Service of Se-aaS. Additionally, we

plan to provide a data caching scheme for the MSC which can
significantly reduce the end-user service time.

VII. ACKNOWLEDGMENT

The first author of this work is partially funded by project
file no. 9/81(1293)/17 sponsored by the Council of Scientific
and Industrial Research (CSIR), Govt. of India.

REFERENCES

[1] S. Misra, S. Chatterjee, and M. S. Obaidat, “On Theoretical Modeling
of Sensor Cloud: A Paradigm Shift From Wireless Sensor Network,”
IEEE Systems Journal, no. 99, pp. 1–10, 2014.

[2] S. Chatterjee, S. Misra, and S. Khan, “Optimal Data Center Scheduling
for Quality of Service Management in Sensor-cloud,” IEEE Transac-
tions on Cloud Computing, no. 99, 2015.

[3] C. Roy, A. Roy, and S. Misra, “DIVISOR: Dynamic virtual sensor
formation for overlapping region in IoT-based sensor-cloud,” in IEEE
Wireless Communications and Networking Conference (WCNC), April
2018.

[4] M. Yuriyama and T. Kushida, “Sensor-Cloud Infrastructure - Physical
Sensor Management with Virtualized Sensors on Cloud Computing,” in
Proceedings of the 13th International Conference on Network-Based
Information Systems, Sept 2010, pp. 1–8.

[5] S. Chatterjee, R. Ladia, and S. Misra, “Dynamic optimal pricing for
heterogeneous service-oriented architecture of sensor-cloud infrastruc-
ture,” IEEE Transactions on Services Computing, vol. 10, no. 2, pp.
203–216, March 2017.

[6] A. Chakraborty, A. Mondal, A. Roy, and S. Misra, “Dynamic Trust
Enforcing Pricing Scheme for Sensors-as-a-Service in Sensor-Cloud
Infrastructure,” IEEE Transactions on Services Computing, 2018.

[7] N. M. S. Bose and S. Mistry, “Environment Monitoring in Smart Cities
Using Virtual Sensors,” in the 4th IEEE Int. Conf. on Future Int. of
Things and Cloud, 2016, pp. 399–404.

[8] S. Chatterjee and S. Misra, “Dynamic and Adaptive Data Caching
Mechanism for Virtualization within Sensor-cloud,” in IEEE Inter-
national Conference on Advanced Networks and Telecommuncations
Systems (ANTS), Dec 2014, pp. 1–6.

[9] A. Roy, S. Misra, and S. Ghosh, “QoS-Aware Dynamic Caching for De-
stroyed Virtual Machines in Sensor-Cloud Architecture,” in Proceedings
of the 19th International Conference on Distributed Computing and
Networking, ser. ICDCN ’18. New York, NY, USA: ACM, 2018, pp.
28:1–28:7.

[10] D. T. Larose, Regression Modeling. Wiley-IEEE Press, 2006, pp. 33–
92.

[11] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, 1st ed. New York, NY, USA: John Wiley &
Sons, Inc., 1994.

[12] S. Bhatnagar and M. S. Abdulla, “A Reinforcement Learning Based
Algorithm for Finite Horizon Markov Decision Processes,” in Proceed-
ings of the 45th IEEE Conference on Decision and Control, Dec 2006,
pp. 5519–5524.

