
1

Shadows: Blockchain Virtualization for
Interoperable Computations in IIoT Environments

Riya Tapwal, Pallav Kumar Deb, Graduate Student Member, IEEE, Sudip Misra, Fellow, IEEE,
Surjya Kanta Pal

Abstract—In this work, we propose Shadows, a virtual blockchain
(VC) for achieving parallel consensus and efficient management
of data in industries by utilizing BC. Typically, industrial
processes involve heterogeneous activities which require real-
time consensus, managed execution, isolation, data sharing,
accelerated computation, and efficient utilization of various com-
putational resources such as CPU, RAM, and storage. Achieving
these in real-time using a single conventional blockchain (BC)
leads to the exertion of computational power. To achieve resource-
efficient real-time consensus, we virtualize the nodes of the BC
network and create different BC for various activities. Further,
to virtualize BC and provide better access to data, we propose
smart contracts liable for providing a unified view of a single
BC, dynamically creating BCs, allocating resources to these,
and making communication between the same. Through lab-
scale experiments, we demonstrate that Shadows is capable
of utilizing the resources efficiently and achieving real-time
consensus. In particular, Shadows uses 18% CPU and 92%
memory while reducing consensus time by 56%, compared to a
single conventional BC. Shadows also accesses the data efficiently
by utilizing smart contracts and dynamically balances the load
by migrating the virtual nodes. Further, Shadows reduces the
number of migrations to make the balance system by 67%.

Index Terms—Blockchain, Industrial Internet of Things, Virtual-
ization, Resource allocation, Smart contracts, Osmotic Comput-
ing, Parallel consensus.

I. INTRODUCTION

The heterogeneous functionalities and activities of Industry
4.0 in different application scenarios lead to data management
and security challenges. Toward achieving this, the blockchain
(BC) system is an ideal platform that offers data security,
transparency, and immutability [1]. However, the divergent
activities in industries require managed execution, isolation,
sharing of data, real-time computation, and efficient storage
which a single conventional BC (CBC) is unable to provide.
Utilizing CBC leads to dormant consensus and adversity in
data storage. Further, utilizing separate networks of nodes for
creating BC for different activities leads to the wastage of
computational resources such as CPU, RAM, and storage and
decelerates the computation of consensus. In such scenarios,
the virtualization of nodes in the BC network for facilitating
parallel consensus and managed execution of data from dif-
ferent activities is essential. Further, the need for utilization of
resources as well as isolation is essential for industries with

R. Tapwal, P. K. Deb, and S. Misra are with the Department of Computer
Science and Engineering, Indian Institute of Technology Kharagpur, India.
e-mail: tapwalriya@kgpian.iitkgp.ac.in.com, (pallv.deb, sudim)@iitkgp.ac.in

S. K. Pal is with the Department of Mechanical Engineering, Indian Institute
of Technology Kharagpur, India. e-mail:skpal@mech.iitkgp.ernet.in

Figure 1: An overview of Shadows’ architecture

heterogeneous activities. Apart from this, utilizing CBC leads
to delays in accessing the data and difficulty in managing
it, which necessitates the need for data distribution among
multiple BC and accessing the same efficiently. In this work,
we propose Shadows, a virtual blockchain (VC) for guided in-
teroperability among various activities by storing the data over
various blockchains (BCs) in a parallel manner and addressing
the challenges specified earlier. The essence of this work is
the competence of virtualization to utilize the resources more
efficiently and facilitate the computation of consensus in a
parallel manner, in addition to security and efficient storage.
As shown in Fig. 1, we virtualize the nodes in the BC network
by deploying various virtual machines on different nodes,
which are liable for achieving consensus in a parallel manner
and generating separate BC for heterogeneous activities. To
empower Shadows, we create three smart contracts: 1). Antum-
bra (Authenticative smart contract) 2). Penumbra (Selective
smart contract) 3). Umbra (Communicative smart contract).
Antumbra is liable for dynamically generating BC, allocating
resources among them, and providing an outer view of VC to
access it, Penumbra is responsible for selecting the appropriate
BC for storing transactions and partially stores the data of
industries in each BC, and Umbra facilitates data sharing,
provides a unified view of single BC to the end-users and
completely hides the computation and storage details from
the end-users. Further, we also utilize osmotic computing [2]
to balance the load among various virtual nodes handling
different BCs. In summary, Shadows does not utilize a single
BC for managing data, which reduces the dormant consensus
and resource wastage. Further, as the virtual BC is just a
unified view of all the heterogeneous BC, the data is reflected

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3184271

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on July 04,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 



2

together in both virtual BC and heterogeneous physical BCs.

Example Scenario: Consider a manufacturing industry that
has heterogeneous branches spread across the world. These
branches involve various activities based on the granular pa-
rameters. These activities need managed execution, isolation,
sharing of data, real-time computation, and efficient storage.
This mandates the need for isolated storage along with real-
time computation. As shown in Fig. 1, Shadows allows these
branches to store the data of each activity separately in differ-
ent BC and provide a unified view of a single BC to the end-
user. Further, if all the branches generate data concurrently,
Shadows allows them to store data in a parallel manner. The
end-user fetches the data of the industry, considering that
there is only a single BC storing it. The parallel computation
of consensus in Shadows also reduces the delay involved in
storing the data.

Definition 1. Parallel Consensus: Parallel consensus means
reaching an agreement to add data in a parallel manner for all
the blockchains without waiting for the resources. This helps in
handling the data of all the activities involved in the industry
in a parallel manner.

Definition 2. Stable Systems: In stable systems, all the virtual
nodes are balanced. It means that each of the virtual nodes
of the system is neither underutilized nor over-utilized.

A. Motivation

Managing data from heterogeneous activities in industries
is crucial, as it is useful for employing various activities
such as tracking jobs, defect identification, quality assurance,
and maintaining supplier relations. In order to maintain the
integrity of data, there is a need for a solution that offers
immutability and security. BC is a popular solution for storing
data that can offer transparency, immutability, and security
[3]. However, utilizing a single conventional BC (Etherium,
Hyperledger, Bitcoin, and others) leads to a dormant consensus
and inefficient data management. Apart from this, heteroge-
neous activities also require managed execution, isolation,
real-time processing, data sharing, and aggregation, which
a conventional BC cannot offer. In order to resolve this,
the possible solution is to utilize multiple BCs. However,
utilizing multiple BCs for handling the data of heterogeneous
activities leads to the wastage of resources, which motivates
us to virtualize the BC network. Also, to provide a cost and
energy-efficient solution to manage the data of heterogeneous
activities, there is a need to strategically virtualize the BC and
store the data of these activities separately without wasting
the resources. Apart from this, the need for security, data
integrity, and the interaction between different BC motivates
us to propose three different smart contracts which further
empower Shadows.

B. Contribution

We virtualize the BC nodes for optimizing the resources,
managing the data, and empowering the same by proposing
smart contracts for authenticating users and avoiding data

Table I: Nomenclature table

Name Description
BC Blockchain
VC Virtual Chain

Antumbra Smart contract for authentication

Penumbra Smart contract for selecting appropriate
BC for storage

Umbra Smart contract responsible for the
communication of BC

VN Virtual nodes
2FA 2 Factor Authentication
PoW Proof-of-Work
CBC Conventional BC
SBC Separate BC

islands. To attain this, the explicit set of contributions of this
work is as follows:

• Shadows: We virtualize the BC to achieve parallel con-
sensus, isolation, sharing of data, and efficient utiliza-
tion of resources. Apart from this, we store the data
of heterogeneous activities in different virtualized BC,
which results in distributed storage in addition to lower
accessing time and better management of data.

• Smart Contracts to Empower Shadows: We propose
three smart contracts: 1) Antumbra, 2) Penumbra, and
3) Umbra to empower Shadows and provide guided
interoperability. The major functionalities of these smart
contracts are as follows:

– Antumbra: Antumbra provides the outer view of the
VC and is responsible for authenticating the users
for creating private BC.

– Penumbra: Penumbra selects appropriate BC for the
storage of data from heterogeneous activities and
partially stores the data of industry over various BCs.

– Umbra: Umbra is liable for the communication of
BCs and provides a unified view of data to the end-
users by hiding the inner storage information.

• Robustness: Shadows handles overloaded activities by
dynamically allocating the resources to different activities
depending upon their needs.

• Optimization: We utilize osmotic computing for allocat-
ing the resources among different blockchains.

• Evaluation: We discuss the feasibility of Shadows by
performing an extensive experiment and deploying virtual
machines on Raspberry Pis. We also demonstrate the
advantages of utilizing Shadows over CBC.

The names used in this paper are shown in Table I.

II. RELATED WORK

A. Blockchain

Misra et al. [4] proposed a BC for IoT devices for implement-
ing security and also proposed a clock mechanism for synchro-
nizing the BC with non-real-time IoT devices. Further, Pathak
et al. [5] utilized the concept of partial decentralized BC to

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3184271

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on July 04,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 



3

Table II: Difference of Shadows with similar BCs

Blockchain Description Virtualization
of BC nodes Interoperability Parallel

consensus Resource wastage

Parallel Chain

Achieve interoperability among different
network of BCs that configures all

four modes (public, private, consortium
and hybrid) of BC.

No Yes Yes High

Multichain Platform that establish private BCs and
allow interactions between them. No Yes No High

Blockchain with virtual
machine architecture Creates BC over the virtual network. Yes No No High

Shadows
(proposed)

Virtualize the network of BC and creates
multiple BCs for different activities

over the single network.
Yes Yes Yes Low

provide transparency and security to Unmanned Arial Vehicles
(UAV). They performed the virtualization of UAVs by utilizing
the BC and provided services to various industrial applications
by reliably transmitting the data. Similarly, Chang et al. [6]
proposed SynergyChain for the reliable transmission of data
by utilizing the data from multiple chains and organizing it in
a single chain. Apart from data transmission, Aida et al. [7]
utilized the multichain architecture for counterfeit detection,
management of product life cycle, and tracking of products
in the Agrifood industry. They created two virtual machines
and enabled their interaction by realizing Multichain. Further,
Guo et al. [8] proposed a BC based on the reputation value to
optimize it and improve its efficiency. Further, Mirko et al. [9]
proposed REchain based on Multichains to store metadata for
real estate. They proposed immutable streams for publishing
the purchase and sales offers by utilizing Multichain. Misra et
al. [10] presented BC for Software Defined Network (SDN)
to settle the flow rules of IoT devices as well as the fog nodes.
Similarly, Nazarabadi et al. [11] proposed a light chain that
provides addressable blocks for the easy accessing of data and
results in lowers accessing time. Liu et al. [12] proposed a
BC for the secret sharing of data by combining the same with
the conventional Byzantine Fault Tolerant method. Similarly,
Feng et al. [13] utilized the concept of device score to propose
BAFL that ensures security and efficiency. Further, they used
entropy to measure the quality of the federated learning model.
Further, Liu et al. [14] proposed asynchronous and parallel
smart contracts for distinguishing execution and consensus
nodes for the parallel executions of the transactions. Zhang
et al. [15] proposed a control system based on event triggered
mechanism for providing security to the integrated energy
systems (IES). Further, they also proposed event triggered
communications between the IES which resulted in low cost.
Jiang et al. [16] proposed a spectrum acquisition system based
on BC which resulted in minimizing the transmission power
while satisfying the threshold values of transmission. There are
various parameters which needs to be handled, The proposed
system proves to be beneficial for storing these parameters. Fu
et al. [17] proposed a BC based network function virtualization
framework to ensure security and solve the problem of trust.
In this work there are different services which are difficult to
handle. In order to resolve this issue there is a need of solution
which can handle these services in parallel fashion.

B. Virtualization

Belt et al. [20] surveyed the virtualization in the wireless
networks and studied various resource(storage, memory, com-
puting power, and other) allocation schemes among various
virtual nodes to improve the scalability and enhance paral-
lel processing. In order to utilize the computing resources
efficiently in the IoT devices, Ogawa et al. [21] introduced
virtualization of IoT devices and proposed resource scaling as
well as microservice scaling by utilizing Docker, Kubernetes,
and Apache Kafka. Further, Cheg et al. [22] also proposed
wireless virtualization for IoT devices to harvest energy and
designed virtual resource mapping through alternate iterations
of the Stackelberg game.

C. Resource Allocation

Bahreini et al. [23] addressed the resource allocation prob-
lem in mobile devices and proposed auction-based resource
allocation methods that fulfill the heterogeneous demands of
various systems. Further, Wang et al. [24] proposed self-
adaptive resources management framework by calculating the
Quality of Service (QoS) value of the current workload and
utilizing the same for predicting the future QoS value and
allocating resources efficiently using PSO based run-time
decision algorithm. Battula et al. [25] proposed a model which
predicts the future availability of the resources and allocates
these in a time-sensitive manner. These proposals did not
consider the energy consumption for resource allocation. To
prevent high energy consumption, Than et al. [26] proposed
resource allocation algorithms by considering various factors
such as power management techniques, power models, and
resource allocation policies to evaluate the real-time workload
and further allocated the resources accordingly. Further, Gamal
et al. [19] utilized the concept of osmotic computing to
achieve resource allocation and load balancing. They proposed
a hybrid meta-heuristic technique that automatically deploys
virtual machines by integrating a bio-inspired load balancing
algorithm with the osmotic behavior.

D. Synthesis

Blockchain, when applied to heterogeneous activities in in-
dustries, suffers from various challenges such as storing het-
erogeneous data, achieving parallel consensus, and efficient

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3184271

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on July 04,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 



4

Table III: Difference of Shadows with some existing works

Paper Communication
between BC

Migration
time

Load for
migration

Virtualization
of BC Multichains

Chang et al. [6] X × × × X
Aida et al. [7] × × × × X

Ahmad et al. [18] × × × × X
Mirko et al. [9] × × × × X

Gamal et al. [19] × X × × ×
Shadows

(proposed) X X X X X

management of data. The data from various activities are sub-
ject to non-uniformity in terms of volume, data type, sampling
rate, variability, and others. Conventional BC deployments in
literature do not consider the efficient utilization of resources
as well as real-time data storing and accessing, as shown
in Table II. To achieve this, we virtualize the nodes of the
BC network and deploy Multichains for different activities.
Also, as shown in Table III, the existing Multichains do not
virtualize the node of the BC network for efficient utilization
of resources and consider the communication between BC as
well as migration of virtual nodes (VN) (considering both total
migration time and the load of the migrating VN). To resolve
these issues, we propose Shadows (virtualized BC) utilizing
smart contracts for the efficient utilization of the resources as
well as achieving parallel consensus.

III. SYSTEM MODEL

A. Network Architecture

As shown in Fig. 1, we consider a set of activities A =
{a1, a2, a3, . . . , an}, where each activity consist of set of sen-
sors S = {s1, s2, s3, . . . , sm} which sense the data produced
by various devices indulge in these activities. The sensors
forward the data to the Shadows, which stores the data of
different activities in different BC. Shadows consists of three
smart contracts which handle the data of different activities:
1.) Antumbra, 2.) Penumbra, 3.) Umbra and avoid the wastage
of various resources. On the activation of new activity in the
industry, Antumbra creates new BC and dynamically allocates
resources based on the demand of the activity. For the creation
of a new BC, Antumbra virtualizes the nodes of the BC
network and allocates these virtual nodes to different activities
for the creation of various BC. The virtual nodes associated
with different activities achieve consensus on the creation
of data and provide storage to the same. Further, Antumbra
utilizes osmotic computing to dynamically allocate resources
among the virtual nodes based on the load of the activities.
Moreover, Penumbra selects the appropriate BC for the storage
of data of various activities, and Umbra is responsible for the
communication of various BCs to provide a unified view of
a single BC to the end-users. Umbra utilizes the addresses of
the genesis blocks of different BCs to enable communication
between these and avoid data islands. The end-users request
data from the Shadows, considering a single BC, and fetches
the data of various activities on-demand.

B. Shadows

We consider various types of independent activities utilizing
IIoT devices and producing heterogeneous data. To provide an
independent working environment in a cost-effective manner,
we propose Shadows, which consists of separate BC for stor-
age and achieves parallel consensus for each BC. To achieve
this, we virtualize the nodes of the BC network and map these
virtual nodes to different activities for achieving consensus and
storing their data. We also calculate the optimum virtualization
of a node possible which can handle data as well as achieve
consensus. Further, to aid the virtualization of the BC network,
we propose three smart contracts whose details are as below:

• Antumbra: This smart contract provides an outer view
of the VC and is responsible for the authentication of the
users, who can create more virtual nodes on the activation
of new activity in the industry. We utilize two-factor
authentication (2FA) for the authentication of valid users.
In 2FA, the user signs up to the application site using his
username and password, which further generates a token
for the corresponding user. Further, the user logs in to
the smart contract using username, password, and token,
which authenticates the user and allows the same to make
modifications in the network.

• Penumbra: This smart contract is responsible for the allo-
cation of virtual nodes to various activities for achieving
consensus and storing data in their respective BC. To
achieve this, Penumbra utilizes the identities of the activ-
ities and virtual nodes to assign the data of a particular
activity to the respective virtual BC network.

• Umbra: Umbra is responsible for the interaction of
various BC and provides a unified view to the end-
users. Umbra achieves the same by storing the address
of the genesis block of each BC and fetching the data
by using the same. This also avoids data islands as one
BC also fetches the data of the other by utilizing the
genesis’ address stored in the Umbra as well as the
timestamp of the data which is required. As shown in
Fig. 2, the end-users log in using their Id and password,
and Umbra verifies the same. Umbra denies access if
the Id or the password does not match with the already
registered IDs and corresponding passwords. However,
if the Id and password match, Umbra generates the key
using the same and fetches all the hashes associated with

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3184271

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on July 04,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 



5

Figure 2: Process of access authorization done by Umbra

the key that is accessible to the corresponding user. It
further generates the hash of the requested data using the
requested timestamp and activity id. If the generated hash
matches with one of the accessible hashes (hash values
that are accessible to particular users), Umbra requests the
corresponding data from the respective BC by utilizing
the stored addresses and presents the data to the end-user.
If the generated hash does not match with the accessible
hashes, Umbra denies the request of the end-users.

C. Virtualizing Blockchain (VirtualChain)

Shadows pools various BCs storing the data of heterogeneous
activities and makes it appear to be a single BC handling the
heterogeneous data and facilitating efficient management as
well as monitoring of the same. To achieve this, we create
separate BCs for storing the data of different activities and
providing encapsulation to the same. The BC stores the data
of different activities at varying mining time according to their
needs and provide separate storage for each activity. Further,
to provide a unified view to the end-users of having only
single storage, we create a virtualization layer consisting of
the smart contract (Umbra), which makes the communication
of BC possible in addition to the accessing of data efficiently.
As shown in Fig. 3, in physical, we have separate BCs for
storing the data of each activity; however, the virtualization
layer provides a unified view of single storage (VirtualChain)
to the end-user.

Figure 3: Advantages of blockchain virtualization

D. Resource Allocation

We consider a set of BC nodes, B = {b1, b2, b3, . . . , bk} and
a set of virtual nodes, V N = {v1, v2, v3, . . . , vp}, where k
is the number of nodes present in the BC network and p
is the total number of virtual nodes. Further, based on the
requirement of the activities, we assign a varying number of
virtual nodes to each and deploy these nodes on different BC
nodes. The deployment of virtual nodes to the BC network
nodes process the different activities in a parallel manner
and utilizes the concept of osmotic computing for efficient
utilization of resources.
1) Assignment of virtual nodes: We consider p virtual nodes
and n heterogeneous activities, where we assign these virtual
nodes to different activities according to their CPU and mem-
ory requirements. The CPU and memory requirement of ith

activity (αi) is µCPU+µmem and the number of virtual nodes
assigned to each activity is given as:

ηi =
p× αi∑n
i=1 αi

(1)

2) Load balancing: We calculate the load of each node of BC
network by calculating the loads of virtual nodes deployed on
each and categorize these as over-utilized, under-utilized, and
balanced. We calculate the average load of ith BC node as
Li = (

∑p
i=1 Vijr)/p, where Vijr is the load of ith virtual node

on jth BC node due to rth activity and is given as µCPUijr +
µmemijr

. Further, the load of ith BC node is given as the
standard deviation of average load of ith BC node as well as
the average load on all the BC nodes (L = (

∑k
i=1 Li)/k) and

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3184271

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on July 04,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 



6

Algorithm 1: Algorithm for categorizing the nodes.
Inputs: CPU and memory requirements of each virtual
node (Vijr), number of BC nodes (k), and Number of
virtual nodes (p)

Outputs: Load of BC nodes
Initialize:
L=0
Procedure:
for each BC node in the network
do

Li = 0
for each virtual node in the BC node
do

if virtual node belongs to corresponding BC
node then
Li = Li +

Vijr

p

end
// Average load on vj

end
end
for each BC node in the network
do
L = L+ Li

k // Standard deviation of load on

BC nodes

end
for each BC node in the network
do
σi =

√
(
∑k

i=1(L−Li)
2

k )
if σi ≥ L then

over-utilized
end
// L is the upper threshold

else if σi ≤ min(Li) then
under-utilized

end
// min(Li) is the lower threshold

else
Balanced

end
end

is given as:

σi =

√√√√√√√
1

k
×

(
k∑
i=1

((∑k
i=1 Li
k

)
︸ ︷︷ ︸

L

−

(∑p
i=1 Vijr
p

)
︸ ︷︷ ︸

Li

)2)

(2)
We compare the Equation 2 with L (upper threshold) and

min(Li) (lower threshold) and categorize bi (ith BC node)
as over-utilized if its value is greater than the value of L and
under-utilized if its value is less than the value of min(Li) as
shown in Algorithm 1.
3) Selecting optimal virtual node for migration: After finding
the over-utilized virtual nodes, we find the most suitable virtual
node for the migration. We consider the total migration time
(tm) as well as the load of the virtual node on that physical

BC node (Vijr) to select the virtual node for migration. We not
only give preference to the node with the shortest tm; however,
we also consider the load Vijr of the heavy virtual node for
migration and migrate the node with the lowest time-load ratio
(τr). This results in a more stable system of BC nodes as this
technique equally divides the load of the virtual nodes among
the physical BC nodes. Further, the τr is (((Vi − Vu)/β) +
(Vu/β))×(β/Vu), where Vi is the allocated memory to the ith

virtual node, Vu is the utilized memory by the ith virtual node
and β is the allocated bandwidth to that node for migration.
Specifically, we migrate the node with lowest τr as shown in
Algorithm 2, and it is given as:

τr =
Vi
Vu

(3)

Algorithm 2: Algorithm for selecting optimal virtual
node for migration.
Inputs: Over-utilized BC nodes Bover
Output: Optimal virtual node for migration.
Procedure:
for each node in Bu
do

for each j in VN
do

if Vj ∈ Bi then
τr =

Vi

Vu

end
end
Migrate the node with min (τr);

end

4) Selecting optimal BC node for placement: We calcu-
late the fitness (φ) of each migrating virtual node with the
under-utilized BC node and deploy the virtual node over the
BC node with maximum value of φ as shown in Algorithm 3.
The fitness of the migrating node is calculated as:

φVm,Bu
=
BCPUu − V CPUm

V CPUm

+
Bmemu − V memm

V memm

(4)

In equation 4, φVm,Bu is the fitness of virtual migrating node
(Vm) in the BC node (Bu), which is under-utilized. Further,
BCPUu and Bmemu represent the amount of CPU and memory
the BC node have whereas V CPUm and V memm represent the
requirement of the virtual node.

As shown in Fig. 4, initially, an unbalanced system
consists of over-utilized B, balanced B, and under-utilized B
(Fig. 4(a)). Further, by utilizing Algorithm 1, we calculate the
over-utilized and under-utilized B in addition to the optimal
migrating VN by utilizing Algorithm 2. Further, we find the
optimal B by utilizing Algorithm 3 for the placement of
migrating VN and migrate the same as shown in Fig. 4(b)
to achieve a balanced system as shown in Fig. 4(c)
5) Complexity: The time complexity for categorizing the
nodes into over-utilized, balanced, and under-utilized is O(k)
where k is the number of nodes present in the BC network.
This is because we have to iterate through all the nodes only
once to check their load. Further, we select the appropriate

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3184271

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on July 04,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 



7

(a) Unbalanced system (b) Migration of virtual nodes (c) Balanced system

Figure 4: Load balancing by utilizing osmotic computing in Shadows

Algorithm 3: Algorithm for selecting optimal BC node
for placement.

Inputs: Set of under-utilized BC nodes Bu and set of
migrating virtual nodes Vm

Output: Optimal BC node for virtual node placement.
Procedure:
for each i in Vm
do

for each j in Bu
do
φVm,Bu =

BCPU
u −V CPU

m

V CPU
m

+
Bmem

u −Vmem
m

Vmem
m

end
ν = max(φVm,Bu

);
Assign ith node to Bν ;

end

migrating node from the over-utilized B in O(kl) where l is
the number of virtual nodes present at each B. We attribute
this complexity to iterate through all the VN present at all the
over-utilized B and place it at suitable B in O(kl). The overall
complexity is O(k + kl).

Proposition 1. Irrespective of a resource-constrained envi-
ronment, Shadows is an optimal solution for heterogeneous
activities.

Proof. Typically, industries deal with a heterogeneous set of
activities A = {a1, a2, a3, . . . , an} consisting of myriad range
of sensors S = {s1, s2, s3, . . . , sm}. Handling these data
in a single BC is challenging due to the varying attributes
and applications. Further, the utilization of Multichains for
handling data of different activities is not suitable as this
results in the wastage of resources. In Shadows, we virtualize
the nodes of the BC network to handle multiple BC parallelly
and utilize the resources efficiently by balancing the load using
osmotic computing, which reduces the wastage of resources
and makes Shadows suitable for the resource-constrained
environment.

Proposition 2. Shadows results in a stable system.

Proof. Shadows utilizes both the load produced by the VN on
the B and the total migration time to find the optimal migrating
VN. This results in finding the VN, which not only results in

the least migration time but also balances the load of the B
and results in a more balanced system. Further, the system is
stable only if φVm,Bu

> 0 as it represents the placement of
VN on the underutilized BC node. In our system, we place
the VN on B if BCPUu >> V CPUm and Bmemu >> V memm .
We utilize Equation 4 to prove the stability of our system and
obtain:

BCPUu − V CPUm

V CPUm

+
Bmemu − V memm

V memm

> 0 (5)

=⇒ φVm,Bu > 0 (6)

From Equation 6, we conclude that Shadows results in stable
system.

Proposition 3. Shadows results in managed execution and
isolation of data.

Proof. Shadows utilizes a set of blockchains BC =
{b1, b2, b3, . . . , bm} for storing the data of different activities
A = {a1, a2, a3, . . . , an} separately such that m = n and
ai ←→ bi. We will prove this by contradiction method and
assume that there are two activities ai and aj which are not
isolated. As given, ai ←→ bi which implies that m 6= n.
However, m = n which proves that ai and aj are isolated.

Proposition 4. Irrespective of distributed storage of data,
Shadows provide an unified view to the end-users (aggrega-
tion).

Proof. Shadows stores the data of different activities A =
{a1, a2, a3, . . . , an} on separate BC = {b1, b2, b3, . . . , bm};
however, as mentioned in Section III, Umbra makes the
communication between different BC possible by storing the
authorization access of different users and fetching data from
various BCs on their request. The end-users accesses the data
of various activities using Umbra which hides the communi-
cation details of various BCs and provide unified view to the
end-users.

IV. PERFORMANCE EVALUATION

A. Experiment Setup

We use Python 3 to execute our routines and utilize the data of
3 different activities as a proof of concept. Activity 1 consists
of the data of digital twin, Activity 2 consists of the data of

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3184271

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on July 04,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 



8

Figure 5: Experimental setup for Shadows

friction stir welding, and Activity 3 consists of the machine
health data. Further, we use a virtualized BC, which stores the
data of different activities in different BC (refer Fig. 5) and
utilizes smart contracts for selecting the appropriate BC as
well as communicating the same. For achieving the same, we
virtualize the Raspberry Pis in the BC network and store the
data on respective virtual nodes. Further, we store the smart
contracts on different physical BCs. These smart contracts are
broadcasted and executed by all the physical nodes in the BC
network in order to record the latest data.

B. Deployment Architecture

We create a network of Raspberry Pis, which continuously
send data to the Shadows. In the Shadows, we virtualize the
nodes of the BC network and allocate these virtual nodes to
various activities, as shown in Fig. 5. We allocate the data
of the particular activity to the respective BC by utilizing the
identity of the activity. Further, at the request of the end-users,
we identify the appropriate BC consisting of the requested data
and access that by utilizing the address of the genesis block.

C. Benchmark Schemes

Alzahrani et al. [27] used a conventional blockchain (CBC)
for storing the data produced by various sensors in industries
and used the same in monitoring the industrial condition
remotely. We compare the storage complexity and the resource
utilization of Shadows with CBC to prove its feasibility.
Further, Aida et al. [7] used separate blockchains (SBC) for
storing the data of different activities and used that data for
tracking the products. We also compare Shadows with SBC
to show the expediency of Shadows in preventing resource
wastage.

D. Results

1) CPU Utilization: We observe the CPU utilization while
executing VC and compare them with the utilization of sepa-
rate BC for different activities. We perform 30 iterations to
record our observations and observe that VC utilizes CPU
more efficiently as compared to the conventional BC (refer
Fig. 6(a)). VC shows an increase of 18% in CPU usage
for four activities. We also observe that with the increase in

activities, the CPU utilization also increases. We attribute this
increase to the distribution of processing power among various
virtual nodes (VN). In particular, for a single activity, the CPU
utilization for both the VC and conventional BC is comparable
and is 6%. This is because, in VC, for a single activity, we
dedicate the whole processing power to that activity only.
Further, there is an increase of 8%, 15%, and 18% CPU
utilization for 2, 3, and 4 activities, respectively, as compared
to conventional BC. We infer from our observation that, with
the increase in virtualization, the utilization of the CPU also
increases. Apart from this, virtualization depends upon the
processing power required by an activity.
2) Memory Utilization: We record the memory consumption
while executing VC and observe that it utilizes 92% of
the memory for executing four activities (refer Fig. 6(b)).
We record our observations by performing 40 iterations and
observe that VC utilizes 65%, 78%, and 81% for 1, 2, and 3
activities, respectively. This behavior is because VC distributes
its memory among various virtual nodes with the increase in
the number of activities. More number of activities require
more memory for their execution which improves memory
utilization. In general, the memory requirement for a single
activity in conventional BC and VC are comparable, and there
is only 1% increase in the VC. We attribute this increase to the
execution of various smart contracts (Antumbra, Penumbra,
and Umbra). Further, there is 13%, 19%, and 27% increase in
the memory as compared to the conventional BC for 2, 3, and
4 activities, respectively. We entail from our observations that
the virtualization of BC nodes into a suitable number of VN
increases the utilization of memory more efficiently.
3) Energy Utilization: We observe the energy utilization while
executing VC and compare it with the utilization of separate
BC for different activities. We perform 30 iterations to record
our observations and observe that VC utilizes more energy as
compared to the conventional BC (refer Fig. 6(c)). VC shows
an increase of 26J in energy utilization for four activities. We
also observe that with the increase in activities, the require-
ment for energy also increases. We attribute this increase to
the consumption of processing power among various VN. In
particular, for a single activity, the energy utilization for both
the VC and CBC is comparable and is 6J . This is because,
for a single activity, both VC and CBC require comparable
processing power. Further, there is an increase of 9J , 18J , and
26J energy for 2, 3, and 4 activities, respectively, compared
to CBC. We infer from our observation that, with the increase
in virtualization, the utilization of energy also increases.
4) Response Time: We observe the response time for execut-
ing VC and compare it with the response time of separate
BC (SBC) for different activities as well as single CBC. We
perform 30 iterations to record our observations and observe
that VC requires less response time as compared to the single
CBC (refer Fig. 7(a)). VC shows a decrease of 38% in
response time for four activities compared with a single CBC.
We also observe that VC requires 0.7 sec (average) more
as compared to the separate BC for different activities. We
attribute this increase to the execution routines of various smart
contracts (Antumbra, Penumbra, and Umbra). In particular, for
a single activity, the response time for the VC, separate BC,

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3184271

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on July 04,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 



9

(a) CPU usage for adding data to BC (b) Memory usage for adding data to BC (c) Energy usage for adding data to BC

Figure 6: Resource usage for adding data to VC and CBC

and single CBC are comparable and is 1.2 sec. This is because,
for a single activity, we dedicated all the resources to that
activity only. Further, there is a decrease of 31%, 47%, and
56% response time for 2, 3, and 4 activities, respectively, as
compared to a single CBC. Apart from this, there is 1.125 sec
(average) diminutive increase in response time when compared
to separate BC for different activities, which is acceptable. We
infer from our observation that response time decreases when
we provide separate resources for different activities.
5) Mining Time: We observe the mining time for executing
VC and compare it with the mining time of SBC for different
activities as well as a single CBC. We perform 30 iterations
to record our observations and observe that VC requires
less mining time as compared to the single CBC (refer Fig.
7(b)). VC shows a decrease of 56% in mining time for four
activities when compared with a single conventional BC. We
also observe that VC requires 0.9 sec more as compared to
the SBC for different activities. We attribute this increase to
the execution routines of various smart contracts (Antumbra,
Penumbra, and Umbra). In particular, for a single activity, the
mining time for the Shadows (VC), SBC, and single CBC is
comparable and is 1 sec. This is because, for a single activity,
we dedicated all the resources to that activity only. Further,
there is a decrease of 30%, 31%, and 40% mining time for
2, 3, and 4 activities, respectively, as compared to a single
conventional BC. Apart from this, there is 0.9 sec (average)
diminutive increase in mining time when compared to SBC
for different activities, which is acceptable. We infer from
our observation that mining time decreases when we provide
separate resources for different activities.

(a) Response time for accessing data
from BC

(b) Mining time for adding data to BC

Figure 7: Response and mining time of data for different BC

6) CPU Wastage: We observe the wastage of CPU while
executing VC and compare them with the CPU wastage in the
case of SBC as well as common BC for different activities. We
perform 30 iterations to record our observations and observe
that the CPU wastage in VC is the least (refer Fig. 8(b)). VC
shows a decrease of 55% in CPU wastage when compared with
the wastage done by SBC. We attribute this decrease to the
consumption of CPU by various VN. In particular, the CPU
wastage done by VC, common BC for all the activities, and
SBC for different activities is 15%, 35%, and 70%. We infer
from our observation that the wastage of processing power
decreases with the increase in virtualization.
7) Memory Wastage: We observe the wastage of memory
while executing VC and compare them with the case of SBC
as well as common BC for different activities. We perform
30 iterations to record our observations and observe that the
memory wastage in VC is the least (refer Fig. 8(b)). VC
shows a decrease of 60% in memory wastage when compared
with the wastage done by SBC. We attribute this decrease
to the consumption of memory by various VN. In particular,
the wastage done by VC, common BC for all the activities,
and separate BC for different activities is 10%, 25%, and
70%. We infer from our observation that, with the increase
in virtualization, the wastage of memory decreases.
8) Virtual Node Requirement for Varying Memory Require-
ment: We observe the number of virtual nodes possible with
varying memory requirements and perform 30 iterations to
record our observations. We assume that each virtual node
requires at least 50% of the memory and observe that the
number of VN on a B depends upon the memory requirement
of the VN. In particular, we observe that we can deploy 10
VN when the requirement of each VN is 5% as shown in Fig.
8(a). We attribute this behavior to the less resource utilization
of each VN. We entail from our observation that the number
of possible deployment of VN decreases with the increase in
memory requirement of each VN.
9) Fitness Against Required Memory by Virtual Nodes: We
observe the fitness of various VN at a particular B while
migrating these from source B to the suitable destination B.
We perform 40 iterations while migrating VN and observe that
the fitness value depends upon the memory requirement of the
migrating VN. We observe that the fitness decreases as there
is an increase in the memory required by the VN (refer Fig.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3184271

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on July 04,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 



10

(a) Virtual nodes’ requirements for
varying memory requirements

(b) Resource wastage by different BC
networks

Figure 8: Virtual node requirements and resource wastage

9(a)). This behavior is because the heavy VN generates load
on destination B and further results in an unbalanced system.
In particular, there is 66% decrease in the fitness when the
memory requirement of the VN varies from 10% to 50%. We
entail from our observations that fitness decreases with the
increase in the memory requirement of the VN.
10) Fitness Against Available Memory of BC Nodes: We
observe the fitness of a particular VN at various BC nodes(B)
while migrating that from source B to the suitable destination
B. We perform 40 iterations while migrating VN and observe
that the fitness value depends on destination B’s memory. We
observe that the fitness increases as there is an increase in the
memory required by the VN (refer Fig. 9(b)). This behavior is
because there are fewer chances of over-utilizing at destination
B if the available memory is more. In particular, there is 18%
increase in the fitness when the memory available at the B
varies from 0.5 GB to 0.9 GB. We entail from our observations
that fitness increases with the increase in the availability of
memory at the B.

(a) Fitness with required memory of
virtual node

(b) Fitness with left memory of BC
node

Figure 9: Fitness for migrating virtual nodes

11) No. of Migrations for Different Architectures: We observe
the number of migrations of VN while executing VCand
compare the same with the number of migrations required
while considering only total migration time (TMT) and the
random migration. We perform 40 iterations to present our
observations and observe that the migrations of V required by
VC are the least. In particular, VC requires 15 migrations for
four activities, whereas TMT and random architecture require
30 and 45 migrations, respectively, as shown in Fig 10(a).
The reason behind this behavior is that we consider the load
of the VN along with the total migration time to select the
suitable B. We also observe that there is 67% decrease in the

number of migrations while we utilize VC as compared to
random migrations of VN. We infer from our observations
that considering the load and total migration time makes the
system more stable and reduces the number of migrations.
12) No. of Migrations for Varying Number of Activities:
We observe the number of migrations of VN for the varying
number of activities and perform 40 iterations to present our
observations. We observe that the migrations of VN increase
with the increase in the number of activities. In particular,
VC requires 57 migrations for 40 activities, as shown in
Fig 10(b). Further, the number of migrations required by 10,
20, and 30 activities are 43, 48, and 55, respectively. The
reason behind this behavior is that more number activities
create an imbalance in the system due to their increasing
demand for memory and CPU. We also observe that there is
a 34% increase in the number of migrations while increasing
the number of activities from 10 to 40. We infer from our
observations that the number of migrations increases with the
increase in the number of activities.

(a) No. of migrations for different BC
architecture

(b) No. of migrations for different
activities

Figure 10: No. of migrations required to make stable system

13) Performance overhead of load balancing: For observing
the performance overhead of load balancing in Shadows. We
calculate the CPU usage by different physical nodes in the
BC network as well as the mining time of the BC network
(with or with load balancing) for the different number of
activities. We perform 40 iterations of each experiment to
record our observations. From Fig. 11(a), we observe that the
CPU usage of each physical node is almost equivalent while
utilizing load balancing. However, without load balancing, the
tasks are unevenly distributed among various nodes, which is
represented by the CPU usage of all the physical nodes. On
average, the maximum difference between the CPU usage is
50%. The reason behind these observations is that with load
balancing tasks are evenly distributed among various nodes,
which consequently results in almost equal CPU usage at all
the physical nodes. Apart from this, the mining time with
load balancing is more compared to without load balancing.
Specifically, there is 44.44% increase in mining time as shown
in Fig. 11(b). This is due to the time taken for load balancing.
From our observations, we imply that the load balancing adds
performance overhead to Shadows; however, it results in the
stability of the system by distributing the tasks evenly over
the physical nodes.

In summary, compared to conventional BC practices,
Shadows significantly reduces resource wastage, mining time,
response time, and the number of VN’s migrations, making

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3184271

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on July 04,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 



11

(a) CPU usage overhead (b) Mining time overhead

Figure 11: Performance overhead due to load balancing

it suitable for real-time applications with negligible energy
overheads. From our observation, we comment that it is best
suitable for scenarios that satisfy the following conditions:

• C1: Resource-constrained environment: From Section
IV-D7 and IV-D6, we observed that Shadows reduces the
wastage of resources as compared to the conventional BC
deployments. This makes it suitable for the environment
with a limited number of resources.

• C2: Real-time applications: From Section IV-D5 and
IV-D4, we observed that Shadows significantly reduces
the mining time and response time compared to the
conventional BC deployments, which makes it suitable
for real-time applications.

• C3: Energy-constrained devices: From Section IV-D3 and
IV-D12, we observed a diminutive increase in energy as
well as a significant decrease in the number of VN’s mi-
gration as compared to the convention blockchain, which
makes it suitable for the use in any legacy infrastructure
with energy-constrained devices.

E. Discussions and Limitations

We propose a method –Shadows– to virtualize the nodes of
the BC network in order to reduce the mining and response
time in addition to the reduction of wastage of resources.
Further, to balance the load among the virtualized nodes
(VN), we utilize osmotic computing, which is responsible for
the movement of V from the over-utilized BC nodes to the
under-utilized BC nodes. To examine the effectiveness of the
osmotic computing, we calculate the number of migrations
required to make the system balanced and observed that the
proposed method requires the least number of migrations
as compared to the method utilizing only total migration
time and the random technique for migration. Further, we
aid Shadows by proposing three smart contracts which are
responsible for the authentication, creation of virtual nodes,
and the communication of different BC.

The limitation of the proposed method is that it does
not consider the tamper-proof communication between various
BC and implements the proposed solution over private BCs.
However, the solution is also suitable for public BCs, and we
plan to address the same in our extended work.

V. CONCLUSION

In this paper, we proposed a virtual BC (Shadows) to ef-
fectively utilize the resources in achieving real-time parallel
consensus. The proposed method virtualized the nodes of the
BC network and used these for achieving consensus in real-
time. Further, to endow Shadows, we also proposed three smart
contracts: 1) Antumbra (to authenticate the legitimate users),
2) Penumbra (to select the appropriate BC), and 3) Umbra
(to make communication between BC possible and provide
a unified view to the end-users). We aimed to compute the
consensus in real-time by utilizing the resources efficiently and
distributing heterogeneous data over multiple BCs for better
management. We also performed extensive lab experiments to
demonstrate the feasibility of Shadows in achieving the above-
mentioned goals.

In this paper, we ceased our research to utilize the
resources efficiently for computing parallel consensus and
did not consider the tamper-proof communication between
different BCs. We plan to address secure communication
between the BC in our extended work and also implement
the proposed solution over public BCs.

REFERENCES

[1] Z. Zhou, B. Wang, Y. Guo, and Y. Zhang, “Blockchain And Computa-
tional Intelligence Inspired Incentive-Compatible Demand Response In
Internet Of Electric Vehicles,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 3, no. 3, pp. 205–216, 2019.

[2] M. Maksimović, “The Role of Osmotic Computing in Internet of
Things,” in Proceedings of the 17th International Symposium Infotech
Jahorina (INFOTEH), 2018, pp. 1–4.

[3] N. Mohamed and J. Al-Jaroodi, “Applying Blockchain in Industry 4.0
Applications,” in IEEE 9th Annual Computing and Communication
Workshop and Conference (CCWC), 2019, pp. 0852–0858.

[4] S. Misra, A. Mukherjee, A. Roy, N. Saurabh, Y. Rahulamathavan,
and M. Rajarajan, “Blockchain at the Edge: Performance of Resource-
Constrained IoT Networks,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 32, no. 1, pp. 174–183, 2021.

[5] N. Pathak, A. Mukherjee, and S. Misra, “AerialBlocks: Blockchain-
Enabled UAV Virtualization for Industrial IoT,” Internet of Things
Magazine, vol. 4, no. 1, pp. 72–77, 2021.

[6] J. Chang, J. Ni, J. Xiao, X. Dai, and H. Jin, “SynergyChain: A
Multichain-Based Data Sharing Framework with Hierarchical Access
Control,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[7] A. Ismailisufi, T. Popović, N. Gligorić, S. Radonjic, and S. Šandi,
“A Private Blockchain Implementation Using Multichain Open Source
Platform,” in Proceedings of the 24th International Conference on
Information Technology (IT), 2020, pp. 1–4.

[8] S. Guo, Y. Qi, Y. Jin, W. Li, X. Qiu, and L. Meng, “Endogenous
Trusted DRL-Based Service Function Chain Orchestration for IoT,”
IEEE Transactions on Computers, pp. 1–1, 2021.

[9] M. Avantaggiato and P. Gallo, “Challenges and Opportunities using
MultiChain for Real Estate,” in Proceedings of the International Black
Sea Conference on Communications and Networking (BlackSeaCom),
2019, pp. 1–5.

[10] S. Misra, P. K. Deb, N. Pathak, and A. Mukherjee, “Blockchain-
Enabled SDN for Securing Fog-Based Resource-Constrained IoT,” in
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2020, pp. 490–495.

[11] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and Özkasap, “LightChain:
Scalable DHT-Based Blockchain,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 10, pp. 2582–2593, 2021.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3184271

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on July 04,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 



12

[12] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable Byzantine
Consensus via Hardware-Assisted Secret Sharing,” IEEE Transactions
on Computers, vol. 68, no. 1, pp. 139–151, 2019.

[13] L. Feng, Y. Zhao, S. Guo, X. Qiu, W. Li, and P. Yu, “Blockchain-
based Asynchronous Federated Learning for Internet of Things,” IEEE
Transactions on Computers, pp. 1–1, 2021.

[14] J. Liu, P. Li, R. Cheng, N. Asokan, and D. Song, “Parallel and Asyn-
chronous Smart Contract Execution,” IEEE Transactions on Parallel and
Distributed Systems, pp. 1–1, 2021.

[15] N. Zhang, Q. Sun, L. Yang, and Y. Li, “Event-Triggered Distributed
Hybrid Control Scheme for the Integrated Energy System,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 2, pp. 835–846,
2022.

[16] M. Jiang, Y. Li, Q. Zhang, G. Zhang, and J. Qin, “Decentralized
Blockchain-Based Dynamic Spectrum Acquisition for Wireless Down-
link Communications,” IEEE Transactions on Signal Processing, vol. 69,
pp. 986–997, 2021.

[17] X. Fu, F. R. Yu, J. Wang, Q. Qi, and J. Liao, “Performance Optimization
for Blockchain-Enabled Distributed Network Function Virtualization
Management and Orchestration,” IEEE Transactions on Vehicular Tech-
nology, vol. 69, no. 6, pp. 6670–6679, 2020.

[18] A. Ahmad, M. Saad, L. Njilla, C. Kamhoua, M. Bassiouni, and A. Mo-
haisen, “BlockTrail: A Scalable Multichain Solution for Blockchain-
Based Audit Trails,” in Proceedings of the International Conference on
Communications (ICC), 2019, pp. 1–6.

[19] M. Gamal, R. Rizk, H. Mahdi, and B. E. Elnaghi, “Osmotic Bio-Inspired
Load Balancing Algorithm in Cloud Computing,” IEEE Access, vol. 7,
pp. 42 735–42 744, 2019.

[20] J. van de Belt, H. Ahmadi, and L. E. Doyle, “Defining and Surveying
Wireless Link Virtualization and Wireless Network Virtualization,” IEEE
Communications Surveys Tutorials, vol. 19, no. 3, pp. 1603–1627, 2017.

[21] K. Ogawa, K. Kanai, K. Nakamura, H. Kanemitsu, J. Katto, and
H. Nakazato, “IoT Device Virtualization for Efficient Resource Utiliza-
tion in Smart City IoT Platform,” in Proceedings of the International
Conference on Pervasive Computing and Communications Workshops,
2019, pp. 419–422.

[22] Y. Cheng, C. Zhu, and F. Peng, “Wireless Virtualization for Energy Har-
vesting Aided Internet of Thing with Multi-Operator,” in Proceedings of
the Information Communication Technologies Conference (ICTC), 2020,
pp. 44–48.

[23] T. Bahreini, H. Badri, and D. Grosu, “Mechanisms for Resource
Allocation and Pricing in Mobile Edge Computing Systems,” IEEE
Transactions on Parallel and Distributed Systems, pp. 1–1, 2021.

[24] H. Wang, Y. Ma, X. Zheng, X. Chen, and L. Guo, “Self-Adaptive
Resource Management Framework for Software Services in Cloud,”
in Proceedings of the Intl Conf on Parallel Distributed Processing
with Applications, Big Data Cloud Computing, Sustainable Computing
Communications, Social Computing Networking (ISPA/BDCloud/Social-
Com/SustainCom), 2019, pp. 1528–1529.

[25] S. K. Battula, M. M. O’Reilly, S. Garg, and J. Montgomery, “A
Generic Stochastic Model for Resource Availability in Fog Computing
Environments,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 4, pp. 960–974, 2021.

[26] M. M. Than and T. Thein, “Energy-Saving Resource Allocation in
Cloud Data Centers,” in Proceedings of the Conference on Computer
Applications(ICCA), 2020, pp. 1–6.

[27] R. A. Alzahrani, S. J. Herko, and J. M. Easton, “Blockchain Appli-
cation in Remote Condition Monitoring,” in 2020 IEEE International
Conference on Big Data (Big Data), 2020, pp. 2385–2394.

Riya Tapwal is a Ph.D. Research Scholar in the
Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, India.
She has completed her M.Tech degree in Mobile
Computing from the National Institute of Technol-
ogy, Hamirpur, India, in 2020. Prior to that, she
received the B.Tech degree in Computer Science
and Engineering in 2018 from University Institute
of Information Technology, Himachal Pradesh Uni-
versity, Shimla, India. The current research interests
of Riya include Wireless Networks, Fog Computing,

Industrial Internet of Things, and BC.

Pallav Kr. Deb is a Ph.D. Research Scholar in
the Department of Computer Science and Engi-
neering, Indian Institute of Technology Kharagpur,
India. He received his M.Tech degree in Information
Technology from Tezpur University, India, in 2017.
Prior to that, he has completed the B. Tech degree
in Computer Science from the Gauhati University,
India, in 2014. The current research interests of Mr.
Deb include UAV swarms, THz Communications,
Internet of Things, Cloud Computing, Fog Comput-
ing, and Wireless Body Area Networks. His detailed

profile can be accessed at https://pallvdeb.github.io

Sudip Misra (SM’11) is a Professor at IIT Kharag-
pur. He received his Ph.D. degree from Carleton
University, Ottawa, Canada. Prof. Misra is the author
of over 350 scholarly research papers. He has won
several national and international awards, including
the IEEE ComSoc Asia Pacific Young Researcher
Award during IEEE GLOBECOM 2012, the INSA
NASI Fellow Award, the Young Scientist Award
(National Academy of Sciences, India), Young Sys-
tems Scientist Award (Systems Society of India), and
Young Engineers Award (Institution of Engineers,

India). He has also been serving as the Associate Editor of the IEEE
TRANSACTIONS ON MOBILE COMPUTING, the IEEE TRANSACTIONS ON
VEHICULAR TECHNOLOGY, the IEEE TRANSACTIONS ON SUSTAINABLE
COMPUTING, the IEEE SYSTEMS JOURNAL, and the INTERNATIONAL JOUR-
NAL OF COMMUNICATION SYSTEMS. Dr. Misra has 11 books published
by Springer, Wiley, and World Scientific. For more details, please visit
http://cse.iitkgp.ac.in/∼smisra.

Surjya Kanta Pal completed his graduation from
Government Engineering College, Jalpaiguri, West
Bengal in 1991, M.Tech from IIT Kanpur in 1993,
and Ph.D. from IIT Kharagpur in 1999, in Mechan-
ical Engineering. Professor Pal has done 3 years of
Postdoctoral research at The University of Sheffield,
UK. His current research interests include Friction
Stir Welding, Industry 4.0, Modelling, and simula-
tion of manufacturing processes. He started teaching
at IIT Guwahati from July 2002 to July 2004 and
then joined IIT Kharagpur, where he is presently

working as a Professor in the Department of Mechanical Engineering. Pro-
fessor Pal has published 264 research articles which include 156 International
Journal Papers, 15 International Book Chapters, and 90 Conference articles.
He has also filed 11 patents, out of which five are in the area of Industry 4.0.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3184271

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on July 04,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Motivation
	Contribution

	Related Work
	Blockchain
	Virtualization
	Resource Allocation
	Synthesis

	System Model
	Network Architecture
	Shadows
	Virtualizing Blockchain (VirtualChain)
	Resource Allocation
	Assignment of virtual nodes
	Load balancing
	Selecting optimal virtual node for migration
	Selecting optimal BC node for placement
	Complexity


	Performance Evaluation
	Experiment Setup
	Deployment Architecture
	Benchmark Schemes
	Results
	CPU Utilization
	Memory Utilization
	Energy Utilization
	Response Time
	Mining Time
	CPU Wastage
	Memory Wastage
	Virtual Node Requirement for Varying Memory Requirement
	Fitness Against Required Memory by Virtual Nodes
	Fitness Against Available Memory of BC Nodes
	No. of Migrations for Different Architectures
	No. of Migrations for Varying Number of Activities
	Performance overhead of load balancing

	Discussions and Limitations

	Conclusion
	References
	Biographies
	Riya Tapwal
	Pallav Kr. Deb
	Sudip Misra (SM'11)
	Surjya Kanta Pal


