© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

—_

SEGA: Secured Edge Gateway Microservices
Architecture for IloT-based Machine Monitoring

Atonu Ghosh, Graduate Student Member, IEEE, Anandarup Mukherjee, Graduate Student Member, IEEE,
and Sudip Misra, Senior Member, IEEE

Abstract—In this work, we propose SEGA, a secured edge
gateway microservices architecture for Industrial IoT-based mon-
itoring of machines in industries. SEGA allows the secured
collection, transmission, and temporary storage of data within
the edge network. A KNN-based analytics module hosted on the
edge gateway processes time-sensitive machine monitoring data
on the gateway itself and identifies machines’ operational status.
The system predicts the machine state and displays the monitored
parameters such as current consumed, power factor, power con-
sumption, and vibrational state of machinery. SEGA also enables
secured offloading of data and advanced analytical functions from
the edge gateway to the cloud. SEGA’s deployment results show
negligible changes in the edge gateway’s performance due to
the inclusion of various security and encryption mechanisms.
However, the resource-constrained edge sensor nodes show an
increase in wireless packet transmission latencies between them
and the gateway by approximately 84.12 ms.

Index Terms—Industrial IoT, Machine monitoring, Edge net-
works, Edge Intelligence, Microservices, IIoT Gateway

[. INTRODUCTION

IOT has found its application in the industries for various

use cases such as equipment monitoring, worker safety,
task automation, and more. The data generated in the IloT
environment are of various types. Some are lime-sensitive,
and some need higher security levcis to kcep the business
processes and trade secrets intact. This makes the management
and security of the IloT data among the significant challenges
posed to the development of I¢T systems and architectures
[1]. Smart edge-based systeins help handle time-sensitive data
without needing to be <ent immediately to the cloud for
processing. However, edge devices are limited by their ability
to run computationally intensive tasks, perform long-term data
storage, and offer dynamically scalable services.

Interestingly, preprocessing of the data on the edge devices
helps achieve two primary goals of IIoT — 1) overcoming
unnecessary network transfer lags and 2) avoiding network
congestion and enhanced bandwidth savings [2]. Further,
a combination of edge-computing, backed by cloud-based
processing, extends a plethora of benefits to an IloT net-
work, the most crucial being the ability to secure data much
nearer to the site of data gathering/sensing. The traditional
monolithic structure of the IoT solutions, especially at and
nearer to the edge of the architecture, makes it harder for
the solutions to be tailored for specific industrial requirements
that vary broadly among businesses [3]. Hence, the lack

A. Ghosh, A. Mukherjee, and S. Misra are with the Department of
Computer Science and Engineering, Indian Institute of Technology Kharagpur,
India.

of these primary requirements of IIoT solutions becomes a
bottleneck in the broader adoption of IoT-based solutions in
the industries. Typically, an IIoT solution for an industrial
application, especially machine monitoring tasks, should meet
the following expectations:

o Low latency: industrial monitoring and control applica-
tions strongly emphasize on latency requirements of a
solution. Typically, latency below 30 ms is a desirable
metric in industrial monitoring applications.

o Scalability: industrial applications require systems to be

highly ‘scalable to accommodate the changing require-
merns ot the industrial environments and business pro-
cesses:

o Security: robust and layered security aspects of IloT
solutions are always desirable in industrial applications.

A. Motivation

Owing to the fairly recent developments in the softwariza-
tion of solutions and the rise of modular hardware, it has
become much simpler to handle massive data volumes at
the edge. These new features, along with strategies such
as parameter-based offloading of functional processes (i.e.,
machine learning, big-data operations, and others) to a much
robust computing infrastructure (such as a cloud), motivate
the use of edge computing in various IloT architectures. A
significant portion of these changes has been made possible
by using microservice-based architectures at the cloud and the
edge of the IIoT network. As an active research area, these
developments in edge-based microservices have not focused
largely on security aspects of the data and enhancing the
integrity of the information flowing from the site of data
collection to the remote server or cloud.

In this work, we address this lacuna in existing IloT
solutions by proposing “SEGA”, which is an end-to-end
Secured Edge Gateway microservice architecture for IToT-
based machinery monitoring in industries. The salient security-
rich features of our proposed architecture are as follows:

1) Sensors: SEGA implements the first level of security
at the data sensing site itself. A ”Secure Boot” of the
microcontroller in the sensor nodes ensures that the
sensor nodes’ bootloader is uncompromised. Secondly,
implementing “Flash Encryption” of the microcontroller
keeps the data, application code, and encryption keys
secure. Each sensor node uses a different key for data
encryption so that the compromise of one sensor node

Raspberry Pi

MQTT Adapter
(UDP-to-MQTT)

UDP Adapter

> e
Espsa) Mosquitto MQTT InfluxDB
HT LT
[
I < |
v v S
o <[InfluxDB Adapter g
Current o) *
a— :
Voltage & Data Offload
\nﬂustcEylwAd?aplef Grafana & Django
Vibration .\ ‘

™ ‘ State Prediction Grafana & Django

N

Vibration sensor

Figure 1: The microservice architecture for SEGA

does not lead to the compromise of the whole sys-
tem. Lastly, using the one-time programmable hardware-
based keys of the microcontroller further prevents any
undue manipulations to the hardware.

2) Edge Gateway: The microservices communicate se-
curely among themselves using strict authentication-
based Application Programming Interfaces (APIs),
which acts as the primary layer of security. The API
secret keys are stored securely in an access restricted
system environment. The internal communication and
networking among the edge-based microservices and the
cloud-based ones are done through an entirely diffeient
private network. These features, along with highlv di ffer-
entiated and well-defined user-access abstraction lcvels,
acts as another security barrier to unauthoiized access
to edge-based data.

3) Edge to Cloud: The data in transit from the edge to
the cloud are secured through cncryption using public-
key cryptography, and the transtiission channel uses a
Secure Shell (SSH) connection over TCP/IP. Addition-
ally, the SSH connections are secured by enforcing au-
thentication key-based vaiidation of the communicating
parties.

B. Contributions

The proposed “SEGA” system demonstrates the design and
implementation of an end-to-end secured system for IIoT. The
proposed architecture is highly fault-tolerant, scalable, and
reliable due to the microservice-based modular architecture
along with its contemplative configuration that has been imple-
mented. The specific contributions of this work are as follows,

o A detailed end-to-end architecture of a microservice-
based edge computing system for IIoT has been proposed.
In addition, each system component and its integrations
have also been discussed elaborately.

o The security measures employed in the proposed
microservice-based system have been discussed and
demonstrated on a real system.

o The time-sensitivity of IIoT applications has been prior-
itized in the proposed system architecture. In addition,

the effect of security measures in resource-constrained
devices has been experimented with and evaluated.

II. RELATED WORK

IIoT environment comprises a massive number of sensor
nodes that collectively generate a mammoth volume of data
[4]. Moreover, in specialized and precise IIoT applications
such as condition monitoring, the data generation rates are
quite high, and so is the generated data load on the network.
These factors lead to exceedingly high bandwidth usage,
strains the server in memory, and processing power usage. As a
possible solution to such issues, data reduction techniques have
been successfully explored for industrial motor monitoring
systems [5]. Additionally, edge-based systems have also been
used for ”Big Data” preprocessing before forwarding the data
to the cloud [6]. As most industiial applications are sensitive
to time delay, processing data on-site using edge computing
comes off as a viable golution. Non-time-sensitive tasks are
offloaded to remole cloud servers for processing. Alternatively,
optimized QoS-aware offloading strategies [7] and Al-based
offloading solutions [8] have proved promising. Optimizing
network using SDN-based solutions to control the data flow
intelligent!y is yet another promising approach [9].

Towurds securing IIoT networks and the data flowing
throuch it, blockchain-based solutions [10] have been devel-
aped that exploit its hashing mechanism. Edge-cloud-based
Remaining Useful Life (RUL) prediction methods have come
up using Al technology to predict the RUL of the machin-
ery. Such practices make use of the “lightweight temporal
convolutional networks” [11]. There is not just the need
for optimization on the hardware level, but the software
aspects must be considered too for an efficient end-to-end
IIoT system. As a result, service management leveraging con-
tainerization technologies such as Docker is being popularly
adopted for IIoT. Studies have shown that such container-
based virtualization has resulted in only 16% of the total
power consumption with such container-based architecture
[12]. The resource-constrained nature of the IoT devices makes
it difficult to implement the existing security mechanisms.
Despite the challenges, approaches have explored modified
RSA algorithms implementing four prime numbers of 512 bits
and hash-based signatures for device authentication purposes
[13]. Similar developments can be found in the literature where
the private-public key-based encryption mechanisms have been
implemented [14]. However, most of the existing works in
the literature provide security for a portion of the network
architecture. Due to limitations of device power, processing,
and resources, the security within the edge network gets
ignored or is not addressed robustly. This results in mostly
unsecured edge layer devices, which are prone to manipulation
from adversarial entities. The SEGA system proposed in this
work addresses this issue and provides complete security —
from the source of data collection to the cloud.

III. SYSTEM DESCRIPTION

The SEGA system makes it easier and seamless to add
or remove sensor nodes from the edge network while taking

precautions that the regular network operation is not hindered.
The microservice-based architecture of the edge gateway de-
vice requires no additional configuration to accommodate the
newly added nodes. The only manual intervention required is
to register the AES key of the new sensor node in the edge
gateway device. This AES key addition is done through the
system management dashboard. The newly added sensor nodes
connect to the edge gateway device by using the pre-registered
access credentials in its firmware which is encrypted by using
“Flash Encryption” as discussed in section IV. Moreover, to
handle computation and storage loads beyond the capability
of the edge gateway hardware, by virtue of the microservice-
based architecture, it requires minimal effort to replicate the
edge gateway device to balance the load/traffic in the network.

A. SEGA Architecture

The developed system hardware — sensor nodes, and edge
gateway — monitors electrical parameters such as RMS Voltage,
RMS Current, Real Power, Apparent Power, Power Factor, and
Vibration Parameters. The edge system consists of wirelessly
communicating sensor nodes equipped with sensors that send
the sensor data to the central edge gateway. The edge gateway
connects to the cloud servers over the Internet. The edge
gateway device preprocesses the sensor nodes’ data. Time-
sensitive control instructions such as turning off malfunc-
tioning machinery are generated by the edge gateway devicc
based on the data it receives from the sensor nodes. The
non-time-sensitive data are transformed and offloaded o the
cloud servers for complex analytics and archival storage. This
sclective offloading capability of the edge device liclps to
improve the Quality of Service (QoS) of the SEGA system by
reducing unnecessary traffic over the wireless network. Fig.
1 graphically represents the SEGA microseivices architecture
and the components of the sensor iode in our arrangement.

SEGA incorporates the microservice-based architecture,
making it highly scalable and flcxible to accommodate emerg-
ing business requirements of industry and enabling rapid
solution deployments. Security and privacy requirements for a
reliable IloT-based data (ransfer are ensured through security
at different levels, including appropriate data encryption on
resource-constrained sensor nodes. The edge-based gateway
enables the availability of essential services such as real-time
monitoring even with intermittent Internet connectivity. The
data stored in the cloud enforces robust encryption mecha-
nisms in addition to the authentication mechanisms that make
the data breach even more difficult, if not impossible.

B. Network Architecture

Typical IIoT applications often involve a combination of
sensor nodes and sensors. If each sensor nodes contain the
same number and types of sensors, we refer to such nodes as
homogeneous nodes. In this work, we make use of such ho-
mogeneous sensor nodes for monitoring industrial machinery.
A SEGA gateway G; may connect to n sensor nodes, and
each of these sensor nodes can further contain p sensors. The

sensors s with a sensor node n in the proposed architecture
can be represented as an array such that,

ni:[513527837"'7s})}7 p>07peﬂ+ (1)

It is to be noted that the set n; represents both
single-dimensional sensors (temperature, power) and multi-
dimensional sensor values (vibration values along z, y, and
z axes). Further, the amount of data generated in a SEGA
system, considering j edge gateways G, can be represented
as:
Gj= {ls1,s2, . splu, [s1, 82, s spla, [s1, 82, -, spln}
n,j>1,el* @

This deployment of edge gateways and their constituent sen-
sor nodes can be dispersed within the industrial premise or
even multiple geographicaily disiributed premises of the same
industrial entity. The sciisor node in the proposed SEGA
monitors a machine/device’s electrical parameters such as
Current (Iyps), Voltage (Vims), Real Power (P) measured
in Watts (W), Apparcat Power (S) measured in Volt-Amps
(V A), Power Factor (D) of the machinery and its vibrational
states (a.;a,, 2.). For each machinery that needs monitoring,
a sensor nuoc is allotted for the machinery to sense vibrations
and power-related factors of the machinery. Except for the
clamp-on current sensor, requiring minimal interference with

monitored machine’s power supply, the other parameters
collected by the sensor node are mostly non-intrusive. Each
live and registered sensor node then transmits the sensed data
directly to the edge gateway device. The sensor node derives
the values of P, S, and ® by using the sensed values of I,.,,,s
and V,,,s. Considering a resistance r and impedance z, the
value of P = I? xr, S = I? x z, and ® = P x S~ L.
The parameters captured by each sensor node represented by
equation 1 is now represented as:

n; = [V:rmwlrmsapa Sv (I)aax7ayaaz} (3)

The network topology implementation of the proposed IloT
system is subjective to the specific application requirements
such as the area to be covered (A x B) m? and the spec-
ified requirements for an acceptable time latency (t). Our
implementation of the SEGA system uses the star network
topology. Interestingly, our choice of a star topology arises
from the fact that its alternative, a mesh-based architecture,
will induce massive traffic redundancies in the network and
subsequently will increase network latencies over time. A
star network avoids such network degradations. Also, nodes
far from the sink node experience a longer data transmission
delay in a mesh network. This delay increases as the nodes
move away from the sink node. Further, a star topology also
enhances the traceability of faults and significantly reduces
fault detection in the network. Finally, the practicality of using
a star topology is also advocated by the long list of wireless
communication protocols that support the star topology but
not the mesh topology.

The edge gateway device receives data from the sensor
nodes, preprocesses the data, stores the data in the local
databases for rendering services without Internet connectivity,

and forwards the data to the cloud server whenever Internet
connectivity is available. All the services rendered by the edge
gateway device are implemented as microservices. The edge
gateway device connects to the cloud server using TCP over
the Internet. The cloud server hosts a superset of the services
that are rendered by the edge gateway device. The cloud-based
server performs complex data analytics and large data storage
functions.

Definition 1. Time-critical data: rapidly changing temporal
data that has an approximate update interval of more than
10Hz (10 changes/ data-points per second) is a time-critical
data in the context of this work.

C. Micro-Service Architecture

The services involved with receiving sensor data, decrypting
the received data, segregating time-critical data (Definition
1) from others, lightweight analytics on the preprocessed
data, data storage, data offloading to the cloud server, and
rendering real-time visualization dashboard to the user, all
have their dedicated microservices in the SEGA architecture.
Each of these microservices is containerized using Docker,
which provides several benefits over traditional monolithic IoT
service architectures. With microservices, the deployment is
rapid and highly flexible, with the added benefit of robustly
accommodating emerging business requirements without re-
designing the previous system or taking it down. The Docker-
based containers being lightweight than Virtual Machines
(VMs), provide better performance on resource-constrained
devices [15], and hence is selected for the SEGA system. Fig.
1 outlines the microservice architecture at the edge gateway
(primarily).

Data Handler Module: this module comnsists ‘of the UDP
adapter, MQTT adapter, MQTT broker, andi 1lie local InfluxDB
adapter, which is an MQTT subscribcr. This tiodule is respon-
sible for receiving data from the sensor nodes, decrypting the
data, and data preprocessing. The UDy adapter receives the
data from the sensor nodes, and then it sends the data to the
MQTT adapter. The MQTT adapter publishes the received data
on various MQTT topics of the broker after appending sensor
node-specific information to it. The MQTT broker receives
topics for both time-critical and non-time-critical data. The
topic-wise segregated data are then fed to the local InfluxDB
adapter. The Influxdb database records are periodically of-
floaded to the cloud server by the cloud InfluxDB adapter.
This collected data of the current consumption is used for
incremental training of the systems classifier that is used for
analyzing the machine state.

MQTT Communication: SEGA predominantly commu-
nicates using MQTT due to it being an open-source solu-
tion [16], its requirements for a significantly lesser network
overhead, and especially, its “event-triggered” nature. The
’publish-subscribe” model of MQTT makes the bi-directional
and many-to-many device data flow extremely simple in
addition to decoupling the sender and the receiver devices,
unlike in client-server based communication protocols such
as HTTP and CoAP. One of the exclusive features of MQTT
is the ability to “retain” messages. This “retain” functionality

in MQTT ensures that the newly added clients can get the
published messages published before they join the network.
This becomes useful in scenarios where a particular topic’s
messages are infrequent. Thus the newly added clients get the
data immediately after entering the network [17]. Other than
MQTT, none of the most used communication protocols such
as CoAP, AMQP, and HTTP has three QoS provision levels
[18]. Owing to MQTT’s method of transmitting messages
using named topics, the introduction of malicious data in
the network gets obliterated along with unauthorized access
to messages. Its diaphanous nature makes it highly suitable
for resource-constrained devices that are used in IoT [19].
Moreover, in an application implemented with MQTT, new
device integration requires minimum effort and time, making
the IoT deployment rapid and scalable.

Check
Internet
Connectivi

Check Free
RAM

MB

Preseil

New
Data Present
Or CSV Row
>=800

Gather New
Data To
Offload

> Offload
Data

Delete Rows
From

CSV File

Figure 2: Data offloading mechanism for the SEGA edge
gateway architecture

Data Storage Module: consists of InfluxDB, which is
an open-source, high-performance time-series database. The
data pushed into this database have a tag associated with
them that facilitates data grouping based on a sensor node’s
identification. This also enables easy traceability of the data.

Visualization module: this uses Grafana for SEGA’s
visualization function. Graphs for real-time visualization are
enabled by Grafana hosted on a Django server. The user
interface rendered by the Django server is accessible over the
local network, where it can be viewed independently of the
client device.

State Prediction Module: this is responsible for predicting
the functional state of the monitored machine. We use a pre-
trained k-Nearest Neighbors (KNN) classifier that has been
containerized and deployed on the edge gateway device for
automatically identifying the machine states. A provision for
periodic retraining of the KNN model has been kept on the
cloud server. Only the trained model is deployed on the edge
gateway device.

Data Offloading Module: this is responsible for sending
data to the cloud server from the edge gateway. The data
offloading scheme is described in Fig. 2. The edge device
checks for the presence of new data to be offloaded to the
cloud after confirming the free CPU and RAM of the edge
gateway are beyond the pre-set threshold. Using a trial-and-
error approach, we set the threshold for free CPU usage to
30%, and the available memory to 128 MB to support basic
operations on the edge device.

IV. SECURE DATA PREPROCESSING

Data security in the IIoT environment helps maintain the
secrecy of the business processes and trade secrets. It prevents
unauthorized control of the machinery through compromised
nodes in the industrial IoT network. SEGA enforces security
at the data generation, communication/transmission, data pro-
cessing, and storage levels.

Data Generation Security: the ESP32 microcontroller-
based sensor nodes at the data generation level implement
Secure Boot and Flash Encryption. The ESP32 hardware
consists of a 1024-bit electronic fuse that can be programmed
only once. Once the blocks in this fuse are programmed, no
software running on the ESP32 device can read or write to
these blocks. The Secure Boot mechanism ensures that the
execution begins with the“BootROM”, a hardware ROM and
the electronic fuse, which is also present in the hardware. The
BootROM compares the hash of the RSA key of the bootloader
image and the hash of the key stored in the electronic fuse. The
bootloader is validated using the RSA key that the BootROM
validated. The bootloader then checks the integrity of the
firmware on the ESP32 device in a similar manner to validate
the bootloader. The Flash Encryption is a mechanism that
keeps the application code on the ESP32 encrypted. The
application code is decrypted during the execution and can
only be read by the ESP32 hardware, as mentioned earlier.
The debugging features such as the JTAG of the ESP32 device
are also disabled using the electronic fuse. Fig. 3 shows the
schematics of the sensor node and the edge gateway devicc

Data Transmission Security (intra-edge): the data 10 be
transmitted from the sensor nodes within the edge uscs the
key stored in the application firmware to encrypt the data
and forward it to the edge gateway device. Oncc the edge
gateway device receives the data, the dati is decrypted. The
AES encryption scheme is secure as e application firmware
is already encrypted by the ESP32, wlich prevents any adver-
sarial entity from fetching the AES key from the sensor node.
In addition, each sensor node uses a different AES key, which
ensures that even if a sensor node is compromised, the rest
of the sensor nodes’ integrity in the network remains intact.
The ESP32 microcontroller board in the sensor node was
chosen after extensive evaluation of other boards (ESP8266,
Raspberry Pi Zero W, Raspberry Pi 3B/4) regarding cost,
speed, processing, security, signal converters, and energy con-
sumption profiles. The ESP32 board was chosen for the sensor
node as it had more than two analog-to-digital converters
(an essential requirement for our sensor node), had enough
processing power to support encryption algorithms, had a set
of firmware security measures inbuilt, and costs much lesser
than other microcontroller boards. The lack of inbuilt ADCs
in the Raspberry pi boards meant more add-ons, which would
have required higher power consumption, increased costs, and
increased the form factor of the sensor node, and hence was
discarded. The ESP8266 boards were not powerful or robust
enough to match the other boards.

Data Transmission Security (edge to cloud): the Data
Offloading Module, which is a separate docker container, is
responsible for sending data to the cloud server. It adheres

to the offloading scheme described in Fig. 2. The data to be
sent is encrypted using a public key. Then the encrypted data
is transmitted to the cloud server over a Secure Shell (SSH)
connection using TCP. The encrypted data sent to the cloud is
then decrypted using the private key and stored in the database,
then consumed by applications running on the cloud. Further,
the containerized microservices in the edge device and the
cloud are loosely coupled and are independent of each other.
All the microservices communicate only through APIs, which
implements JSON Web Token (JWT) authentication. The JWT
tokens generated are renewed every 15 minutes as they are set
to expire beyond this time. Therefore, to have access to the
docker containers and, in turn, to access the docker container’s
environment variables, an attacker needs to have access to the
edge gateway device as a root user. This authenticated Ap-
plication Programming Interface: (API)-based communication
ensures that even if one of the niicroservices is compromised,
the rest of the system remains saie.

Vibration Sensor

ESP32

L
@ s0A| | (Main CPU & Memory | ([Embedded
8 (A Flash
Core 1 || Core2 | |'—rud
S 7 21 Hardware Based
| RAM | | ROM | ||cryptographic Acceleralor‘

Wi

Current “cns
v

N

WiFi Router
)

T ;
l nsor Peripherals RTC §
- a 12C & 12§ @pn;ccgsu.-“ pMuy || Recovery
l 4 L —= apc (CL2IN { Memory

| N /

Raspberry Pi 4 [

() Y[GIC) WiFi Radio
Ti [Core3 s
0 o) S

Core | Core 2
TLBs, TLBs, l

Controller

| Secondary
Memory

L1 ICache L1 ICache
&DCache | & DCache

Operating System

<« Microservices

Cortex A72 CHIor ACE ACP

Figure 3: ESP32 and Cortex A72 interoperation

Data Processing Security: the UDP Server receives the
encrypted data transmitted by the sensor nodes in the Data
Handler Module. The UDP server decrypts the messages, and
the decrypted data is preprocessed then sent on various MQTT
topics. This topic-based data management provides an added
security layer as any data sent over topics other than the
predefined ones get discarded. Therefore, an adversary cannot
send data to the edge gateway device’s modules other than the
UDP server without knowing the MQTT topics. Nevertheless,
the UDP server checks for the length of the data sent by the
sensor nodes. Any mismatch in the data length leads to the
discarding of the data. Consequently, this mechanism ensures
that the data sent from unknown sources are detected. The
containerized microservices also help isolate the application
services from the underlying platform of the host system,
thereby providing it some immunity from direct attacks on
the host.

Data Storage Security: SEGA uses InfluxDB at the gate-
way as well as the cloud to store the parameters sensed by the
sensor nodes. All read and write operations to the database
are performed through REST APIs of InfluxDB. The APIs
enforce strict authentication and require the user credentials
to access it. The users that use the API have only specific
rights granted to them. As an additional security measure, the
cloud server and the edge gateway device enforce strict access

policies using a firewall and port blocking. It is worth noting
that the public-private key pairs used in the system are all
different. This ensures the security of modules even if some
module of the system gets compromised.

V. EXPERIMENTAL SETUP

The proposed sensor node uses the ESP32 microcontroller
board. An SCT-013-030 clamp-on current sensor detects and
reads the current consumption of the monitored machine into
the microcontroller. Although this sensor has a maximum
current rating of 304, an appropriate sensor module can be
easily accommodated with the sensor node for higher current
requirements. Further, a ZMPT101B voltage sensor detects
the voltage across the monitored machine. The sensor node
also uses an MPU-6050 inertial measurement unit (IMU). It
consists of a 3-axis Gyroscope and a 3-axis Accelerometer.
The ESP32 calculates the various power-related parameters
from the voltage and current. These values, along with the
vibration readings, are forwarded to the edge gateway over
WiFi. Parts of Fig. 1 depicts the hardware implementation of
the sensor node.

The edge gateway device is an open-source Cortex-A72
(ARM v8) 64-bit single board computer with a CPU clock
speed of 1.5 GHz. It has 4 GB LPDDR4-3200 SDRAM with
2.4 GHz and 5.0 GHz WiFi. The device requires 5 V DC
power supply with a minimum of 3 A current. Ubuntu Server
20.04 LTS for ARM is used as the operating system on this
single board computer. The ESP32 and Cortex-A72 based
sensor node and edge gateway interconnection is depicied 1i
Fig. 3. Once the data from the sensor node is received at
the edge gateway, the microservices store it into the luniluxdb
time-series database. The visualization modulc plots the data
in real-time from the database.

Table I: Parameters for performance cvaluation of the proposed
system.

Parameter Description

Vimss Irms, P, Electrical parineters used in accuracy testing.

S, and ¢

Acceleration It represcuts wie vibrational state of the machine
being inonitored.

CPU and RAM Percentagc of CPU and RAM consumed by mi-

croservices and software adapters on edge gateway
device.

MQTT Publish
Time

Time taken by the "MQTT Adapter” sub-module of
”Data Handler” module to publish the transformed
data on to the MQTT topics.

Decryption Time taken by the "Data Handler” module to decrypt

Time the received data (encrypted).

Data Arrival Time between the receipt of successive data packets

Time by the edge gateway device shows the latency of the
ESP32 device.

Network Latency (measured in ms) of the WiFi network in

Latency which SEGA was deployed.

VI. PERFORMANCE EVALUATION

The system was tested with an electrical load of 2300

W. During testing, we separately observed that the supply
voltage varied between 248 V to 235 V using the AC mains
available to us. The sensor node reported a maximum of

Vims at 254.9175 V and a minimum value of 233.9435 V.
The differences between the reported voltage from the sensor
node and our separate observation was approximately +7.9
V. Similarly, the I,,,s value of the difference between our
standalone measurement and the one reported by the sensor
node was +0.5348A. The average Real Power (P,yerage)
for 274 consecutive readings was 2220.9 W and the average
Apparent Power (Sgverage) Was 2462.4 W, and the phase @
calculated was 0.9.

A. Effect of Encryption on Edge Gateway Latency

Fig. 4 shows the usual time required for data preprocessing
and publishing MQTT topics with no encryption on the edge
gateway. We observed that the minimum, maximum, and
average preprocessing and MQ'IT publish time are 37.21 ms,
66.89 ms, and 50.16 ms, respectively. The lower plot in Fig.
4 illustrates the time takei foi data decryption, preprocessing,
and MQTT publishing by the data handler module when
encryption is implemented on the incoming messages to the
edge gateway. We obcerve that the minimum data decryption,
preprocessing, and MQTT publish time is 41.68 ms, the
maximum- tiine and average time are 73.31 ms and 51.61
ms. Sununarily, we infer that the encryption method chosen
for securing communication between the sensor nodes and
the c¢dge gateway does not significantly affect the network
latencies and is comparable.

100

—— Data Preprocessing, and MQTT Publish Time (ms)]
v 75
=
o 501
=
E 251
0 T T T T T T T T T
100 0 50 100 150 200 250 300 350 400
—— Data Decryption, Preprocessing, and MQTT Publish Time (ms) J
5 754 — - " . . - - .
E MMM
o 507
£
= 251

6 5‘0 160 150 260 2.":0 360 350 460

Sample Number
Figure 4: Time for preprocessing, and MQTT transmission
(without encryption) and time for decryption, preprocessing,
and MQTT transmission (with encryption)

B. Effect of Encryption on Sensor Node Latency

We also measured the successive data arrival times at the
edge gateway — both with and without encryption imple-
mented. Fig. 5 shows the successive data arrival times from
sensor nodes without and with encryption. The data size
measured with encryption is 161 bytes and 151 bytes without
encryption. The successive data arrival time indicates the
latency of the sensor node. Without encryption, the minimum
time between successive data arrival observed is 0.4 ms.
The maximum being 999.34 ms and the average time being
37.87 ms. In contrast, the successive data arrival times with
encryption implemented shows that the impact of encryption is

significant on the successive data arrival time. The minimum,
maximum, and average successive data arrival time with
encryption is 4.48 ms, 999.341 ms, and 121.99 ms. From
the graphs and the average successive data arrival times, the
ESP32 device generated and transmitted data non-uniformly.
The maximum times for both scenarios are similar due to the
UDP data loss.

6 2‘5 5‘0 7’5 160 lé5 150 175
] BRI
ANFAMANAENIEARITm

W Latency (With Encryption) |

Time (ms)
w o ©
o o o
o 8 8 8

N Latency (Without Encryption)]
-300 T T

©
=3
=3

o
=3
=3

Time (ms)
w
8

o

-300
0 25 50 75 100 125 150 175

Sample Number

Figure 5: Time between successive data arrival from sensor
node to edge gateway (without and with encryption)

C. Effect of Encryption on Edge Gateway Resources

We monitored the edge gateway’s resource usage — the
amount of free CPU and RAM usage — throughout our
experiment. We observed no significant changes to the CP1J
and RAM usage profiles due to encryption of communication
between the gateway and the sensor nodes. For both, cases
the maximum CPU utilization observed was 5.6%. and the
maximum RAM usage with encryption and no encrypiion were
904.4 MB and 904.2 MB, respectively. Howevei. as per our
expectations, the CPU and RAM usage shows a significant
increase during the execution of computationally intensive
tasks such as a pre-trained KNN classifier tor the detection of
machine states. In this scenario, the moximum CPU and RAM
usage was observed to be 15.49 and 927 MB, respectively.

| — UuDP Adaprer)
—— MQTT Adapier |
T — InfluxpB

7 —— Mosquitto
401
204

10 20 30 40 50 60 70 80

CPU Usage (%)
3

—— UDP Adapter
6 4 —— MQTT Adapter
~—— InfluxDB
1 —— Mosquitto

N

RAM Usage (%)
IS

o

10 20 30 40 50 60 70 80
Number of Nodes

Figure 6: CPU and RAM usage by microservices and adapters
of SEGA with increasing number of sensor nodes

D. Effect of Increase in Sensor Nodes

To test the performance of the proposed system, we per-
formed experiments where we increased the number of sensor
nodes in the network, 5 nodes at a time. We varied the nodes

from 5 nodes to 80 during this experiment. The maximum
CPU and RAM usage by the UDP Adapter, MQTT Adapter,
InfluxDB microservice, Mosquitto MQTT broker microser-
vice, and the Grafana microservice were recorded. Fig. 6
depicts CPU and RAM usage by the SEGA microservices
and the software adapters with an increasing number of sensor
nodes.

Grafana microservice: it showed consistent CPU and
RAM usage throughout the experiment. It consumed a maxi-
mum of 1.6% of RAM and the maximum CPU usage observed
is 24.6%. This behavior of the Grafana microservice is justi-
fied because the resource usage by the Grafana microservice
depends on the number of requests it serves. This is a very
scalable behavior and appropriate for an extensive system.

UDP adapter: it consumed the maximum CPU and RAM.
We recorded 98.9% and 2.4% CPU and RAM usage, respec-
tively, with 80 sensor nodcs connected to the network. The
RAM consumed by it remained constant at 2.4% throughout
the experiment. Howcver, the CPU usage showed a constant
increase with an incrcasing number of sensor nodes. The
minimum CPU usage by it is 11.2% with 5 sensor nodes.

MQTT adapter: it showed a constant RAM usage of
0.4% and the CP’U usage only varied between 2.6% and 2.7%
throughour tie experiment.

Mosquitto MQTT broker: it used a maximum of 42.99%
of CPU and a minimum of 5.2% of CPU. Its RAM usage was
negligible and remained constant at 0.1%.

InfluxDB microservice: its RAM and CPU usage in the
experiment increased with the increase in the number of sensor
nodes. The maximum CPU and RAM usage by the Influxdb
microservcie were 58.98% and 3.6% respectively with 80
sensor nodes, whereas the minimum CPU and RAM usage
were 7.9% and 2.3% with 5 sensor nodes.

140

Bm Network Latency

1 o
3)

Latency (ms)
8 3 8
|]
1 | | | |

N
S

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Number of Nodes
Figure 7: SEGA WiFi network latency with increasing number
of sensor nodes connected to the network

E. Effect on Network Latency

Fig. 7 shows the effect of network latency with an increase
in edge sensor nodes. For each record of the network latency,
we performed 30 consecutive measurements. The maximum
value among the 30 measurements was recorded as the net-
work latency with a given number of sensor nodes. The WiFi
network experienced a maximum latency of 134 ms and a
minimum latency of 4 ms. For only two instances, the network

latency was observed to exceed 22 ms, and for all other
measurements, the latency observed was below 23 ms. The
sudden spike in the network latency for the two measurements
exceeding 22 ms was attributed to multiple sensor nodes trying
to transmit data to the edge gateway at the same time over the
same UDP port.

FE. Effect of Microservice Latency

Focusing on the microservices, we observed that the In-
fluxDB microservice was consuming significant resources, but
the single CPU core usage did not exceed 60%, and the RAM
usage was low. Also, the other microservices and the software
adapters did not consume much resources. Interestingly, we
observed that an increase in the number of sensor nodes
increasingly loaded the UDP adapter. As a result, the updated
reading arrived at the InfluxDB with an increasing delay for
each sensor node added. This delay is due to the UDP adapter
handling data from multiple sensor nodes sequentially. Hence,
the Grafana plot-based dashboard also showed that the sensor
data points in the sensor data plots were updated with delay.
We could add only 80 sensor nodes in our experiment till
the delays incurred were not sustainable and feasible. This
delay can be eliminated simply by implementing multiple UDP
Adapters in the SEGA architecture. Hence, much more sensor
nodes can be connected to the same SEGA edge gateway
device.

VII. CONCLUSION

The SEGA architecture proposed in this work addresses the
industrial requirements of reliable and secure plant machinery
monitoring. The system implements microscrvice architecture
for the deployment of the services: We demonstrated an end-
to-end edge gateway network to securely collect a machine’s
power and vibration data and autonomously determine its
operational state within the cdge at the gateway. Although
there are hardly any tangible changes to the gateway de-
vice’s performance in response to the inclusion of encryption
modules, the relatively resource-constrained edge sensor nodes
show an increase in network transmission delays by 84.12 ms.
In addition to active encryption for securing the sensed data,
several passive security measures are automatically associated
with the SEGA architecture by the containerized microservices
in use. In the future, we plan to incorporate online learning
to learn the changing trends in the sensed data from various
machines on a factory/plant floor. This would remove the
dependence of SEGA on machine-specific datasets for deter-
mining machine status and health.

ACKNOWLEDGMENT

The work reported in this paper is partly funded by
SERB/ IMPRINT-2 (Grant Ref. No.: SERB/F/12680/2018-
2019;IMP/2018/000451), which the authors gratefully ac-
knowledge.

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

1ol

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

J.-S. Fu, Y. Liu, H.-C. Chao, B. K. Bhargava, and Z.-J. Zhang, “Secure
data storage and searching for industrial iot by integrating fog computing
and cloud computing,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 10, pp. 4519-4528, 2018.
T. Wang, P. Wang, S. Cai, Y. Ma, A. Liu, and M. Xie, “A unified
trustworthy environment establishment based on edge computing in
industrial iot,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 9, pp. 6083-6091, 2019.
W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service
candidate identification from monolithic systems based on execution
traces,” IEEE Transactions on Software Engineering, 2019.
L. Qi, C. Hu, X. Zhang, M. R. Khosravi, S. Sharma, S. Pang,
and T. Wang, “Privacy-aware data fusion and prediction with spatial-
temporal context for smart city industrial environment,” IEEE Transac-
tions on Industrial Informatics, 2020.
X. Wang, S. Lu, W. Huang, Q. Wang, S. Zhang, and M. Xia, “Efficient
data reduction at the edge of industrial internet of things for pmsm
bearing fault diagnosis,” IEEE Transactions on Instrumentation and
Measurement, vol. 70, pp. 1-12, 2021.
T. Wang, H. Ke, X. Zheng. K. Wang, A. K. Sangaiah, and A. Liu,
“Big data cleaning based on mobile edge computing in industrial sensor-
cloud,” IEEE Transactions on Industrial Informatics, vol. 16, no. 2, pp.
1321-1329, 2019
C.-W. Hsu, Y.-L'. Hsu, and H.-Y. Wei, “Energy-efficient edge offloading
in heterogeneous industrial iot networks for factory of future,” IEEE
Access, vol. 8, pp. 163 035-183 050, 2020.
W. Sun, J. Liu, and Y. Yue, “Ai-enhanced offloading in edge computing:
When machine learning meets industrial iot,” IEEE Network, vol. 33,
no. 5. pn. 6874, 2019.
K. Kauor. S. Garg, G. S. Aujla, N. Kumar, J. J. Rodrigues, and
M. Gnizani, “Edge computing in the industrial internet of things envi-
onient: Software-defined-networks-based edge-cloud interplay,” IEEE
communications magazine, vol. 56, no. 2, pp. 44-51, 2018.
P. K. Deb, S. Misra, T. Sarkar, and A. Mukherjee, “Magnum: A
Distributed Framework for Enabling Transfer Learning in BSG-Enabled
Industrial-IoT,” IEEE Transactions on Industrial Informatics, 2020.
L. Ren, Y. Liu, X. Wang, J. Lii, and M. J. Deen, “Cloud-edge based
lightweight temporal convolutional networks for remaining useful life
prediction in iiot,” IEEE Internet of Things Journal, 2020.
J. Okwuibe, J. Haavisto, E. Harjula, I. Ahmad, and M. Ylianttila, “Sdn
enhanced resource orchestration of containerized edge applications for
industrial iot,” IEEE Access, vol. 8, pp. 229 117-229 131, 2020.
K. A. Abuhasel and M. A. Khan, “A secure industrial internet of things
(iiot) framework for resource management in smart manufacturing,”
IEEE Access, vol. 8, pp. 117354-117 364, 2020.
Y. Tao, P. Xu, and H. Jin, “Secure data sharing and search for cloud-
edge-collaborative storage,” IEEE Access, vol. 8, pp. 15963-15972,
2019.
R. Morabito, “Virtualization on internet of things edge devices with
container technologies: a performance evaluation,” IEEE Access, vol. 5,
pp- 8835-8850, 2017.
B. Mishra and A. Kertesz, “The use of mqtt in m2m and iot systems:
A survey,” IEEE Access, vol. 8, pp. 201 071-201 086, 2020.
J. Dizdarevié¢, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey of
communication protocols for internet of things and related challenges of
fog and cloud computing integration,” ACM Computing Surveys (CSUR),
vol. 51, no. 6, pp. 1-29, 2019.
N. Naik, “Choice of effective messaging protocols for iot systems: Mqtt,
coap, amqp and http,” in 2017 IEEE international systems engineering
symposium (ISSE). 1EEE, 2017, pp. 1-7.
M. A. Prada, P. Reguera, S. Alonso, A. Morén, J. J. Fuertes, and
M. Dominguez, “Communication with resource-constrained devices
through maqtt for control education,” IFAC-PapersOnLine, vol. 49, no. 6,
pp. 150-155, 2016.

