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Abstract—Remarkable prevalence of in-car entertainment sys-
tems empowers vehicular users to download multimedia-enabled
contents in transit and creates a new business opportunity
for content providers (CPs). However, the timely delivery of
requested content is a major concern for CPs to improve the
quality of service (QoS) of their subscribe users. Roadside unit
(RSU)-based caching appears as a promising solution for CPs
wherein CPs proactively store their content at the RSU to reduce
the content delivery time. Since the RSUs are enabled with
limited storage capacity, the competition among multiple CPs for
storage space is unavoidable. Further, the CPs are connected with
RSUs using capacity limited backhaul links. Hence the allocation
of RSUs’ storage among CPs becomes a fundamental issue in
RSU-based caching networks. In this paper, we design a market
scenario in which the set of CPs competes for the storage space
of RSUs. In the unavailability of utility and cost functions of
the CPs and the RSUs, we introduce a market maker to manage
the marketplace. Further, we employ iteration-based double-sided
auction mechanism to compute the optimal storage allocation and
corresponding payment transfer for CPs which maximizes the
social welfare of the networks. The simulation results demonstrate
the proposed auction mechanism improves the social welfare
of the network by at least 29.3% compared to the benchmark
schemes. Further, with the help of both analytical and numerical
analysis, we show that the proposed auction mechanism also holds
vital economical properties.

Index Terms—vehicular caching, auction theory, incentive
mechanism, hidden information, distributed optimization.

I. INTRODUCTION

Recently, the demand of multimedia-enabled contents is
dramatically increasing among vehicular users due to the emer-
gence of the in-car entertainment system [1]. Such demand
creates a new business opportunity for emerging vehicular
content providers (CPs), including siriusxm, Twine4Car, Roku,
and many more. The CP collaborates with cellular network
providers, due to the ubiquitous coverage of cellular network
infrastructure, for on-demand content delivery wherein the
requested contents are transmitted to the vehicular users via
cellular networks [2]. However, such on-demand content deliv-
ery is not an ultimate solution for CP as the current cellular net-
work is highly congested and results in higher delay in content
delivery [3]–[5]. Thus, CPs aiming to reduce the content access
delay of their vehicular users must find alternate approaches.
The cache-assisted content delivery (CACD) appears one of
the promising approach [1], [6].

In the CACD approach, the CPs proactively store the
common-request contents closer to the vehicular users, e.g.,
at cache-enabled RSUs. Specifically, the CACD approach
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consists of two phases namely placement phase and delivery
phase [7]. During the placement phase, the CPs connect with
RSUs via backhaul links and cache their contents in the
allocated storage space of RSUs. Further, during the delivery
phase, the CPs deliver the cached content to their vehicular
users. The CACD approach reduces the CPs’ redundant content
transmission over the cellular network and also decreases
the average content access delay of the vehicular users. In
particular, the benefit of CPs from content caching mainly
depends on the size of allocated storage and the content
delivery potential of the RSU. Unfortunately, the RSUs are
enabled with limited storage capacity [4] and hence unable to
cache contents of all the CPs. This leads to the competition
among CPs for storage space of the RSUs in CACD approach.
Hence, to realize the full benefits of CACD approach it is
imperative to design a mechanism which allocates storage
space of RSUs among CPs for content caching.

There exists a number of works which have paid attention
to the content caching in CACD approach [1], [3], [4], [8],
[9]. The existing literature focus to optimize the performance
of CCAD approach in terms of content access delay [1], [4],
[8], availability of contents [1], [9], and network throughput
[3]. These works presume that the CPs and RSUs have social
bonding and the storage allocated to CPs from each RSUs
are known. However, CPs and RSUs’ owners are generally
different entities and have self-centric goals. Specifically, RSU
owners show reluctance to offer their storage space to CPs for
content caching without proper incentives. Based on this fact
Mangili et al. [10] investigated the storage allocation problem
in the presence of single CP and various cache-enabled access
points and uses auction theory to lease the storage space of
access point. Recently, Hu et al. [11] proposed an auction
theory-based for storage allocation in the presence of multiple
CPs and RSUs. Although the auction-based countermeasures
motivate RSUs to allocate their storage space to participating
CPs for content caching, the capacity of backhaul links be-
tween CPs and RSUs are overlooked. The backhaul links are
utilized during the placement phase in RSU-based caching.

The above discussions motivate us to design a mecha-
nism for RSU-based caching system which enables interaction
among CPs and RSUs for storage allocation and incentive
transfer while considering their backhaul link capacity. Specifi-
cally, the proposed mechanism computes the amount of storage
allocated to each CP from each RSU and corresponding
incentive transfer. The mechanism also maximizes the social
welfare of the RSU-based caching system while accounting
the fact that the utility function of CPs and the cost function
of RSUs are their private information. Technically, We are
concerned about the following set of questions: i) How much
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storage space each RSU should allocate to the participating
CPs, ii) How much incentive each CP should transfer to RSUs,
for the benefit of allocated storage space?

II. RELATED WORK

RSU-based caching in vehicular networks has received
research attention in recent times to optimize the performance
of networks in terms of throughput [3], content access delay
[1], [4], [8], and availability of contents [1], [9]. Malandrino
et al. [3] discussed the impact of the RSU-based caching on
vehicular network throughput. The authors revealed that the
planned deployments of the caching unit double the throughput
compared to the random placement. Su et al. [1] proposed
an edge caching scheme wherein multiple road side units
(RSUs) dedicate their storage space for content caching. A
moving vehicle downloads the requested content directly from
connected RSU, if the RSU has a replica of that content.
Otherwise, the RSU provides the requested content to the
vehicle by fetching content from nearby RSUs or from the
remote server. The authors obtained the content placement
policy to minimize the content access delay. To further improve
the content access delay Kazmi et al. [4] considered multi-
access edge computing-enabled RSUs which can compress the
content before transmitting to vehicular users. Bitaghsir et al.
[9] discussed the role of the mobile cache unit and obtained its
optimal path based on the social degree of vehicular users to
maximize the availability of content in the local cache. The
aforementioned efforts underline the comprehensive feature
of RSU-based caching in the vehicular network. However,
these works are limited to the scenarios where the deployed
RSUs are owned by the CP itself or by the cooperative third
party entities. Unfortunately, in general, RSUs are owned by
rational and self-centered entities and do not have any incentive
to cache the content of CPs. Hence, we need an incentive
mechanism that motivates RSUs’ owners to participate in
content caching. To deal with the rational entities, a game
theory-based incentive mechanism has been investigated in a
few recent works [10]–[12].

Zhou et al. [12] proposed a vehicular edge computing
framework wherein the vehicles lease their idle storage and
computation resources to the base station (BS). The BS assigns
that leased resources to its users for task execution. Since the
information regarding the resources are vehicles specific and
are private in nature, the authors proposed a contract theory-
based mechanism for BS. Additionally, Mangili et al. [10]
investigated the storage allocation problem in the presence
of a single CP and various cache-enabled access point, and
employed auction theory to lease the storage space of the
access point. Recently, Hu et al. [11] proposed an auction
theory-based scheme for storage allocation in the presence of
multiple CPs and RSUs. Although the existing countermea-
sures motivate the RSUs to allocate their storage space to
participating CPs for content caching, the capacity of backhaul
links between CPs and RSUs are overlooked which are utilized
during the placement phase in RSU-based caching.

In literature, auction-based mechanism has been employed
for various resource allocation problems, such as, bandwidth
allocation [13], data offloading [14], and task offloading [15].

Specifically, Kelly et al. [13] proposed a Walrasian auction-
based bandwidth allocation scheme wherein the users are
modeled as buyers and the single network operator is modeled
as seller. The buyers compute their demand for the bandwidth
resources at every possible price and submit the same to the
auctioneer. In the proposed scheme, the auctioneer computes
the optimal bandwidth allocation among the users while con-
sidering the total available of the bandwidth. However, the pro-
posed scheme is limited to scenarios involving a single seller
and multiple buyers. Further, Iosifidis et al. [14] extended
the aforementioned scheme while considering the case with
multiple sellers and multiple buyers. Specifically, the authors
studied the data offloading issues in the presence of multiple
network operators and access points, which are modeled as
buyers and sellers, respectively. Further, the authors considered
the offloading capacity of the access points (i.e., the sellers) for
computing the optimal data offloading. The RSU-based storage
space allocation problem, formulated in this work, is closely
related to the problems formulated in [13], [14]. However, in
our system model, there is an additional constraint due to the
backhaul link connecting the CPs and RSUs. This plays a
significant role in the optimal storage allocation in RSU-based
caching system. Thus, we propose a double auction-based
mechanism for RSU-based caching system which enables
interaction among the CPs and RSUs for storage allocation
and incentive transfer while considering their backhaul link
capacity.

In particular, our contributions are as follows:
• We conceptualize a storage space trading market scenario

in which multiple CPs compete to lease the storage of
RSUs for caching their popular contents. Based on the
conflicting utility and cost functions of participating enti-
ties, namely CPs and RSUs, we formulate an optimization
problem to maximize the social welfare.

• We proposed an iteration-based double-sided auction
mechanism to coordinate the storage space trading among
the CPs and RSUs. The proposed mechanism does not
need to have any prior knowledge of the utility and
cost functions of the participating CPs and RSUs. The
self-centric behavior of the participating entities is also
considered in the proposed mechanism.

• Further, we design pricing and reimbursement policies
that motivate the CPs and the RSUs to signal their
storage requirement and willingness truthfully. The pro-
posed policies and the alternative optimization are used to
obtain the optimal allocation which maximizes the social
welfare.

• We also analytically prove that the proposed auction
mechanism is individually rational, budget balanced, and
incentive compatible. Finally, through extensive numer-
ical simulation, we demonstrated the efficacy of the
proposed mechanism.

III. SYSTEM MODEL

We consider a RSU-based caching system wherein the set
of CPs utilizes the storage space of RSUs to cache their
content, as illustrated in Fig. 1. Let C = {1, 2, . . . C} and
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Fig. 1: RSU-based caching system with multiple CPs and
RSUs

R = {1, 2, . . . R} denote the set of CPs and RSUs, respec-
tively. The CP c ∈ C utilizes its backhaul link lcr to transmit
content to the RSU r ∈ R during the placement phase. Let
bcr is the capacity of backhaul link lcr which is defined as
the maximum amount of content (in GB) CP c can transmit
to RSU r during the placement phase [4]. Further, each RSU
r ∈ R has a limited storage capacity of Sr.

Each CP serves the content requests of its subscribed ve-
hicular users. Specifically, on the arrival of content request the
CP checks the availability of content in the nearby RSUs and
serves the requested content using vehicular-to-infrastructure
(V2I) communication link. In the case of nonexistence, the CP
serves the requested content via a cellular link, which results
in high content delivery time. To minimize the content delivery
time, each CP motivates the RSUs to store its respective
contents. Since each RSU r ∈ R has a limited storage capacity
of Sr, we model the situation between CPs and RSUs as a
market wherein the CPs act as buyers and RSUs act as sellers
of the available storage capacity. To this end, we discuss the
utility function of the CPs and the cost function of the RSUs.

A. Utility Model of CP

Each CP obtains certain satisfaction (utility) by providing
uninterrupted content delivery to its subscribed users. For that,
each CP requests storage space from RSUs to store its content.
The benefit of CP from caching at particular RSU depends
on the amount of storage space allocated and the set of its
contents stored. We assume that the subscribed users have a
homogeneous content preference and the CP stores contents
according to their popularity in the allocated space. Further,
each CP has a preferences towards each RSU which depends
on the various factors such as no. of subscribed users access the
particular RSU, their subscription plan, and so on. Therefore,
the caching benefit of CP depends on the requested amount of
RSU’s storage space and its preference.

We model the utility of the CP c corresponding to RSU r
using bi-dimensional function Ucr(θcr, xcr) where xcr denotes
the requested amount of storage space and the preference of CP
c ∈ C to RSU r ∈ R and θcr ∈ [0, 1] signifies the preference
of the CP. Here, θcr = 0 indicates that CP c is not interested
to cache its content at RSU r. We assume that the utility
Ucr(θcr, xcr) is a strictly concave, positive, and increasing
function of xcr. The concavity of the function satisfies the law
of diminishing marginal utility of the CP for successive units
of storage space. The utility function captures the fact that the
benefit of CP c not only depends upon total requested amount

of storage space Xc =
∑
r∈R xcr but also depends on the

storage request vector of the CP (xc = (xc1, xc2, . . . xcR)),
i.e., the amount of storage space requested from individual
RSU. Further, we assume that the utility Ucr(θcr, xcr) is an
increasing function of θcr, as it is beneficial for the CP to
cache contents at the preferable RSU. Specifically, we define
the utility of CP over all the RSUs as follows:

Uc(xc,θc) =
∑
r∈R
Ucr(θcr, xcr) (1)

where θc = (θcr)r∈R.
The CPs utilize the connecting backhaul link during the

placement phase to store their contents in the storage space of
the RSUs. Therefore, the total amount of content cached by the
CPs during the placement phase is bounded by the maximum
capacity (in GB) [16]. Let bcr ≥ 0 be the maximum capacity
of the link connecting CP c and RSU r. Therefore, the amount
of storage space requested (xcr) by the CP c is bounded by
bcr, i.e.,

xcr ≤ bcr ∀c ∈ C, r ∈ R (2)

B. Cost Model of RSU
The storage space allocated by the RSUs is utilized by

the CPs to cache the content during the placement phase.
Thus, the RSU consumes a certain amount of energy for
receiving contents from CPs [17], [18]. We model the energy
cost of RSU r using a bi-dimensional function Vrc(yrc, φrc)
for receiving content from the cth CP where yrc signifies the
amount of storage space allocated by RSU r to the cth CP. We
assume that the cost Vrc(φrc, yrc) is strictly convex, positive,
and increasing function of yrc. The cost function captures
the fact that the cost of RSU r not only depends upon the
total allocated amount of storage space Yr =

∑
c∈C yrc but

also depends on the storage allocation vector of the RSU
(yr = (yr1, yr2, . . . yrC)), i.e., the amount of storage space
allocated to individual CPs. Further, the RSU may incur
different costs for offering storage space to different CPs due to
the asymmetric backhaul link capacity between RSU and CPs.
For example, the RSU consumes more energy for receiving a
certain amount of content when the connecting backhaul link
capacity is low. We capture this fact by defining a reluctance
parameter φrc ∈ (0, 1] of RSU r ∈ R for CP c ∈ C where
φrc = 1 signifies that RSU r is not interested to cache the
content of CP c. Since it is beneficial for the RSU to allocate
storage to the CP for whom the reluctance is low, the cost
Vrc(·) is an increasing function of φrc. Specifically, we define
the cost of RSU for all the CPs as follows:

Vr(yr,φr) =
∑
c∈C
Vrc(φrc, yrc) (3)

where φr = (φrc)c∈C .
Further, RSU r is constrained by the total available storage

capacity Sr, the total storage space provisioned by RSU should
satisfy the following constraint:∑

c∈C
yrc ≤ Sr ∀r ∈ R (4)
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The objective of RSU is to minimize its cost (V) by
allocating less amount storage space to CPs whereas the CP
tries to maximize its utility (U) by requesting more amount
of storage space from RSUs. Since the objectives of the CPs
and RSUs are conflicting in nature it is difficult to reach on
mutual agreement, if CPs and RSUs decide independently
their concerned variables, i.e., x and y. Thus, we need a
market maker (central entity) which determines the allocation
of RSUs’ storage among requesting CPs to maximize the social
welfare (SW).

IV. PROBLEM FORMULATION

In the considered RSU-based caching system, the set of
CPs compete for the limited storage space of the RSUs. A
key issue in our storage allocation problem is to define the
notion of efficiency which focuses not only on the utilization
of available storage space of the RSUs, but also on the
optimal allocation of the storage space of the RSUs among
the competing CPs. Further, the utility function of the CPs
and the cost function of the RSUs, corresponding to a storage
allocation, are conflicting in nature. Thus, it is difficult for the
RSUs and CPs to reach a mutually beneficial agreement. Our
proposed scheme incorporates the utility and cost functions of
the participating entities and aims to maximize the societal
welfare by allocating the storage space of the RSUs to those
CPs who value them the most (i.e., Pareto optimally). Thus,
motivated by economics theory [19], [20], we consider social
welfare, denoted by Ψ(x,y), as an important parameter which
is defined as the aggregated utility of the CPs and total cost
of the RSUs. Mathematically,

Ψ(x,y) =
∑
c∈C
Uc(·) +

∑
r∈R
−(Vr(·)) (5)

=
∑
c∈C
Uc(·)−

∑
r∈R
Vr(·)

The MM also consider the individual constraints of the CPs
and the RSUs to maximize the social welfare. Specifically,
MM solves the following optimization problem.

P1 : max
(x≥0,y≥0)

Ψ(x,y) (6)

s.t. (2), (4)
xcr = yrc ∀c ∈ C, r ∈ R (7)

where the first and second constraints are the backhaul and
capacity constraints, respectively. Further, the third constraint
is the market equilibrium condition which ensures that the CP-
RSU pairs agree on the allocated amount of storage space.
Finally, the last constraint is the feasibility constraint. The
given maximization problem P1 is convex in nature since the
objective function is concave and the set of constraints con-
struct a convex and compact feasible region. Thus, there exists
a unique optimal solution (x†,y†). The Lagrange function

corresponding to the P1 is given in Eqn. (8), where, πC×R,
λ1×R, and µC×R are the Lagrange multipliers corresponding
to the backhaul, capacity, and market equilibrium constraints,
respectively.

Next, we use the necessary and sufficient Karush-Kuhn-
Tucker (KKT) conditions [21] to find the set of equations
given in (E11-E17). The Eqns. E11 and E12 are the Station-
arity conditions and Eqns. E13-E15 are the Complementary
Slackness conditions. Finally, the Primal and Dual Feasibility
conditions are given in Eqns. E16-E18. The optimal solution
of P1, i.e., x†,y†,λ†,µ†, and π†, can be obtained by solving
the set of equations (E11 - E17) simultaneously.

E11 :
∂Uc(x†

c)
∂xcr

= µ†cr + π†cr E12 :
∂Vr(y†

r)
∂yrc

= µ†cr − λ†r
E13 : λ†r

( ∑
c∈C

y†rc − Sr
)

= 0 E14 : π†cr(x
†
cr − b†cr) = 0

E15 : µ†cr.(y
†
rc − x†cr) = 0 E16 : x†cr = y†rc

E17 : x†cr, y
†
rc, λ

†
r ≥ 0, π†cr ≥ 0

However, it is not possible for the MM to solve P1 because
the MM does not have complete information about the CPs
and RSUs. In particular, the utility function of CPs and cost
function of RSUs are their private information and not known
to the MM. Additionally, as both the CP and the RSU are
strategic they may reveal their information untruthfully when
asked by the MM resulting market manipulation. Therefore,
for truthful extraction of RSUs’ and CPs’ private information,
there is need for designing an incentive mechanism for MM.
The double auction is a widely used mechanism to handle
the information asymmetry among multiple buyers and sellers
[14], [22]. In our case, the MM acts as an auctioneer and
initiates auction for the available storage space wherein the
CPs act as a buyer and RSUs act as a seller. The CP pays to
the MM for the allocated storage space and the MM transfers
the payment to the RSUs to compensate for their cost.

V. MECHANISM DESIGN

In this section, we discuss the double auction mechanism
which motivates the strategic agents (CPs and RSUs) to trade
storage space and also satisfy the following four economic
properties:
• Efficient: The outcome of the mechanism, i.e., the storage

allocation among CPs should maximize the social welfare
defined in Eqn. (5).

• Incentive compatible: The mechanism should able to elicit
the private information of the participating CPs and RSUs.

• Individually rational: The mechanism should ensure non-
negative payoff for the participating CPs and RSUs.

• Budget balance: The budget of the MM is the difference
between the payment received from the CPs and the re-
imbursement paid to the RSUs. The proposed mechanism
should guarantee that the total reimbursement to the RSUs

L1(x,y,λ,µ,π) = Ψ(·)−
∑
r∈R

λr

(∑
c∈C

yrc − Sr
)
−
∑
c∈C

∑
r∈R

πcr(xcr − bcr)−
∑
c∈C

∑
r∈R

µcr(xcr − yrc) (8)
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should not exceed the aggregated payment received from
the CPs, i.e., the MM should not bear any monetary loss.

However, there is no such double auction mechanism which
follows aforementioned four economic properties simultane-
ously [15], [23]–[25]. Therefore, we present an iteration-based
double-sided auction (IDA) mechanism. The core idea of IDA
mechanism is that the MM solves an alternative optimization
problem (as MM is not aware of utility and cost functions) to
compute RSUs’ storage space allocation to CPs. The allocation
is combined with payment (for the CPs) and reimbursement
(for the RSUs) scheme in order to maximize social welfare
(Eqn. (5)).

A. MM’s Optimization Problem

Let CP c submits bid vector βc = (βc1, βc2, . . . βcR) to
the MM where βcr signifies the amount of storage space CP
c needs from RSU r. Likewise, RSU r ∈ R submits its
bid vector αr = (αr1, αr2, . . . αrC) to the MM where αrc
signifies the amount of storage space RSU r allocates to CP
c. Based on bids of CPs and RSUs, the MM’s goal is to find
the storage allocation that each RSU assigns to CPs by solving
the optimization problem P2.

P2 : max
(x≥0,y≥0)

∑
r∈R

∑
c∈C

(
βcr log xcr −

αrcy
2
rc

2

)
(9)

s.t. (2), (4), (7)

The objective function of problem P2 is derived from [13],
[14], [22]. The first part of the objective function captures
the increasing utility of CPs and its second part models the
increasing cost of RSUs for storage allocation. Intuitively, the
MM aims to maximize the pairwise gain of CPs and RSUs for
storage allocation. Note that the constraints of the problem P2
are similar to that of the problem P1 and construct a convex
and compact feasible region. Further, the objective function is
concave. Thus, problem P2 is a convex optimization problem
and has a unique optimal solution (x‡,y‡). The Lagrangian
function L2(x,y,λ,µ,π) corresponding to P2 is given in
Eqn. (10).

The optimal solution – x‡,y‡,λ‡,µ‡,π‡, can be obtained
by solving the following system of equations simultaneously.
The five KKT conditions of P2 (i.e., E23 −E27) are similar

E21 : x‡cr = αrc

µ‡
cr+π

‡
cr

E22 : y‡r =
µ‡
cr−λ

‡
r

αrc

E23 : λ‡r

( ∑
c∈C

y‡rc − Sr
)

= 0 E24 : π‡cr(x
‡
cr − b‡cr) = 0

E25 : µ‡cr.(y
‡
rc − x‡cr) = 0 E26 : x‡cr = y‡rc

E27 : x‡cr, y
‡
rc, λ

‡
r, π
‡
cr ≥ 0

to that of the P1 (i.e., E13 − E17). However, the first two
KKT conditions are different. By comparing KKT conditions
E11 and E12 with E21 and E22, we find that if CPs and

RSUs bid according to Eqn. (11) and (12), respectively, then
the optimal solution of P2 also maximizes the social welfare
defined in eq. (6).

βcr = x‡cr.
∂Uc(x‡)
∂xcr

(11)

αrc =
1

y‡rc
.
∂Vr(y‡)
∂yrc

(12)

The ultimate goal of the MM is to design payment and
reimbursement rules for CPs and RSUs, respectively, which
motivate them to attain the desired bid defined in Eqns. (11)
and (12). Let Pc(βc) denote the payment paid by the CP c
to the MM, in correspondence to bid βc. Likewise, Qr(αr)
denotes the reimbursement received by the RSU r, from the
MM, in correspondence to bid αr.

CP Optimization Problem: Based on the allocation rule
E21 and the payment rule Pc(βc) CP c solves the following
optimization problem to find the best response, i.e., βc.

CP −OP : max
βc

(
Uc(xc)− Pc(βc)

)
(13)

s.t. βcr ≥ 0, ∀r ∈ R (14)

The CP−OP problem yields the optimal value at the given
condition.

∂Pc(βc)
∂βcr

=
1

µcr
.
∂Uc(xc)
∂xcr

(15)

RSU optimization problem: Based on the allocation and
the reimbursement rule E22 and Qr(αr), respectively, RSU
r solves the following optimization problem to find its best
response, i.e., αr.

RSU −OP : max
αr

(
Qr(αr)− Vr(yr)

)
(16)

s.t. αrc ≥ 0, ∀c ∈ C (17)

The RSU−OP problem yields the optimal value at the given
condition.

∂Qr(αr)
∂αrc

=
λr − µcr
α2
rc

.
∂Vr(yr)
∂yrc

(18)

B. Payment and Reimbursement Function

The MM finds the payment and the reimbursement functions
based on the best response of CPs and RSUs. Comparing the
desirable bid of the CP in Eqn. (11) with the its best response
defined in Eqn. (15) we obtain

∂Pc(βc)
∂βcr

=
1

µcr
.
βcr
xcr

(19)

Further, replacing xcr from allocation rule E21, we rewrite
the above equation

∂Pc(βc)
∂βcr

= 1 (20)

L2(·) =
∑
c∈C

∑
r∈R

(
βcr log xcr −

αrcy
2
rc

2

)
−
∑
r∈R

λr

(∑
c∈C

yrc − Sr
)
−
∑
c∈C

∑
r∈R

πcr(xcr − bcr)−
∑
c∈C

∑
r∈R

µcr(xcr − yrc) (10)
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Hence, the payment function for CP c is as follows:

Pc(βc) =
∑
r∈R

βcr (21)

Similarly, using the allocation rule E22 and the best response
of RSU defined in Eqn. (18), the MM decides the reimburse-
ment rule Qr for RSU r as follows:

Qr(αr) =
∑
c∈C

(µcr − λr)2

αrc
=
∑
c∈C

yrc(µcr − λr) (22)

In summary, the MM allocates the storage space to the CP
according to its need (see eq. E21) and reimburses RSUs pro-
portional to the amount of their storage space. This allocation
and pricing scheme maximizes the social welfare defined in
Eqn. (5).

C. Economic Property Analysis

In this section, we systematically present the analytical proof
of the economic properties.

Proposition 1. The proposed IDA mechanism maximizes the
social welfare function defined in Eqn. 5 and is hence efficient.

Proof: For the efficiency of the proposed IDA mechanism,
it is sufficient to show that the Algorithm 1 converges at a
social welfare point, i.e., satisfies Eqns. E11 - E17.

At convergence, the bidding strategy of CP Eqn. (15) and
the pricing rule Eqn. (21) imply ∂Uc(x‡

c)
∂xcr

= µ‡cr. Similarly, the
RSU’s strategy Eqn. (18) and the reimbursement rule Eqn. (22)
imply ∂Vr(y‡

r)
∂ybh

= µ‡cr−λ‡r. These implications, along with the
preposition 5, show that, at convergence, the KKT conditions
(E11 - E17) are satisfied. Hence, the IDA mechanism is
efficient.

Proposition 2. The proposed IDA mechanism motivates CPs
and RSUs to bid truthfully, and is hence incentive compatible
or strategy proof.

Proof: The optimization problem of CPs and RSUs, in
Eqn. (13) and Eqn. (16), are comprised of the pricing and
the reimbursement rules, which motivates them to update their
bids gradually and attain the social welfare bid, as defined
in Eqn. (11) and Eqn. (12). Additionally, the proposed IDA
mechanism allows CPs and RSUs to solve their individual
optimization problem in each iteration. For the CP and the
RSU submitting the true bid value is the best strategy and
hence, IDA mechanism is incentive compatible.

Proposition 3. The proposed IDA mechanism is individually
rational, i.e., at convergence, CPs and RSUs have non-negative
payoff.

Proof: For the individual rationality of the proposed
system, first we show that each CP (c ∈ C) has non-negative
payoff, which is expressed as,

Uc(x‡c)−
R∑
r=1

βcr ≥ 0 (23)

Substituting Eqn. (11) in Eqn. (23), we get

Uc(x‡c) ≥
R∑
r=1

x‡cr
∂Uc(x‡c)
∂xcr

(24)

As the utility function (Uc(x‡c)) of CP (c ∈ C) is a concave
function, we have,

Uc(0)− Uc(x‡c) ≤ ∇Uc(x‡c)T (0− x‡c) (25)

Since, Uc(0) = 0, the above equation is similar to the
inequality derived in Eqn. (24).

Similarly, for each RSU (r ∈ R), we get the following
condition

Vr(y‡rc) ≥
B∑
b=1

y‡rc
∂Vr(y‡rc)
∂yrc

(26)

As the cost function (Vr(y‡rc)) of RSU (r ∈ R) is a convex
function, we have,

Vr(0)− Vr(y‡rc) ≥ ∇Vr(y‡rc)T (0− y‡rc) (27)

Since, Vr(0) = 0, the above equation is similar to the
inequality derived in Eqn. (26).

Proposition 4. The proposed IDA mechanism is budget bal-
anced (weakly), i.e., the MM does not need to invest money
for proper functioning of the market.

Proof: Let BB(β,α) be the budget of the MM.

BB(β,α) =
∑
c∈C
Pc(βc)−

∑
r∈R
Qr(αr)

=

C∑
c=1

R∑
r=1

βcr −
C∑
c=1

R∑
r=1

(λr − µcr)2

αrc

(28)

Substituting Eqns. E21 and E22 in Eqn. (28), we get,

BB(β,α) =

C∑
c=1

R∑
r=1

x‡crµ
‡
cr +

C∑
c=1

R∑
r=1

y‡rc(λ
‡
r − µ‡cr)

=

C∑
c=1

R∑
r=1

µ‡cr(x
‡
cr − y‡rc) +

C∑
c=1

R∑
r=1

y‡rcλ
‡
r

≥ 0

(29)

The last inequality is true because at the equilibrium, x‡cr = y‡rc
diminishes the first term. Further, λ‡r ≥ 0 due to the comple-
mentary slackness condition and y‡rc ≥ 0.

In the next section, we discuss the algorithm which enables
the implementation of proposed IDA mechanism.

VI. IMPLEMENTATION OF IDA MECHANISM

The MM is not aware of the private information (utility and
cost functions) of the participating CPs and RSUs. Hence, to
reach the market equilibrium condition, i.e., (x‡ = y‡), for
each CP-RSU pair, we proposed a two-phase iterative algo-
rithm. In the first phase, the CPs and RSUs submit their bids
to the MM according to their best responses which is obtained
by solving their individual optimization problems (defined in
Eqns.(15) and (18)). Specifically, the submitted bids signal the
preference and reluctance of the CPs and RSUs. In the second
phase, the MM computes the storage allocation according to
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Eqns. E21 and E22, and the payment and reimbursement of the
CPs and RSUs based on the submitted bids, without knowing
their utility and cost functions. The algorithm converges when
there is an insignificant change in the bids of the CPs and
RSUs.

Algorithm 1: Two Phase Iterative Algorithm
Inputs : δ, ε
Outputs: x‡, y‡, P , Q
Initialize and announce µ0

cr , λ0
r ∀c ∈ C, ∀r ∈ R to

corresponding CP and RSU
converge = 0, t = 0
while converge = 0 do

t← t+ 1
Phase-I

1) Each CP computes the optimal bid βt
c

using eq. (15).
2) Each RSU computes the optimal bid αt

r

using eq. (18).
Phase-II

1) The MM computes the cache allocation and
acquisition (xt and yt), using eq. E21 and E22.

2) The MM computes the payment and
reimbursement (Pt, Qt), using eq. (21) and (22).

3) The MM update the dual variables
(λt+1, µt+1,πt+1) using eq. (31) - (33).

4) if change in CPs and RSUs bids are ≤ ε then
converge = 1

A. Algorithm

The algorithm functions in two phases. In the first phase,
each CP and RSU compute its optimal bid using Eqn. (15)
and (18), respectively. In the second phase, the MM employs
a primal-dual Lagrange decomposition approach to solve the
problem P2 due to its decomposable structure. The MM
computes the xt and yt followed by the Ptc and Qtr in each
iteration t. The MM updates the dual variables using the sub-
gradient decent methods, as follows:

λt+1
r =

(
λtr − δ

∂L2(.)

∂λr

)+

∀r ∈ R (30)

µt+1
cr =

(
µtcr − δ

∂L2(.)

∂µcr

)
∀c ∈ C,∀r ∈ R (31)

πt+1
cr =

(
πtcr − δ

∂L2(.)

∂πcr

)
∀c ∈ C,∀r ∈ R (32)

where δ > 0 is the step size (.)+, which ensures that
the Lagrange multipliers corresponding to the constraint given
in Eqn. (4) attains non-negative values, i.e., λt+1

r ≥ 0.
The iteration continues till the difference between the bids

submitted by the CP and the RSU in two consecutive iterations
are sufficiently small.

B. Tolerance value

In Algorithm 1, the tolerance value ε signifies the differ-
ence between the optimal social welfare (SW) value and the
SW value at the convergence, obtained through the proposed
iterative double auction mechanism. In particular, ε denotes
the acceptable error between the optimal and converged SW
values. Thus, the larger the value of ε, the smaller the number
of iterations required for convergence of the algorithm. Next,
we present the convergence proof of the proposed algorithm.

Proposition 5. The proposed two-phase iterative algorithm
converges to the solution point of the problem P2, starting
from any point which fulfills the complementary slackness
conditions E23 −E27.

Proof: To make the analysis tractable we assume that the
step-size (δ) is very small, i.e., the time required to update the
dual variables is very small. Thus, the analysis can be done in
the continuous-time domain. Therefore, from Eqns. (31), (32)
and (33), the rate of update of Lagrange multiplier is

dλr
dδ

=

(∑
c∈C

yrc − Sr
)+

λr

,∀r ∈ R (33)

dµcr
dδ

= (yrc − xcr)µcr
∀c ∈ C,∀r ∈ R (34)

dπcr
dδ

= (xcr − bcr)+πcr
∀c ∈ C,∀r ∈ R (35)

where, the notation (.)+ denotes the projection on nonnegative
orthant. Further, for the proof on convergence we define the
Lyapunov function as

L(λ,µ,π) =

R∑
r=1

(λr − λ‡r)2

2
+

C∑
c=1

R∑
r=1

(µcr − µ‡cr)2

2

+

C∑
c=1

R∑
r=1

(πcr − π‡cr)2

2
(36)

Our goal is to prove that dL2(λ,µ,π)
dδ ≤ 0. Taking derivatives

on both sides of Eqn. (37) with respect to t and substituting
Eqns. (34), (35) and (36), we obtain dL(·)

dδ as given in Eq. (38)
The reason behind the inequality is, when λr > 0, we

have (.)+λr
= (.) and (λr − λ‡r)(.)

+
λr

= (λr − λ‡r)(.). On
the other hand, when λr = 0, we have (.)+λr

≥ (.) and
(0 − λ‡r)(.)+λr

≥ (0 − λ‡r)(.). Hence, for any value of λr, we
have (λr−λ‡r)(.)+λr

≤ (λr−λ‡r)(.). After evaluating
∑C
c=1 y

‡
rc,

(x‡cr−y‡rc), and (x‡cr−bcr) in the RHS of the above inequality

dL(·)
dδ

=

R∑
r=1

((λr − λ‡r))
(∑
c∈C

yrc − Sr
)+

λr

+

C∑
c=1

R∑
r=1

(µcr − µ‡cr)(yrc − xcr)µcr +

C∑
c=1

R∑
r=1

(πcr − π‡cr)(xcr − bcr)+πcr

≤
R∑
r=1

((λr − λ‡r))
(∑
c∈C

yrc − Sr
)

+

C∑
c=1

R∑
r=1

(µcr − µ‡cr)(yrc − xcr) +

C∑
c=1

R∑
r=1

(πcr − π‡cr)(xcr − bcr)πcr

(37)
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and using complementary slackness conditions along with
equations E21 and E22, we get

dL(·)
dδ

=

C∑
c=1

R∑
r=1

(xcr − x‡cr)
(
∂Uc(xc)
∂xcr

− ∂Uc(x‡c)
∂xcr

)

+

C∑
c=1

R∑
r=1

(yrc − y‡rc)
(
∂Vr(y‡rc)
∂ψh

− ∂Vr(yr)
∂yrc

)
(38)

Since the utility function (Uc) of CP (c ∈ C) is strictly
concave and the utility function (Vr) of RSU (r ∈ R) is strictly
convex in nature, we have,(

∂Uc(xc)
∂xcr

− ∂Uc(x‡c)
∂xcr

)
(xcr − x‡cr) ≤ 0 (39)(

∂Vr(y‡rc)
∂ψh

− ∂Vr(yr)
∂yrc

)
(yrc − y‡rc) ≤ 0 (40)

Therefore, we conclude that dL(·)dδ ≤ 0, and the given algorithm
converges.

VII. SIMULATION RESULTS

In this section, we provide simulation results to show the
effectiveness and efficacy of the proposed IDA mechanism.
We also present the effect of various system parameters on
the social welfare of the RSU-based caching system. All the
numerical simulations are performed using MATLAB. We
consider a small RSU-based caching system with R = 6
RSUs as sellers and C = 3 CPs as buyers. Each RSU is
enabled with finite storage capacity Sr = 16 GB. Each CP is
connected to RSU with a backhaul link of capacity bcr = 10
GB. The preference of CPs towards all RSUs (i.e. θcr) is
shown in Table I. Similarly, Table II presents the service
cost parameter of RSUs for each CPs (i.e. φrc). We choose
Uc = 10.

∑
r∈R(θcrxcr)

0.3 and Vr = 0.1.
∑
r∈R e

(φrcyrc) to
model the utility and cost of cth CP and rth RSU, respectively.

TABLE I: Preference parameters of CPs

RSU1 RSU2 RSU3 RSU4 RSU5 RSU6
CP1 0.95 0.71 0.72 0.68 0.64 0.58
CP2 0.95 0.75 0.61 0.73 0.80 0.61
CP3 0.68 0.64 0.51 0.90 0.87 0.73

TABLE II: Serving cost parameter of RSUs

RSU1 RSU2 RSU3 RSU4 RSU5 RSU6
CP1 0.88 0.67 0.58 0.57 0.54 0.77
CP2 0.53 0.92 0.62 0.90 0.60 0.93
CP3 0.56 0.99 0.50 0.82 0.65 0.80

Convergence analysis: In Fig. 2(a), we depict the evolution
of social welfare obtained by the proposed iterative algorithm
in each iteration and its convergence to maximum achievable
social welfare value (MSW). In this case, MSW is obtained
(black solid line in Fig. 2(a)) by solving the problem P1
centrally when assuming all the required information (such as
utility, cost function, storage capacity, and maximum demand)
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Fig. 2: Convergence analysis

are known to the MM. Further, the effect of different step-size
on the convergence of the proposed algorithm to the MSW is
shown in Fig. 2(a). We observe that with an increase in step-
size the rate of convergence of proposed algorithm increases.
Specifically, when step-size is 0.04 the proposed algorithm
converges after 59 iterations, whereas for step-size 0.12 the
algorithm requires only 21 iterations. This verifies the con-
vergence of the proposed algorithm as proved in proposition
5.

The evolution of gap between storage allocation (y) and
storage demand (x) in each iteration for CP1 is shown in
Fig. 2(b). In particular, we show the difference between the
storage allocation and demand of CP1 from different RSUs.
We observe that the difference between the allocation and
demand eventually converges to zero. This signifies that all
the RSUs and CP1 agree on the amount of storage allocation.
Although not shown, the gap between storage allocation and
demand for other CP-RSU pairs also converges to zero. Fig.
2(a) and Fig. 2(b) we conclude that the proposed algorithm
elicits the hidden utility and cost function of both CPs and
RSUs and obtains the optimal storage allocation which attains
MSW. This verifies that the proposed iterative double auction-
based mechanism is incentive compatible and efficient as in
Section V-C.
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Fig. 3: Effect of tolerance value

Effect of the tolerance value on the social welfare: Figs.
3(a) and 3(b) show the variation of social welfare and the
number of iterations with the change in the tolerance value ε,
respectively, for different values of step size δ. Specifically,
we varied the tolerance value between 0.1-0.7 and considered
three different step sizes, viz., δ = 0.04, 0.08, and 0.12. We
observed that, for given step size, when the tolerance value
increases, the SW value at convergence deviates form the
optimal SW value. This is due to the fact that, with the increase
in the tolerance value, the acceptable error between the optimal
SW and SW value at convergence increases. Further, with the
increase in step size, we observed that the deviation of the SW
value at convergence with respect to the optimal SW value
increases. This is because the increase in step size allows the
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algorithm to converge, faster which is further demonstrated in
Fig. 3(b).

Comparison of social welfare: To show the effectiveness
of the proposed IDA mechanism, we consider two different
schemes as benchmarks. 1) Proportional allocation (PA): In
the PA scheme, the preference of the CPs are known to
the MM, and hence, the storage space of RSUs is allocated
in proportion to the CPs’ preference, i.e., xcr = Cr ∗
( θcr∑

c∈C θcr
), ∀c ∈ C, r ∈ R. 2) Equal allocation (EA): In

the EA scheme, the MM is unaware of the preference and the
serving cost parameters of the CPs and RSUs, respectively.
Thus, the MM allocates the storage space of RSUs equally
among all the requesting CPs i.e. xcr = Cr

|C| , ∀c ∈ C, r ∈ R.
For performance comparison, the default values of the system
parameters were considered to be the same for both the
benchmark schemes and the proposed IDA mechanism.

Fig. 4 depicts the social welfare value attained by various
schemes. We observe that the IDA mechanism improves the
social welfare by 29.3% and 36.13% compare to PA and EA
scheme, respectively. This is because unlike other schemes,
IDA mechanism consider both the preference of CP and
serving cost of RSU for computing the final allocation.

 2

 3

 4

 5

 6

 7

1 2 3A
llo

ca
te

d 
st

or
ag

e 
sp

ac
e

CP id

 RSU1
 RSU2

 RSU3
 RSU4

 RSU5
 RSU6

(a) Allocated storage space

 3

 4

 5

1 2 3

Pa
ym

en
t t

ra
ns

fe
r

CP id

 RSU1
 RSU2

 RSU3
 RSU4

 RSU5
 RSU6

(b) Payment transfer

Fig. 5: Storage allocation and payment transfer at convergence

Storage allocation and payment transfer at convergence:
Fig. 5(a) depicts the allocation of RSUs’ storage space for
different CPs. We observe that CP1 receives the maximum
amount of storage space from RSU5 and obtains minimum
storage space from RSU1. This is because the cost of serving
CP1 is least for RSU5 and highest for RSU1 as shown in
Table II. In fact, the allocation of storage space to a CP at
convergence is inversely proportional to the serving cost of
RSU. Further, we observe in Fig. 5(a) that RSU1 allocates
maximum storage space to CP2 than other CPs. This is because
the serving cost of RSU1 for CP2 is lower than other CPs in
Table II. The same result can be verified from the allocation
rule given in Eqn. E22.

Fig. 5(b) depicts the payment transfer done by the CPs for

storage allocation. We observe that the payment of CP depends
on both the amount of storage allocation and the serving cost
of RSU. For example, CP3 pays more to RSU5 compared
to RSU2. This is quite straightforward because CP3 receives
larger amount of storage space from RSU5 than RSU2 (as
shown in Fig. 5(a)). Interestingly, CP3 pays less to RSU1
compared to RSU5 although CP3 receives more storage space
from RSU1 than RSU5. This is because of the serving cost of
RSU1 is more compared to RSU5 shown in Table II.

(a) Effect of RSU serving cost and
CP preference parameters

(b) Effect of backhaul link capacity
and RSU storage capacity

Fig. 6: Effect of system parameters on social welfare

Effect of system parameters on social welfare: In Fig.
6(a), we demonstrate the effect of CP preference and the
RSU serving cost parameter on the social welfare of the
system. In this case, we consider homogeneous preference and
serving cost parameter, i.e. every CP has an equal preference
towards each RSU and vice versa. We observe that social
welfare decreases with increasing serving cost while keeping
preference of CP constant. Further, with an increase in the
preference of CP, social welfare value increases when the
serving cost parameter is kept constant. We observe that the
value of social welfare attains maximum value for higher value
of CPs’ preference and lower value of RSUs’ serving cost
parameter.

In Fig. 6(b), we demonstrate the effect of backhaul link
capacity (bcr) and RSU’s storage capacity (Sr) on the social
welfare of the system. We observe that for a fixed value of
bcr, the social welfare value initially increases with an increase
in the RSU’s storage capacity and converges eventually. This
is because of the fact that the utility of CP which depends
on RSU’s allocated storage space, is upper bounded by the
backhaul link capacity between the RSU and CP as shown
in Eqn. (2). Similarly, for a given value of Sr, the backhaul
capacity has a similar effect on the social welfare due to the
constrained mentioned in (4). Hence, in order to improve the
social welfare, we need to increase the backhaul capacity and
the storage capacity simultaneously. Further, we observe that
for a given backhaul capacity there exists an optimal RSU
storage capacity which maximizes the social welfare of the
system.

VIII. CONCLUSION

In this paper, we studied the storage allocation problem
among multiple CPs in RSU-based caching networks while
considering their backhaul link capacity. The problem is an-
alyzed from the social welfare perspective and modeled as
a market with multiple buyers and sellers. The utility and
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the cost functions of CPs and RSUs are considered as their
private information. Hence, to compute the optimal storage
allocation for the CP and corresponding reimbursement for
the RSU an alternative optimization is formulated. Further,
the iteration-based double-sided auction is employed which
iteratively computes the optimal allocation and reimbursement.
Furthermore, the convergence of the iterative mechanism along
with its vital economical properties – incentive compatibility,
individual rationality, efficiency, and budget balancing are
analyzed both analytically and numerically.

In the future, we want to extend this work for the scenario
where vehicular users are characterized heterogeneous content
access probability. Also, we plan to implement the proposed
mechanism in real testbed.
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