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Abstract—Cache-enabled device-to-device (C-D2D) networks
allow the constituent user devices to share their cached content
with other user devices through D2D communication. As a result,
the communication delay of participating users is minimized
in C-D2D networks. Clearly, the success of C-D2D networks
relies on the willingness of the participating users to share
their cached content. In this paper, we analyze the interaction
among participating cache-enabled D2D users and determine
their caching, sharing, and reward decisions to minimize the
users’ total cost. In view of the fact that the participating users
have heterogeneous content interest profile (CIP) and storage
capacity, and are self-centric, there is a need to design a fair
incentive mechanism to encourage cooperation among users. To
this end, we model the interaction among the D2D users as
a multi-person bargaining game and design a novel incentive
mechanism using the Nash bargaining solution (NBS) approach.
The proposed incentive mechanism is capable of minimizing
users’ total costs while ensuring fair reward transfer among
participating users. Further, we proposed a distributed algorithm
which allows the execution of the proposed mechanism without
any involvement of base station (BS), which is much needed for
autonomous D2D networks. The simulation results demonstrate
that the proposed mechanism improves fairness by at least 74%
and reduces the users’ total cost by at least 13.83% compared to
the benchmark schemes.

Index Terms—Cooperative caching, autonomous D2D net-
works, content sharing, Nash bargaining, distributed optimiza-
tion.

I. INTRODUCTION

The unprecedented growth of mobile users and their demand
for multimedia-enabled contents (e.g. videos) have been con-
sidered as a premier drivers of the data traffic over cellular
backhaul [1], [2]. To reduce the cellular backhaul traffic and
improve the quality of service (QoS) of the users, network
provider should support advanced content delivery techniques.
Recent studies on caching suggest that the popular contents can
be cached in the cache-enabled user devices (e.g. smartphone
and tablets) which form a content-sharing network, namely
Cache-enabled device-to-device (C-D2D) network [3]–[5]. In
C-D2D network, the users share the cached contents with
other users (content requesters) in the vicinity using D2D
communication, and hence, minimize their communication
delay [6]–[8].

C-D2D networks operate in two phases – (a) placement
phase, and (b) delivery phase [6]. Typically, during the place-
ment phase, the cellular data traffic is low, and the device
caches the content according to its content interest profile
(CIP) and storage capacity [9]. On the other hand, in the
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delivery phase, the user requests the contents, which are served
from its local cache, from neighbors’ cache, or by directly
downloading from the base station (BS). To further improve
the performance of C-D2D networks, recent works suggest
that the content can be encoded using coding schemes [10]
before caching [11], [12]. Coding schemes make sharing more
flexible by allowing users to cache a fraction of a large
size content in their limited storage during the placement
phase. Further, coding schemes empower users to decode
the requested content by receiving the encoded fractions of
content from multiple sources [6], [10], [11]. Clearly, the
performance of C-D2D networks depends on the cooperative
content caching and sharing during the placement and delivery
phases. Consequently, in this work, we focus on cooperative
coded content caching and sharing in C-D2D networks.

A. Motivation

Existing literature addressed the issue of content caching
and sharing among D2D users to improve the QoS parameters
of C-D2D networks, such as, content access delay [13], [14],
content availability [15], [16], and energy efficiency [17]–[19].
These studies are based on the assumption that the users have
social bonding, and hence, are willing to share contents with
each other [20]. However, due to the transmission energy cost,
a rational or self-centric user may be unwilling to share its
cached contents with other users. Consequently, few studies
proposed incentive-based schemes, wherein D2D users are
incentivized to share the cached contents with their neigh-
boring users [12], [21]. These incentive-based schemes need
a central controller (e.g. BS) for coordination. Additionally,
these schemes overlook the individual cost incurred by D2D
users for content caching and sharing, and hence, are unable
to motivate the heterogeneous D2D users for cooperation.
Indeed, D2D users are heterogeneous with reference to their
CIP, storage capacity, cellular data plans, and delay and
energy sensitivity. Therefore, it is essential to design a content
caching and sharing mechanism which encourages cooperation
and coordination among heterogeneous D2D users in C-D2D
networks.

The above discussion motivates us to conceptualize the
cooperative D2D caching mechanism using an economic
framework and design an incentive mechanism which encour-
ages the heterogeneous D2D users to cooperate. Specifically,
the proposed mechanism computes the caching and sharing
decisions of the participating users using the Nash bargaining
solution and ensures fair incentive transfer among them. Fur-
ther, for autonomous D2D networks, we propose a distributed
algorithm, using primal-dual decomposition [22], [23], which
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enables the participating users to distributively achieve the
Nash bargaining solution (NBS). Technically, given the CIPs of
users, we are concerned about the following set of questions:
i) What fraction of each content needs to be cached at the
end of the D2D users during the placement phase, ii) What
fraction of the cached content should be shared by the D2D
users with their neighboring users during the delivery phase,
iii) How much incentive should the D2D users receive for their
content sharing?

B. Contributions

To analyze the cooperative D2D caching and sharing in C-
D2D networks, we construct a detailed framework wherein
we first model the cost function of D2D users based on their
cellular data plan, energy consumption and experienced delay.
Further, to encourage cooperation among heterogeneous D2D
users, an incentive scheme is designed, which enables users to
pay and/or receive fair incentive for content sharing.

Specifically, our contributions are as follows:
• We conceptualize a static C-D2D network consisting of

heterogeneous D2D devices which are characterized by
their diverse CIP, storage capacity, cellular data plan, and
energy and delay sensitivity. We also investigate the effect
of these factors on the cooperation between the devices.

• We model the D2D cooperative caching and sharing
decision as a bargaining situation between multiple cost-
minimizing entities. Further, based on the NBS approach,
we propose a new incentive mechanism which encourages
the D2D users to participate in cooperative caching and
sharing.

• Further, we present a distributed algorithm which enables
the execution of the proposed incentive mechanism in a
decentralized fashion, and hence, is also suitable for the
autonomous D2D networks.

II. RELATED WORK

In literature, there exist various schemes for enabling co-
operative D2D caching and sharing in C-D2D networks. We
group the existing studies broadly into two categories – non
incentive-based [13], [15]–[17], [19], [24], [25] and incentive-
based [12], [21], [26]–[29].

Some of the non incentive-based schemes proposed in the
existing literature are discussed here. Amer et al. [13] studied
cache placement problem in C-D2D networks to minimize the
average content access delay. To this end, the authors first
divided the total users into multiple clusters and proposed
a greedy based algorithm to obtain a cache placement pol-
icy which minimizes the access delay within the cluster(s).
Likewise, Guo et al. [15] proposed a caching scheme which
maximizes the content hit probability within the cluster(s).
The authors considered a central controller, which enables
coordination among the users while accounting for the het-
erogeneous content interests of the users. Further, Malak et al.
[16] proposed a D2D content caching strategy by exploiting
the spatial correlation of D2D users to maximize the content
hit-probability. Additionally, Lee and Molisch [17] obtained
the optimal caching policy to minimize the overall energy

consumption of the C-D2D networks for a given storage capac-
ity of participating users. The authors also demonstrated the
benefits of coordinated caching over independent caching. The
aforementioned schemes improve the network QoS parameters
and require a central controller for the coordination among
D2D users.

On the other hand, there exist few incentive-based schemes
for content caching. Chen et al. [12] employed a game
theoretic approach, namely single-leader-multi-follower Stack-
elberg game, for content caching and sharing between D2D
users. In the proposed scheme, the base station (leader) aims
to minimize its service cost, whereas the D2D users (followers)
minimize their average delay by caching the contents of
self-interest. Fan et al. [26] formulated a preference-aware
cooperative game in which the overall game is split into
two parts, namely caching decision and space allocation sub-
games. Further, the authors proposed an incentive mechanism
which motivates sharing among D2D users. In the proposed
scheme, the central entity computes the optimal caching de-
cision based on the users’ content preferences and demands,
whereas the users independently decide the space allocation.
Likewise, Doan et al. [27] proposed a joint caching and power
allocation scheme for cache-assisted D2D networks, which
minimizes the backhaul load during the delivery phase. In the
proposed scheme, the central controller is agnostic of the user’s
D2D connection time. Likewise, Wang et al. [28] modeled
the interactions among the mobile operator and D2D users
as a Stackelberg game. In the proposed scheme, the mobile
operator acts as a leader and decides the amount of incentive
paid to the individual users, based on their inter-contact time,
to minimize its serving cost. The author also proposed a local
search algorithm to solve the formulated optimization problem.
Further, Yang et al. [29] proposed an incentive mechanism
for content dissemination in D2D networks while considering
D2D link failures. Specifically, a central controller obtains the
amount of rewards to be paid to content owners for content
dissemination using Markov Decision Process. Similarly, Shi
et al. [30] employed a Stackelberg game to tackle the conflicts
among the mobile operator and D2D transmitters for caching.
In particular, the mobile operator decides the incentive for
caching and the transmitting users decide their caching pol-
icy. Further, the incentive mechanisms are explored by the
researchers for task-offloading [21] and content dissemination
[8] in vehicular networks, while considering the presence of a
centralized entity.

Synthesis: The existing studies discussed above are mainly
based on the assumption that the D2D users have social ties
and hence, they cooperate with one another. However, in
practice, the D2D users hesitate to share their cached content
because of transmission cost. Additionally, the heterogeneous
characteristics of D2D users are overlooked in existing litera-
ture, which result in inefficient and unfair caching and sharing
decisions for the users. Finally, these works are limited to
BS-assisted D2D caching due to the intervention of central
entity. Therefore, unlike the existing works, we propose a novel
distributed coordinating scheme for C-D2D network, which
entitles the participating D2D users to compute their optimal
caching and sharing decisions.
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Figure 1: Cache-enabled D2D networks

III. SYSTEM MODEL

A. System Overview

The C-D2D network in our study comprises a single BS
and multiple cache-enabled D2D users. We denote the set of
users by U = {1, 2, . . . U}. User u ∈ U is characterized by its
storage capacity Su and CIP Iu ⊆ C. For example, in Fig. 1,
the user 1 is interested in content number 1, 3, and 4, whereas,
user 2 is interested in content number 1, 4, and 5. Thus, I1 =
{1, 3, 4} and I2 = {1, 4, 5}. The users are in the coverage
area of the BS and hence, cache the contents through cellular
link. Additionally, the users can share the cached contents with
other users in the vicinity through D2D link. The set C =
{1, 2, . . . C} signifies the contents library, which includes the
contents of N different providers. The considered contents are
of different sizes. We indicate the size of content c ∈ C by
lc. Further, we assume that the contents are encoded using
systematic Raptor code [10], [12] of reception efficiency unity,
and hence, a typical content request can be served by collating
exact number of bytes (i.e., size of the content) from multiple
sources in no specific order.

B. Cache and Service Model

The users cache the contents during the placement phase
and share with other interested users during the delivery phase.
Let user u cache 0 ≤ xcu ≤ 1 fraction of content c. We define
user u’s caching decision as xu = (xcu)c∈C . Since user u has
limited storage space, the following condition must hold:∑

c∈C
xcul

c ≤ Su (1)

During the delivery phase, a typical user can act as a content
requester and/or a content provider. Consider a case during the
delivery phase where a user u requests for a content c. User
u first looks for the requested content in its local cache. If the
cached fraction is not enough to decode the requested content,
the user receives the remaining fraction from its neighboring
users through D2D communication. Motivated by [7], [31], we
assume that two users are neighbor of each other and can com-
municate with each other through D2D links, if their physical

distance is less than collaborative distance Rmax. We denote
the set of neighbors of user u by Nu = {v : d(u, v) ≤ Rmax},
where d(u, v) is the euclidean distance between users u and
v. Let neighbor v ∈ Nu share ycv,u portion of the content
with user u. Since the portion of file shared is limited by the
fraction of content cached by the neighboring nodes during
the placement phase, the following condition must hold:

0 ≤ ycv,u ≤ xcv, v ∈ Nu, c ∈ C (2)

In case, the total content fraction received through D2D
communication along with the cached fraction is insufficient,
the user downloads the residual amount directly from the BS.
We denote the downloading decision of user u by zu =
(zcu)c∈C , where zcu signifies the fraction of content c the user
u downloads from BS during the delivery phase. Since the
reception efficiency of coding is assumed to be unity, the
following condition must hold to decode the content c ∈ Iu:

xcu +
∑
v∈Nu

yv,u + zcu = 1 (3)

C. Cost Model of D2D User

The goal of every D2D user u ∈ U is to minimize its total
cost consisting of the experienced delay, energy consumption,
and monetary factors for a given CIP Iu. In this section, we
present the formulations of these costs.

1) Delay experience cost: The D2D user u incurs a certain
delay for receiving the content c ∈ Ic. We denote the delay
cost by Du(·), which depends on the delay experienced by the
user u over all the contents in its CIP. The D2D and device-
BS links are wireless supported and characterized by different
communication rates. In fact, the D2D links are established
among the devices which are in close vicinity, and hence, are
considered to be faster than the device-BS link [12]. Motivated
by [32], we define a parameter, namely, delay experience per
byte, to signify the heterogeneous characteristics of the links.
Let du,0, du,v , and du,b denote the delay experience per byte
of content from its local cache, from vth neighbor, and from
BS directly, respectively. Thus, the total delay experience by
user u for content c is as follows:

∆c
u = du,0x

c
ul
c +

∑
v∈Nu

du,vy
c
v,ul

c + du,bz
c
ul
c (4)

By definition du,0 → 0, i.e. the user u accesses the content
from its local cache with almost no delay. Hence, for delay-
sensitive users, it is necessary to cache the entire contents in
CIP during the placement phase. Further, motivated by [12],
[32], we assume that the delay cost function Du(·) is positive,
increasing, and strictly convex function of the total experienced
delay ∆u =

∑
c∈Iu ∆c

u.
2) Energy consumption cost: We divide the uth user’s

energy consumption, namely εcu = εc,cellu + εc,D2D
u , into two

categories based on the interface used to receive and transmit
content c. Further, motivated by [33], [34], in this work, we
consider the energy consumption per byte (Joules/byte) for
each link which signifies the transmission and reception energy
consumption of the users. Since the user employs the cellular
interface to receive contents during the placement and delivery

ayan
For Personal Use Only



4

phases, the cellular energy consumption εc,cellu is expressed as
follows:

εc,cellu = eu,b(x
c
u + zcu)lc (5)

where, ecu,b is the energy consumption per byte of user u over
cellular interface. Unlike cellular interface, the user employs
D2D interface to receive and transmit contents to one another.
Therefore, the total D2D energy consumption of user u in
receiving and transmitting content c is given by

εc,D2D
u =

∑
v∈Nu

(etu,vy
c
u,v + eru,vy

c
v,u)lc (6)

where etu,v and eru,v are the energy expenditures of user u to
transmit and receive unit byte from neighbor v ∈ Nu, respec-
tively. These parameters capture the quality of the established
D2D link between users u and v. Finally, we model the energy
cost of user u, denoted by Eu(·), as a linear function of the
user’s total energy consumption εu =

∑
c∈C ε

c
u.

3) Monetary cost: The user u pays a monetary cost to the
cellular operator to cache and download contents. Typically,
users are subscribed to different data plans for the placement
and delivery phases [35]. Hence, the total cellular payment
paid by user u depends on the amount of content cached during
the placement phase and downloaded during the delivery
phase. Let user u pay poffu and ponu units of charge for unit
byte of content during the placement and delivery phases,
respectively. Then, the total cellular payment of user u is
expressed as

Pu =
∑
c∈C

(poffu xcu + ponu z
c
u)lc (7)

Finally, we define the individual cost of user u, namely
Ju(xu, zu,yu,y−u), which takes into consideration the afore-
mentioned costs as follows:

Ju(·) = Du(xu,y−u, zu)+Eu(xu,yu,y−u, zu)+Pu(xu, zu)
(8)

where yu = (ycu,v)v∈Nu,c∈C and y−u = (ycv,u)v∈Nu,c∈C
denote the fraction of contents user u transmits to and receives
from its neighbors Nu, respectively. A typical user u aims
to minimize its individual cost Ju(·) for its given CIP Iu.
Since Ju(·) monotonically increases with the content’s size
lc, a cost-minimizing user prefers not to cache (and hence
share) content of no interest, i.e., c /∈ Iu. Additionally, a user
even hesitates to share its cached contents with neighbor users,
since Ju(·) is an increasing function of yu. In conclusion,
rational users choose to operate independently and cache and
download contents according to their CIP, since cooperative
behavior of user results in extra cost. In particular, each user
u ∈ U obtains its independent cost by solving the following
optimization problem:

IPu : min
xu,zu,yu,y−u

Ju(.) (9)

s.t. (1), (2), (3)
ycu,v = 0, ∀u, v ∈ U (10)

The objective function of the given optimization is strictly

convex and the set of constraints (Eqns. (1)-(3)) construct a
convex and compact feasible region. Thus, the given minimiza-
tion problem IPu is convex in nature and guarantees unique
optimal cost, denoted by cindu , which is the independent cost
incurred by user u for the given CIP.

Indeed, the decision of the uth user to cooperate depends
on cindu and so, u will only collaborate if the total cost
in the case of cooperation is no more than that of cindu .
Therefore, to encourage cooperation among users, we need an
incentive mechanism which affects the users’ independent cost
functions. Such an incentive mechanism should compensate
the extra cost of cooperation incurred by the users.

It is noteworthy to mention that, the users’ preferences are
not explicitly reflected in Eq. (8). However, in the considered
network, we assume that each user u is rational and minimizes
its individual cost for its given content interest profile (CIP)
Iu. Since Ju(·) monotonically increases with the content
size lc, a cost-minimizing user prefers not to cache (and
hence, share) contents of no interest, i.e., c /∈ Iu, without
proper incentive. Thus, in the problem formulation, the users’
preferences considered implicitly.

IV. THE COOPERATIVE CONTENT SHARING

Our goal is to design a cooperative content sharing scheme
which enables D2D users to share their cached contents among
one another. In this cooperative content sharing scheme, we
often encounter a situation among users where double coinci-
dence of wants does not occur. Specifically, a user receiving a
requested content from a nearby user might not be able to
compensate the user’s transmitting cost directly by sharing
some other content. Hence, a user collaborates only with a
limited number of users who can repay its favor, which leads
to the degradation in the performance of cooperative content
sharing.

Motivated by opportunistic and ad-hoc wireless networks,
we employ a virtual currency system (VCS) [36] to handle the
aforementioned issue. In VCS, a user pays the virtual currency
for the fraction of content it receives from neighboring users.
The user utilizes the currency in order to avail services
from other users. The VCS also encourages user u, who is
not currently interested in any content (Iu = φ), to help
other users in need by contributing its valuable resources
and thereby, earning the corresponding reward. In particular,
virtual currency plays the role of transferable utility and allows
users to attain mutually profitable content caching and sharing
decisions. In the proposed approach, the participating D2D
users initiate and manage the currency system. Our virtual
currency system is similar to the packet trade model (PTM) of
mobile ad-hoc networks, wherein two adjacent nodes negotiate
among themselves for an intended network packet [37].

Let τ cu,v denote the currency user u pays to user v ∈ Nu
against the fraction of content c. Hence, the total currency
reward of the uth user is given as:

Ru(φu,φ−u) =
∑
v∈Nu

∑
c∈C

(φcv,u − φcu,v) (11)

where the vectors φ−u = (φcv,u)c∈C,v∈Nu and φu =
(φcu,v)c∈C,v∈Nu

signify the currency reward user u receives
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and transfers, respectively. Clearly, negative value of Ru
indicates the aggregated reward that user u transfers to other
users in response to the received contents. The linear reward
function Ru(φu,φ−u) indicates the risk neutral behavior of
participating users [38]. The inclusion of reward function mod-
ifies the users’ cost function, which, in turn, motivates them
to share contents among one another. However, as users are
heterogeneous, we need a fair mutual exchange of contents and
rewards among them for adequate functioning of cooperative
content sharing.

A. Nash Bargaining Theory: The Justification

Our aim is to minimize the total system cost which includes
both the individual cost (defined in Eq. (8)) and total currency
reward (defined in Eq. (11)) of the participating users. If we
employ an optimization technique to minimize the total system
cost, the rewards exchanged among the D2D users get canceled
out in the objective function, and hence, making it infeasible
to find the fair amount of reward transfer. Thus, we employ the
Nash bargaining as the solution approach in our system model.
Specifically, we model the content sharing among D2D users
as a multi-player bargaining game. Thereafter, we use the NBS
approach to solve the formulated game. Every element of the
set U is modeled as a player and independent cost of the user
u is adopted as its disagreement point To this end, we formally
define the U -player bargaining game followed by the NBS of
the game.

Consider a bargaining game G = 〈U ,S, (T copu (s))u∈U 〉,
where U represents the set of users, S denotes the strategy
space, i.e., S = S1 × S2 × · · ·SU , where Su represents the
set of strategies available to user u in the cooperative game.
T copu represents the total cost of user u, which depends on the
action profile of all the participating users s = (s1, s2, · · · sU ),
su ∈ Su. Thus, a strategy profile s∗ = (s∗1, s

∗
2, · · · s∗U ) is said

to be the NBS if it solves the following optimization problem:

max
s∈S

∏
u∈U

(T indu − T copu (s))

s.t. T copu (s) ≤ T indu ,∀u ∈ U (12)

where, T indu is the disagreement point of the uth user or the
maximum cost that the user expects from the cooperation,
which is cindu , in our case. Likewise, possible caching X =
(xu)u∈U , sharing Y = (yu)u∈U , downloading Z = (zu)u∈U ,
and currency transfer Φ = (φu)u∈U decisions of users define
the strategy space S. The total cost T copu (·) of user u in the
cooperative mode is given as:

T copu (xu, zu,yu,y−u,φu,φ−u) = Ju(·)−Ru(·) (13)

It is noteworthy that the total cost function of the user
includes the reward function, which enables user u to improve
his/her independent cost cindu , either by gaining reward through
content sharing or by receiving content c ∈ Ic from nearby
users at relatively lower cost during the delivery phase. Further,
users can freely choose to operate independently if the coop-
eration costs them higher. Therefore, the NBS solution unites
the users for cooperative content caching and sharing, and
ensures fair distribution of reward among them. To this end,

we describe the problem formally and present the bargaining
problem in greater details.

B. Bargaining Problem

The objective of Nash bargaining is to maximize the product
of the users’ gain obtained through cooperation. Hence, the
objective function given in Eq. (12) is the series multiplication
of users’ gains. We transform the given objective into its loga-
rithmic form for the ease of solving, and present the following
equivalent logarithmic-bargaining optimization problem (L-
BP):

L-BP : max
X,Y ,Z,Φ

∑
u∈U

log(γ + cindu − T copu (·)) (14)

s.t.
∑
c∈C

xcul
c ≤ Su, ∀u ∈ U (15)

xcu +
∑
v∈Nu

ycv,u + zcu = 1,∀u ∈ U , c ∈ Iu (16)

ycu,v ≤ xcu, ∀u ∈ U , v ∈ Nu, c ∈ C (17)

T copu (·) ≤ T indu , ∀u ∈ U (18)
0 ≤ xcu, ycu,v, zcu, φcu,v, ycv,u, φcv,u ≤ 1,∀u ∈ U , v ∈ Nu, c ∈ C

(19)

where γ > 0 is the additional reward that each user receives
for participating. We assume that γ is very small compared to
the currency received for content sharing, which does not alter
the solution to the problem. Through γ, we also ensure the
non-zero value of logarithmic forms. The objective function
in Eq. (14) is the aggregated sum of user’s cooperative gain
on logarithmic scale. Eq. (15) is the storage constraint of users.
Eq. (16) ensures that the received fractions of content are
enough for the user to decode the interested contents. Further,
constraint (17) states that the fraction of content shared by
a user during the delivery phase is no more than its cached
fraction. Additionally, constraint (18) guarantees that the total
cost of users participating in the cooperative case is no more
than that of the independent case. The user u computes its
total cost in independent case cindu by solving problem IPu.

The objective function of L-BP is a composite sum of
strictly concave functions. Also, the set of constraints defines
a feasible region which is convex and compact. We note that
the participating users always improve their total cost even if
they do not reach an agreement. In such a case, the user may
prefer not to share its cached content with other users and
improve their total cost due to the small participating reward
γ. Therefore, the above problem is a feasible convex program
and always posses a unique optimal solution X∗,Y ∗,Z∗,Φ∗.

In the presence of a central entity, i.e., BS-assisted D2D
communication, the optimal solution of the given convex
problem can be obtained by applying Karush-Kuhn-Tucker
(KKT) conditions [39]. Specifically, the BS collects all the
parameters from the participating users and computes the
optimal solution and sends it back to the users. However, in
autonomous D2D networks, there is no involvement of BS and
user may be unwilling to share its private information (e.g.
storage capacity, CIP, and subscribed data plan) with other
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users. Thus, we design a distributed collaborative mechanism
which enables each user to take its decision based on its local
parameters.

V. DISTRIBUTED COLLABORATIVE MECHANISM

The distributed collaborative mechanism gets attention in
the absence of centralized entity. The distributed collabora-
tive mechanism can provide a scalable solution to the given
bargaining problem and also, ensure the privacy of users’
information. However, solving the problem L-BP distributively
is challenging because of two issues. First, the objective func-
tions of the users are coupled, i.e., the logarithmic component
corresponding to the user u depends on the sharing decision
of its neighbor v ∈ Nu, as shown in Eq. (13). Second, the
given problem consists of coupled constraint, i.e., the decision
variables of various users collectively form a constraint. In
particular, the caching decision of user u depends on its
neighbor’s v ∈ Nu sharing decision, as shown in Eq. (16).
We address the first issue (coupled objective) by introducing
auxiliary variables and the corresponding equality constraints,
thereby transferring the coupling of objective function in the
constraints. Further, the resulting coupled-constraints problem
is solved by applying the primal-dual decomposition method
[22].

The total cost of user u defined in Eq. (13) depends on
its local decision variables (xu,yu, zu,φu) and its neighbor
decision variables (y−u,φ−u). We introduce auxiliary vari-
ables corresponding to each coupled argument of the total cost
functions. Formally, we define

αcu,v = ycv,u,∀u ∈ U , v ∈ Nu, c ∈ Iu (20)

βcu,v = φcv,u,∀u ∈ U , v ∈ Nu, c ∈ C (21)

where αcu,v and βcu,v can be interpreted as local decision
variables of user u for total cost function in place of neighbor
v ∈ Nu sharing (y−u) and currency transfer (φ−u) decision
variables, respectively. Further, we relax the constraints in Eqs.
(16), (20), and (21) to obtain the corresponding Lagrangian
function L(·), as shown in Eq. (22), where λ = (λcu : u ∈
U , c ∈ Ic), π = (πcu,v : u ∈ U , v ∈ Nu, c ∈ Ic), and
ψ = (ψcu,v : u ∈ U , v ∈ Nu, c ∈ C) are Lagrange multipliers
corresponding to Eq. (16), (20), and (21), respectively.

L(·) =
∑
u∈U

{
log(cindu −(Ju(xu, zu,yu,αu)−Ru(φu,βu)))

+
∑
v∈Nu

∑
c∈Iu

πcu,v(α
c
u,v − ycv,u) +

∑
v∈Nu

∑
c∈C

ψcu,v(β
c
u,v − zcv,u)

+
∑
c∈Iu

λcu(xcu +
∑
v∈Nu

ycv,u + zcu − 1)

}
(22)

We segregate the local variables of each user u in different
groups and decompose L(·) into U different user-specific
Lagrangian functions Lu(·). Mathematically,

Lu(·) = log(cindu − (Ju(xu, zu,yu,αu)−Ru(φu,βu)))

+
∑
c∈Iu

(λcux
c
u +

∑
v∈Nu

λcvy
c
u,v + λcuz

c
u − λcu)

+
∑
v∈Nu

( ∑
c∈Iu

(πcu,vα
c
u,v−πcv,uycu,v)+

∑
c∈C

(ψcu,vβ
c
u,v−ψcv,uzcu,v)

)
We use the primal-dual decomposition approach to define

the user-specific optimization since the Lagrangian function
L(·) has a decomposable structure. The optimization problem
specific to user u is as given:

max
xu,yu,zu,φu,αu,βu

Lu(xu,yu, zu,φu,αu,βu) (23)

s.t. (15), (17)

T copu (xu,yu, zu,φu,αu,βu) ≤ cindu
0 ≤ xcu, ycu,v, zcu, φcu,v, αcu,v, βcu,v ≤ 1, ∀v ∈ U , c ∈ C

Each user applies the primal-dual method to solve its spe-
cific optimization problem and updates the dual variables using
the gradient-descent method. Each D2D user signals its content
availability through dual variables λcu(t+ 1), ψcu,v(t+ 1), and
φcv,u(t+1). Formally, user u uses the following set of equations
to update its dual variables:

λcu(t+ 1) = λcu(t)s(t).(xcu +
∑
v∈Nu

ycv,u + zcu − 1) (24)

πcu,v(t+ 1) = πcu,v(t) + s(t).(αcu,v − ycv,u) (25)

ψcu,v(t+ 1) = ψcu,v(t) + s(t).(βcu,v − φcv,u) (26)

where s(t) is the non-negative step size selected for the tth

iteration.

Algorithm 1: Distributed Algorithm
Inputs : Ξ, γ
Outputs: X,Y ,Z,Φ
Initialize
X(0),Y (0),Z(0),α(0),β(0),Φ(0),λ(0),π(0),ψ(0)

converge = 0, t = 0
while converge = 0 do

t← t+ 1
for i = 1 : U do

Compute
xu(t),yu(t), zu(t),φu(t),αi(t),βi(t) by
solving optimization problem in (23)

Send ycu,v(t),∀v ∈ Nu, c ∈ Iv
Compute dual variables λcu(t+ 1), πcu,v(t+ 1),

and ψcu,v(t+ 1) using Eqs. (24)-(26)
Send πcu,v(t+ 1) ∀c ∈ Iv to v ∈ Nu
Send ψcu,v(t+ 1) ∀c ∈ C to v ∈ Nu

if |λcu(t+ 1)− λcu(t)|, |λt+1
i − λti|,

|πcu,v(t+ 1)− πcu,v(t)|,
|ψcu,v(t+ 1)− ψcu,v(t)| ≤ Ξ then
converge← 1
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Figure 2: Comparison of the schemes

In each iteration, each user u ∈ U first solves its opti-
mization problem given in Eq. (23) and computes its primal
variables (xu,yu, zu,φu) and auxiliary variables (αu,βu).
Thereafter, the user updates its dual variables by using Eqs.
(24)-(26) and broadcasts the updated dual variables and primal
variables to the concerned neighbors. Likewise, the neighbor-
ing users also update their dual variables and broadcast the
same to the concerned neighbors. This exchange of primal
and dual variables among users continues till the change
in dual variables in successive iterations is greater than a
given threshold, namely the convergence index Ξ. The detailed
procedure is given in Algorithm 1.

Proposition 1. Algorithm 1 converges to the globally optimal
solution of L-BP for a properly chosen s(t).

Proof: The problem L-BP is a convex program. Algo-
rithm 1 converges to the globally optimal solution if the fol-
lowing two conditions are satisfied: (i) The step size diminishes
with each iteration, and (ii) The gradients are bounded [22].
In our case, we use s(t) = (1 + q)/(t + q) for q ≥ 0, which
diminishes in successive iterations. The gradients given in Eqs.
(24)-(26) are also bounded since the primal variablesX,Y ,Z,
and Φ are bounded according to Eq. (19). Further, the auxiliary
variables are also bounded by their respective users. Hence, it
is guaranteed that the algorithm convergences to the global
optimal solution.

VI. PERFORMANCE EVALUATION

In this section, we discuss and analyze the analytical results
to evaluate the performance of the proposed scheme for C-
D2D networks. We use MATLAB to compute the numerical
solutions of our proposed scheme. To this end, we consider
a static cache-enabled D2D network consisting of U = 8
users in a 100 × 100 m2 grid which are connected with
each other in mesh topology. For numerical simulation, we
set the collaborative distance of users Rmax as 50 meters.
Specifically, the users’ coordinates are (90.67 23.66), (8.01
57.13), (98.36 31.82), (83.44 26.76), (77.95 65.28), (14.57
99.39), (10.23 20.96), (44.32 16.38). The delay and energy
parameters are taken from [12] and [40], respectively. We set
the data subscription plan during the placement and delivery
phases as $0.5 and $1 per GB, respectively, and storage
capacity Su = 10 GB for each user. Further, we consider
|C| = 20 contents each of size 1 GB. For simplicity, we set
CIP of Iu = C for all user, i.e., each user is interested in
every content. However, we discuss the effect of CIP similarity

in Section VI-C. We model the delay cost of user u ∈ U
using an exponential function namely, Du = δu exp(∆u). The
parameter δu ∈ (0, 1] denotes the delay sensitivity of user u.
Additionally, we choose a linear function Eu(·) = ξuεu + κu
to denote the energy cost where ξu ∈ (0, 1] and κu denotes
the user’s energy sensitivity and device specific constant. For
our simulation results, we set κu = 0. Further, we set the
participating reward for each user as γ = 0.001.

We compare the performance of the proposed distributed
bargaining-based scheme with three different benchmark
schemes.

1) Independent caching (IC): Each user caches its content
during the placement phase and downloads the remaining
contents during the delivery phase.

2) Random caching (RC): Each user randomly selects a set
of contents and caches it during the placement phase. During
the delivery phase, each user shares the cached content with
other users through D2D communication, and downloads the
rest of the contents from the BS. We show the average result
of the RC scheme over 100 runs.

3) Cost minimizing caching (CC): A central entity computes
the caching, sharing (and the corresponding currency reward
received), and downloading decisions for minimizing the total
users cost (

∑
u∈U

(Ju(·)−Ru(·))).

A. Effectiveness of the proposed scheme

Fig. 2(a) illustrates the total cost incurred for all the
participating users. The total cost of the user takes both
the individual cost and the currency reward into account, as
specified in Eq. (13). We observe that the total cost in case of
the proposed DBC scheme is always less than the benchmarked
IC scheme. This is because the DBC scheme allows each user
to improve its total cost by obtaining reward (Ru) through
content sharing. Further, unlike the other schemes (RC and
CC), which also provision content sharing, in DBC scheme,
users cache and share contents among one another while taking
their individual costs into account (Eq. (18)). Therefore, DBC
always guarantees total cost improvement for all the users
compared to the IC scheme.

Fig. 2(b) illustrates the system cost, which is the cumulative
total cost of the participating users, for the various schemes.
We observe that the system cost is the highest for IC. This is
straightforward since there is no provision of content sharing
in IC, each user must download the uncached contents during
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Figure 3: User behavior analysis in both IC and DBC schemes
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Figure 4: Effect of system parameters on system cost

the delivery phase at higher delay (Du) and monetary (Pu)
cost.

In case of the RC scheme, the system cost is less than that
in case of IC, but higher than the other two schemes. Indeed,
the RC scheme improves the system cost by allowing content
sharing among the users, but there is a high chance of duplicate
caching as users randomly cache contents according to their
own CIP. Further, we observe that the system cost of the CC
scheme, which is the attainable minimum system cost, is 21%
lesser compared to that of the IC scheme. Interestingly, the
system cost in the proposed DBC scheme is the same as that
of the CC scheme. This shows that the proposed DBC scheme
is cost-efficient.

Fig. 2(c) depicts the fairness of the various schemes. In
particular, we use Jain’s fairness index [41] to characterize the
fairness, i.e., JI =

(
∑

u∈U ρu)
2

U(
∑

u∈U ρ
2
u)

, where ρu is the cooperative
gain of user u. We show that the proposed DBC scheme
achieves highest fairness index among other schemes. This
shows that the DBC scheme is fair for all the participating
users.

Inferences: From Fig. 2, we conclude that the DBC scheme
takes individual cost into account and minimizes the system
cost while ensuring fairness among participating users. This
encourages users to cooperatively cache and share their cached
contents.

B. User behavior analysis

We analyze the behavior of the participating users for both
the DBC and the IC schemes. Specifically, we consider the
user decision during the placement phase (caching) and the
delivery phase (sharing, downloading, and receiving). For this
setup, we set the storage capacity of user 5 as zero, and all

other parameters are set as discussed earlier. Analyzing all
the figures in Fig. 3, we observe that, in the IC scheme, users
either cache or download the contents of their respective CIPs.
For example, user 2 caches 10 contents during the placement
phase and downloads the remaining 10 contents to fulfill its
need of 20 contents. However, user 5 with no caching capacity
downloads its entire contents of interest during the delivery
phase.

Similarly, analyzing the DBC scheme, we observe from Fig.
3(a) that the users cache the content during the placement
phase. Further, the users share their cached contents with other
users, as depicted in Fig. 3(b). User 4 shares its cached content
(10 GB) with users 1,3,5, and 8. Likewise, user 1 shares its
cached content with user 3. The fraction of contents shared
by a user is limited by its cached fraction (see Eq. (17)). Fig.
3(c) shows the amount of data received by each user from
their neighbors. Finally, Fig. 3(d) shows the remaining amount
of content downloaded by users directly from BS. Since the
DBC scheme enables users to receive contents from their
neighbors, the downloading amount decreases significantly for
some users. For instance, unlike in the IC scheme, the users
1,3,5, and 8 download lesser amount of contents during the
delivery phase. Obviously, each user’s decision of content
sharing with other users depends on the respective locations,
energy sensitivity, and currency transfer.

C. Effect of system parameters

We show the effect of various system parameters — user
storage capacity, energy sensitivity, and CIP similarity index on
the system cost (i.e., aggregated cost of the participating users)
in Fig. 4. Fig. 4(a) demonstrates the variation of the system
cost with respect to the user’s storage capacity (Su). We vary
the storage capacity of users from 0 GB (i.e., unavailability
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of cache) to 20 GB. We compare the system cost for both
the DBC and the IC schemes. In case of unavailability of user
storage (Su = 0), there is no provision of caching and all users
need to download their contents during the delivery phase.
Therefore, the system cost remains the same for both the cases.
However, as the storage capacity increases, the system cost
for both the IC and the DBC scheme decreases. The rate of
decrement in case of DBC is higher than that of IC scheme.
This is due to the fact that the increased storage capacity allows
users to cache more contents (see Eqs. (15) and (17)). This,
in turn, decreases the aggregated download of all users during
the delivery phase.

Fig. 4(b) depicts the variation of the system cost with respect
to energy sensitivity of the users. The energy sensitivity of the
participants is varied in the range [0.2, 1]. We observe that, as
the sensitivity of the users decreases, the system cost in case
of both the DBC and IC schemes decreases, as from Eq. (8),
the energy sensitivity is directly proportional to the individual
user cost. Further, the difference of system cost between the
two schemes increases with the decrease in the sensitivity of
the users. This follows from the fact that, as the users become
energy insensitive, they prefer to share their cached contents
with others.

To analyze the effect of similarity index, we consider a
system of two users (i.e., users 3 and 4). The similarity index
is defined as the number of similar contents in the CIPs of
the participating users, i.e., |

⋂
u∈U Iu|. Fig. 4(c) illustrates the

effect of similarity index on the system cost. The similarity
index is varied in the range [0, 10]. We observe that, in the IC
scheme, the system cost is invariant of the similarity index as
there is no provision of content sharing among users. However,
in the DBC scheme, with the increase in the similarity index,
the system cost decreases as users cooperatively cache and
share the contents of mutual interest.

Inference: From Fig. 4, we conclude that the benefits of
cooperative content caching and sharing are more prominent
when the energy insensitive users with higher similarity index
and larger storage capacity decide to collaborate.

D. Effect of number of users

In Fig. 5, we show the variation of the system cost with
the change in the number of users and their caching size. We

vary the number of users between 4-24 and two considered
different cache sizes, i.e., Su = 5 GB and Su = 10 GB. We
observe that, for Su = 5 GB, when the number of users in
the system increases, the overall system cost decreases non-
linearly. This is due to the fact that, with the increase in the
number of users, the amount of content cached also increases,
resulting in higher content sharing among the D2D users. Thus,
the amount of content downloaded from the BS, during the
content delivery phase, decreases. The reason of non-linearity
is the convex nature of the delay cost function of each user (as
discussed in Section III-C1), which decreases with the increase
of cooperation among the participating D2D users. Further,
with the increase in cache size, i.e„ Su = 10 GB, we observe
that the system cost decreases to a value lesser than that in
case of Su = 5 GB. This is because the increase in cache
size enables users to cache more content during the placement
phase, thereby decreasing the overall system cost.

VII. CONCLUSION

In this paper, we modeled the interactions among the cache-
enabled D2D users as a multi-player bargaining game to
facilitate cooperative content caching and sharing. In view
of the facts that the participating users have heterogeneous
content interest profiles and storage capacities and that they
are typically self-centric, we developed a fair incentive mech-
anism to encourage cooperation among the users. Further, we
proposed a distributed algorithm which allows the execution
of the proposed mechanism without the involvement of any
central entity (e.g. BS), and hence, is not limited to BS-assisted
D2D communications. The analytical results demonstrated that
the proposed scheme is highly fair and effective in reducing
the total cost of the users.

In future, we plan to take the mobility of the D2D users into
consideration. In such a scenario, the D2D network topology
keeps changing with time and the bargaining-based incentive
mechanism may not be appropriate. Additionally, in this work,
the users’ CIP is considered to be known a priori. Thus,
another possible extension of this work can be to consider
the probabilistic CIP of the participating users.
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