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Abstract—In this work, we propose and develop HeDI
(Healthcare Device Interoperability) – a system to enable device
interoperability in IoT-enabled in-home healthcare monitoring
platforms. The system consists of multiple sensors, each con-
nected wirelessly to an edge device, acting as a wireless com-
munication gateway to a remote server. The system initiates
information handshaking between the sensor adapters and edge
device at the beginning of the operation, which is later used to
detect the sensor settings to process the data received from the
sensor. The system is scalable and dynamically accommodates
multiple sensors without any predefined ontologies at the edge
device. The implementation of our system avoids dependen-
cies on a system’s physical ports. The low form factor and
wireless connectivity of the adapter make the system portable
and convenient for in-home health monitoring. Additionally, the
system allows multiple homogeneous sensors to operate at the
same time in the same system. We implement and evaluate
our system with a 3-lead ECG, pulse, and temperature sensors
against two different network configurations – Star and Mesh.
We use the data set generated from our implemented system for
performance analysis. The network-level analysis of our system
shows an average packet delivery ratio of 0.92 for star network
configuration and 0.98 for mesh network configuration, ensuring
the reliability of performance and its suitability for healthcare
monitoring systems.

Index Terms—Interoperability, Interoperable adapter, IoT, in-
home health monitoring, e-Health, Edge platforms.

I. INTRODUCTION

THE inability to share data among different systems dras-
tically reduces the efficiency and limits the functionality

of the IoT environment [1]. Interoperability has emerged as a
robust enabler of cross-domain communication [2]. Traditional
IoT-based device discovery protocols are based on predefined
device profiles. They require real-time installation of device
drivers, in addition to being heavy for resource and energy-
constrained IoT devices. The available plug-and-play solutions
for IoT devices such as [3], [4] are lightweight and versatile
but require supporting drivers. The availability of these drivers
is subject to their availability in the system repository or
online access by these IoT devices. Traditionally, wireless
health sensors have been designed in such a manner that each
wearable unit consists of a fixed number of heterogeneous
sensors. Considering Sn to be the set of standalone sensor
units such that Sn = {s1, s2, s3, · · · , sn}, n ∈ Z+ are
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connected/wired to a wearable unit GT , which also acts as
its communication gateway. Additionally, considering St be

Fig. 1: Network architecture of the implemented system

the set of possible sensor types supported by the healthcare
system, St = {γ1, γ2, γ3, · · · , γm},m ∈ Z+. The set of
sensors S that can communicate to GT is represented by the
following relation,

S ⊆ Sn × St, ∀(si, γj)i,j=1:n ∈ S,
si |i=1:n∈ Sn, and γj |j=1:n∈ St

(1)

The cardinality of S from the relation in Equation (1) is |S| =
|Sn×St| = n×m. However, in the currently available remote
healthcare monitoring systems, each of the sensors attached to
GT is designed to be unique, such that i = j and

∀(s, γ) ∈ Sn

f(s) = f(γ) ⇒ s = γ
(2)

The cardinality of the configuration of S from the relation
in Equation (2) is |S| = |Sn| = |St| = n. This denotes the
limited number of sensor combinations, which are possible
using the currently available remote health monitoring units.

In this work, we propose and implement HeDI – a frame-
work for in-home remote health monitoring, which consists
of interoperable sensor adapters (A = {A1, A2, · · · , An}),
a processing hub/gateway (GT ), and a remote server. Fig.
1 shows the network architecture of our proposed system.
Each adapter connects its sensor to the processing hub for the
collection of heterogeneous physiological data from a human
body. The collected data is forwarded to the remote server.
HeDI can be scaled up for multiple adapters and processing
gateways in a network. Fig. 2 shows the interconnection
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between multiple components of HeDI. The adapters and
processing hubs are connected to the remote server through
the Internet. The figure shows mode of communication, range
of operation and the estimated number of connected devices.
Each of these adapters is interoperable in the sense that it

Fig. 2: An overview of a scaled up version of HeDI.

requires no specific port for its connection to the system. Any
new sensor with the proposed interoperable sensor adapter
connects to an existing system without making any physical
changes to the processing hub or the remote server. This
feature allows us to achieve the relational mapping outlined
in Equation (1), such that the number of supported sensors
and sensor type combinations are significantly larger than
the ones currently available in the market. HeDI addresses
the challenge of device interoperability through an IP-based
mapping scheme. The IP-based mapping keeps a record of
the connected sensor of an adapter and its corresponding
IP address to process the incoming data. Additionally, the
IP-based mapping also allows the system to have multiple
homogeneous sensors to connect to the system simultaneously,
such that |W | = |Sn| where W is the set of wearable adapters.
Considering the set of sensor types to be St, the relation
denoting the number of adapters that can communicate to GT

is similar to the relation in Equation (1), with a cardinality of
|W × St|.

As the system is used in remote healthcare monitoring, it
is expected that the system and the ensuing network have
maximum accuracy and minimum delays. We evaluate our
system for two different network configurations – star and
mesh. Each sensor adapter in the star configuration connects
directly to a Central Processing Hub (CPH). This arrangement
enables the sensor to send data directly to CPH without the
help of any intermediate adapters and minimizes the delays.
In the case of the mesh network, the sensor adapters form
a network among themselves, whenever they are in range,
and broadcast their data to the network, ensuring that there
is no loss of information. However, the mesh configuration
increases redundant data in the network and is limited by
network delays. Both configurations have a trade-off between
the accuracy and delay, which we try to analyze for our
implementation.

A. Motivation
The challenge of interoperability has been taken up in

multiple domains to exchange data among heterogeneous

platforms and devices. Edge-centric solutions have been pro-
posed to enable context and protocol interoperabilities [5].
Interoperability among different platforms has been proposed
using semantic extractions, vocabularies, data fusion [6] [6].
The solutions mainly focus on the aspect of data processing,
post data collection. The existing solutions require predefined
devices, systems, and architectures to support interoperability.
The feature of scalability and flexibility of device integration
still needs to be addressed with a real solution to it. Our system
primarily aims to provide a scalable and flexible solution ca-
pable of integrating resource-constrained IoT devices without
making any physical changes to the existing system.

B. Research Challenges

The proposed system uses wireless communication with
multiple sensor nodes forming a network of devices. We
outline the primary research challenges of our work below:
• Wireless Communication: Multiple wearable sensors

have to be wirelessly connected to CPH. The system
and its communication channel should support wearable
devices and data transmission with high accuracy and
efficiency.

• Interoperability: The wearable sensors have to be inte-
grated into the system without any predefined informa-
tion. This implies that the CPH or the server should be
capable of identifying the data received from a wearable.
This is addressed using an IP-based mapping scheme,
discussed in later sections.

• Sensor failure: The current proposal offers a reusable
sensor adapter to be used as a wearable. In case of any
sensor malfunction, the sensor can easily be replaced with
a new one and attached to the same adapter. This replace-
ment does not affect the other adapters, the CPH, or the
system as a whole. Further, if the adapter experiences any
fault, the adapter can be simply replaced with a new one,
without requiring any changes to the other adapters or the
system as a whole. This feature also helps in keeping the
long-term maintenance cost of the system to a minimum.

• Interference: In the case of multiple access points
present in the range of the adapters, the system may
suffer from frequent disconnections from the CPH due to
interference from other wireless network devices if they
are using the same channel. The issue can be avoided
by using alternative communication technology such as
Bluetooth to connect the wearables to the CPH

C. Contributions

Existing IoT-based health monitoring approaches provide
constrained, non-scalable solutions to provide interoperabil-
ity to a system. These approaches use semantic ontologies,
following standards, and cross-domain platforms. Our imple-
mented system enables interoperability among different health
sensors connected to a system. Our developed devices are not
predefined in the system and integrate dynamically without
any prior information. The contributions of this work are as
follows:



3

• We propose and implement IP-based interoperability in
an in-home remote healthcare monitoring system. The
system is independent of any predefined ontologies.

• We implement an interoperable sensor adapter to connect
multiple heterogeneous health monitoring sensors. The
sensor adapter enables the integration of different sensors
to the system dynamically and makes the system modular.

• We implement a fully functional system with the pro-
posed architecture and algorithms. We analyze the system
along with its network characterization for two network
configurations – star and mesh, to study the reliability
and accuracy of the system while ensuring its scalability.

II. RELATED WORKS

Health monitoring devices allow continuous monitoring of
physiological conditions through emotion cognition, chronic
illness, and elderly patients [7] [8]. Intelligent fabrics such
as [9] and devices such as [10] are designed to monitor the
physical and psychological health along with the surrounding.
The exchange of information between these devices and sys-
tems helps to analyze a patient’s overall health. We limit our
discussion to the existing approaches to enable interoperability
and identify the current requirements.

Platform based interoperability allows different systems and
platforms to communicate with each other by acting as a
middleware. Sigwele et al. [11] conceptualized a collaborative
platform to allow semantic interoperability between different
healthcare platforms using a smart edge gateway. Fortino
et al. [12] proposed a framework INTER-IoT, a layer-wise
architecture in both hardware and software layers to enable
interoperability between different IoT layers and demonstrated
the use-cases in logistics and healthcare. Wattana et al. [13]
proposed blockchain-based technology to enable interoperabil-
ity between different IoT services.

(a) Wireless adapter (b) CPH

Fig. 3: Components of our implemented adapter and CPH.

Device-based interoperability aims at providing device-to-
device communication, with scalable solutions. Multiple com-
munication interfaces in devices such as Bluetooth, Zigbee,
and WiFi have been proposed to enable device interoperability
[14] [15] [16]. Adesina et al. [17] proposed a gateway-based
hybrid approach to enable syntactic interoperability in IoT
environment. Kotstein et al. [18] proposed a reinforcement
learning to enable semantic interoperability in an IoT system
with HTTP REST services.

A. Synthesis

The existing systems incorporate different forms of in-
teroperability in various application domains. However, the
systems are dependent on predefined ontologies and sensor
information. Some of the systems are dependent on Internet
connectivity to download system files and drivers for the
devices. Additionally, all existing vendors do not practice
the standard data formats. Hence, we propose and implement
HeDI, which employs a wireless interoperable sensor adapter
to introduce device interoperability in an in-home remote
healthcare monitoring system.

III. SYSTEM MODEL

The system consists of three different units: 1) Wireless
Sensor Adapter, 2) CPH, and 3) Remote server. The sen-
sor adapter consists of a sensor attached to a WiFi-enabled
controller board. The CPH encloses a WiFi-enabled processor
board with a local storage unit. Fig. 3 shows the components
of a wireless sensor adapter and CPH. The CPH creates an
access point through which it receives the sensor data. In
the star network configuration, each sensor adapter connects
directly to CPH and transmits the sensor data. Mesh network
configuration allows the sensor adapters to transmit the sensor
data in the mesh network through multiple hops. The sensor
adapter in the range of CPH eventually transmits the data
to CPH. CPH collects the data from the connected sensor
adapters, processes the data according to the proposed IP-
based mapping scheme, and forwards it to the remote server.
The CPH connects to a WiFi network to connect to the remote
server through the Internet. Both traditional data transmission
protocols, as well as IoT compliant light-weight protocols, can
be used at the CPH to forward the received data to the remote
server. In this work, we focus on the functioning of the sensor
adapter and the CPH and discuss in details. Fig. 2 shows
the implemented interoperable wireless sensor adapter with
ECG, pulse, and temperature sensors connected to it. Table I
shows a comparison of our implemented work with some of
the existing similar systems and schemes.

A. Communication Architecture

The set of wireless adapters is denoted by A =
{A1, A2, A3, . . . An}, each assigned a different data rate de-
noted by set R = {R1, R2, R3, . . . Rn} where n ∈ Z+ is
the maximum number of adapters that can be connected to
CPH. β is the total bandwidth allocated by CPH for the
adapters to connect. We consider η number of channels for
data transmission by the adapters. The maximum allowable
data rate of all the adapters, when combined, is given as:

∆A = η ·
n∑

i=1

Ri, ∆A ≤ β (3)

Let k number of adapters be connected to CPH at time
instant t. The combined configured data rate is given as

D(t) = η ·
k∑

i=1

Ai(Ri) ≤ ∆A (4)
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TABLE I: Comparison of the proposed architecture with the existing works.

Work Monitoring
Parameters

Device Heterogeneity
(Sensor Types)

Flexibility Addressed
Interoperability PDR References

Mode of Sensing Max. no. of sensors
allowed

SDN-based WBAN
for patient
monitoring

Physiological Undefined wireless Fixed No 0.7 Ahmed et al. [19]

Remote health
monitoring Physiological Pulse Wireless Sensors Fixed No 0.87 Kharel et al. [20]

Patient monitoring
using IoT Physiological Pulse Oximeter Wireless Fixed No 0.89 Akkaş et al. [21]

Remote health
monitoring Physiological Pulse (on demand) Wearable 8(Bluetooth) No 0.98 Al-Khafajiy et al. [22]

Proposed Work Physiological
Temp, ECG, Pulse, and
others (heterogeneous,

on demand)
Wearable 250 (WiFi Standard,

dynamic) Yes Mesh=0.98, Star=
0.92 –

where Ai(Ri) denotes the configured data rate of the ith

adapter. We define a bandwidth utilization ratio BRU , which
shows the actual bandwidth being used by the adapters all
together from the allocated maximum allowable data rate. The
difference in the two values is due to the changing number of
adapters connected to CPH at an instant.

BRU =
D(t)

∆A
, ∆A > 0 (5)

Fig. 4: Format of handshake packet.

1) Delay: The system encounters a communication delay
δ when multiple adapters are connected to CPH. This delay is
represented as a function of the number of connected adapters
and their combined data rate, δ ∝ n, β, R. The transmission
delay is the ratio of the total data generated at the adapter to
the combined data rate of the adapter.

δtrans =
1

η
· D(t) · ts∑k

i=1Ri

(6)

Here ts is the transmission time for the connected adapters. We
calculate the propagation delay between the adapters and CPH
as the ratio of the distance between adapter and CPH and the
transmission speed between them given as δprop = li

cw
Here,

cw is the maximum transmission speed through the adapter’s
wireless interface, and li is the distance between the adapter
and CPH. The mesh network incurs an additional delay due
to a multi-hop path for data transmission, termed as the hop
delay. Let δhop be the total delay in the mesh network till the
penultimate sensor adapter which connected to CPH.

δhop =

(n−1)∑
i,j=1

di,j
sit

(7)

where di,j is the distance in meters between the adapters Ai

and Aj in the mesh network and sit is the speed of data
transmission of Ai. Let Lqueue be the length of the queue
for CPH. We calculate the queuing delay as the product of the

queue length and the transmission delay δtrans.

δqueue = Lqueue ×

(
D(t) · ts∑k

i=1Ri

)
(8)

The data is processed at CPH before forwarding it to the
remote server. The processing at CPH includes the detection
of the sensor from its IP and the data previously logged in
the log file during information handshaking. Let tproc be the
processing time required for processing a unit bit of data. We
calculate the total time required to process the data received
by CPH from the connected adapters as

δproc = tproc × η ·
k∑

i=1

Ri × ts (9)

The total delay of the system is calculated as the sum of the
transmission delay, propagation delay, hop delay, processing
delay, and queuing delay.

δtot = δprop + δtrans + δhop + δproc + δqueue

=

(
tproc × η ·

k∑
i=1

Ri +
1

η
· D(t)∑k

i=1Ri

(1 + Lqueue)

)
×

ts +
li
c

+

(n−1)∑
i,j=1

di,j
sit

(10)
It is to be noted that the hop delay for star network

configuration is practically zero as the adapters transmit the
data directly to CPH.

Fig. 5: An overview of the IP-sensor mapping at CPH.

2) Average Throughput: We calculate the average through-
put between the connected adapters and CPH as a function
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of the combined data generated at the adapters and the SNR
values, using Shannon’s capacity formula.

Throughputavg =
1

k

k∑
i=1

(D(t)× log2(1 + SNRi)) (11)

Considering signal level S (mV) and noise level N (mV),
SNR = 20log S

N which can also be represented as RSSI−N .
3) Packet Delivery Ratio: The packet delivery ratio

PDRCPH is the ratio of successfully received data packets
by CPH to the total number of transmitted data packets by the
connected adapters. The PDRCPH is dependent on the data
rate of each adapter and its distance from CPH. Each adapter
transmission experiences noise due to the other k−1 adapters
transmitting to the same CPH. The distance between adapters
and CPH reduces signal strength. Considering the Signal to
Noise ratio, SNR, we represent the PDRCPH as a function
of the SNRi and Ri of each adapter:

PDRCPH =

∑k
i=1

(
ts ·Ri · log2(1 + SNRi)

)∑k
i=1Ri · ts

(12)

where Ri · log2(1 + SNRi) is the effective data rate. We
normalize the SNRi values using the unit-less conversion of
SNR values as shown in Equation (13).

SNRi = 10SNRdb/10 (13)

Let βCPH be the bandwidth allocated to CPH for data
transmission. The RCPH is the data rate of CPH such that

D(t) ≤ RCPH ≤ βCPH (14)

B. IP-based Device Mapping

When the sensor adapter connects to CPH’s access point,
CPH assigns an IP address to the adapter. Next, the system
performs initial information handshaking between the adapter
and CPH. During the handshaking, the sensor adapter trans-
mits information about the IP address, baud rate, and the type
of connected sensor to CPH in the form of an information
packet (HIP ) shown in Fig. 4. An indicator bit, In, identifies
whether the received packet is an information packet or a
sensor data packet. The sensor adapter adds the indicator at
the beginning of each packet before forwarding it to CPH.

CPH stores the IP address of the sensor adapter, and the
corresponding sensor type attached, in an IP-Sensor log file
(ISLf ) and sends an acknowledgment to the sensor adapter.
Upon receiving the acknowledgment, the adapter starts trans-
mitting the sensor data to CPH, which forwards it to a remote
server. Fig. 5 shows an overview of the information flow in
the implemented system.

Every time a sensor adapter connects to CPH, the ISLf

is scanned to check the type of sensor attached to the sensor
adapter. CPH adds a new entry if there is no existing entry
of the IP address in ISLf . If the entry for the received IP
address already exists, CPH updates the ISLf with the latest
information. The local IP-based mapping is used to identify the
type of sensor and segregate the data received simultaneously
from multiple sensor adapters.

Algorithm 1 IPMaD: IP-based mapping at adapter
1: if Ai connected to CPH then
2: Send HIP and wait for acknowledgment
3: if Acknowledgment received then
4: if Star network then
5: Send sensor data → CPH
6: end if
7: if Mesh network then
8: Broadcast sensor data → network
9: end if

10: else Resend acknowledgement
11: end if
12: end if

Algorithm 2 IPMaC: IP-based mapping at CPH
1: for Connected Ai do
2: Receive HIP
3: Verify ISLf

4: if Device already found then
5: Update ISLf

6: else Add IP-Sensor mapping → ISLf

7: end if
8: Send acknowledgment
9: Receive sensor data

10: Send data to remote server based on IP-Sensor mapping
11: end for

The IPMaD (Algorithm 1) is implemented in the sensor
adapter to enable communication between the adapter and
CPH. IPMaD acts as a client and waits to connect to CPH’s
access point. Once connected, the sensor adapter starts trans-
mitting the HIP to the CPH until it receives an acknowledg-
ment. Once the acknowledgment arrives, the sensor adapter
starts sending the sensor data to CPH. Similarly, the IPMaC
(Algorithm 2) is implemented at CPH and acts as a server.
Whenever the CPH receives a data packet, it looks for the In
bit in the message to verify if it is a HIP . Once verified, it
sends an acknowledgment to the sensor adapter and logs the
adapter information in the local ISLf . If the received packet is
a sensor data packet, CPH scans the ISLf and segregates the
data as per the sensor type associated with the IP address. CPH
then forwards the segregated data to the remote server. The IP-
based data mapping allows the system to have homogeneous
sensors connected simultaneously to CPH.

C. Network Topology

We use two different network topologies (star and mesh)
in our system. In star topology, the adapters are directly con-
nected to CPH. In a mesh topology, the adapters dynamically
form a mesh network. The adapter nearest to CPH forwards
the data from the mesh network. The star topology incurs less
transmission delay due to the direct connection between the
CPH and adapters. Whereas, the mesh network ensures mini-
mum packet loss with permissible delay due to the multi-hop
network. A long-range monitoring environment can exploit the
mesh topology to enable adapters’ communication with CPH,
which may not be possible in the star network. Although there
are many other network topologies such as ring, tree, and
hybrid network topologies that can be implemented using the
proposed system, the utility of such topologies will depend on
the scenario. The choice of network topologies will depend on
the placement of the sensor adapters. As our system is based
on wireless wearable units, the bus topology, which is wired,
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Fig. 6: Time for successful con-
nection establishment and ac-
knowledgment between sensor
adapter and CPH.

Fig. 7: Evaluation of data
delivery with multiple sensor
adapters connected to CPH.

Fig. 8: Sensor data received at CPH from the 3 sensor adapters

is not considered. A tree topology can be formed by placing
the CPH as the root and then extending the branch networks
by carefully placing the adapters. Similarly, a ring topology
can be achieved by placing the adapters in a linear formation
and ensuring that each adapter in the network is uniquely
connected to exactly two adapters. However, the star and mesh
are commonly used topologies, especially in Wireless Body
Area Network (WBAN), which our system intends to achieve.

IV. PERFORMANCE EVALUATION

We implemented the proposed system in real-time in a
laboratory environment. The system is implemented and tested
for three different sensors –Temperature, Pulse, and a 3-lead
ECG. We deployed a bare basic system implementation for
evaluating the proof-of-concept proposed in this work. We
used a single WiFi channel (default) for communication and a
UDP-based socket for data transmission between the adapter
and the CPH. However, more advanced protocols such as those
based on TCP/IP, MQTT and CoAP can also be used for this
communication. The choice of these protocols can be easily
customized based on the application requirements. We used
a Raspberry pi 3 model B to implement CPH, which has a
1.2 GHz quad-core ARMv8 processor with 1 GB RAM and
802.11n wireless LAN. During data transmission, the CPH
is placed in a fixed location, and powered through a regular
wall socket using a 5V AC-to-DC adapter. The experiment
used two different network topologies – star and mesh. We
set the baud rate of adapters at 4800 for the experiments.
We record a 60 second data from each of the adapters in
the network. We repeat the experiment for a distance of 1m
and 2m between CPH and adapters. The data set used in our
work has been generated in real-time with the implemented
system. The data has been manually and visually validated.

We have used multiple subjects to check the consistency of
the incoming data. The primary attributes of our data set are-
sensor value, duration of data sent, duration of data received.
Other attributes such as number of packets, data size, and delay
are derived from the three primary attributes

A. Connection Time of Sensor Adapters

Fig. 6 shows the connection time for each adapter connected
in consecutive order to CPH, wirelessly. We consider two
cases for the connection time in adapters- 1) time taken to
connect to CPH and 2) time taken to complete the initial
information handshaking process. The connection time for
the first adapter is higher than the next two adapters by an
average time of 100ms. We attribute this behavior to the
hardware scanning process for the network during the initial
setups. An average increase of 488ms is observed in the
acknowledgment time with the increasing number of adapters
connected to CPH. The increased acknowledgment time is due
to multiple simultaneous requests from adapters to CPH after
handshaking. The overall system performance shows average
connection delay in the range of milliseconds, mostly due to
the one-time processing within the sensor adapter during start-
up.

(a) PDR at CPH in star topology (b) PDR at CPH in mesh topology

Fig. 9: PDR at CPH for 60 seconds of generated data in star
and mesh network configuration

B. Packet Delivery Ratio

We evaluate the variation in PDRCPH with varying dis-
tance between the adapters and CPH. The variation is recorded
for different sensors in star and mesh network topology for 60
seconds, as shown in Fig. 9. Fig.9(a) shows the PDRCPH

of the system in a star network configuration. We observe
a minimum PDRCPH of 0.86 and a maximum PDRCPH

of 0.99 in the star network. An average drop of 0.01 in
PDRCPH is observed when the distance increases to 2m.
The system works well and allows mobility for the user or
patient within the tested operational range. Fig.9(b) shows the
PDRCPH of the system in a mesh network configuration. In
some instances, the size of data delivered to CPH exceeds by
approximately 2108 bytes for 59000 bytes of data generated
at the sensor adapter due to multiple transmission of the same
data packets in the mesh by multiple sensor adapters. While
this phenomenon will increase the chances of higher successful
deliveries, it also creates undesirable network traffic resulting
in a decrease in true PDRCPH . A packet sequencing mech-
anism can be implemented at the adapter to avoid duplicate
data transmissions.
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C. Quality of the Received Data

The temperature and pulse data have simple waveforms and
exhibit small variations over time, making them more stable.
The transmission frequency of such data can be reduced to
allow the transmission of complex time-critical data. On the
contrary, ECG has a complex waveform and is more time-
sensitive in nature. An ECG signal is a complex composition
of 3 different types of waveforms followed as the P wave, QRS
complex, and S wave. The duration of each ECG complex
is approximately 0.7 seconds. Such time-critical data must
be transmitted with high frequency and accuracy to avoid
any data loss. We plot the ECG, pulse, and temperature data
received at CPH without using any filters in Fig.8 to study
the variations in the signals and the extent of information
loss. Fig. 8 shows a sub-section of 300 data points of the
60 seconds of the received ECG, pulse, and temperature
values. Fig.7 shows the error in data transmission concerning
lost packets for the two network configurations. The system
exhibits a maximum error of 17.3%. The star configuration
has an average data loss of 2500 bytes. In mesh configuration,
the number of packets received at CPH exceeds the actual size
of data generated by an average of 2650 bytes. The negative
error % in Fig.7 signifies the excess packets received due to
redundant data packets from the multi-hop mesh network. On
the contrary, star configuration establishes a direct connection
between adapters and CPH, with no duplicate transmission.

D. Delay at CPH

We evaluate the delay in the received data at CPH for
both the network topologies, as shown in Fig.10. The 3
adapters generate 59000 bytes of data, where the mesh network
receives a total of 61650 bytes and star network receives 5650
bytes of data. The delay in the network increases with the
increasing number of adapters connected to the network. The
mesh network exhibits a maximum delay when 3 adapters
are connected to the network, while the star network gives
minimum delay when 1 adapter is connected to the network.
Star topology performs significantly better than the mesh
topology in terms of delay incurred at CPH. The delay in the
mesh network is due to multiple hops between the transmitting
node and CPH. With the increasing number of adapters in
the network, the hop count for data transmission increases,
increasing delay at CPH from 2 seconds for one adapter to 136
seconds for three adapters. In the star network, the adapters
are directly connected to CPH, or we can say that it is a one-
hop connection. Hence we infer that star network configuration
should be used for time-critical applications to minimize δtot.

E. Evaluation of Network Topologies

We implemented and compared our remote healthcare mon-
itoring system for two different network configurations. Fig.11
shows the comparison of the configurations concerning delay
and number of connected adapters in the network. The star
configuration achieves a minimum delay of 0.056 seconds
and a maximum delay of 1.49 seconds in data transmission

(a) Delay at CPH in mesh topology (b) Delay at CPH in star topology

Fig. 10: Delay in reception of data at CPH for 60 seconds of
generated data

due to the direct connection of sensor adapters to CPH.
The configuration is suitable for real-time monitoring and
assessment of patient’s health. Star network is useful in situ-
ations where critical and time-bound monitoring is required.
However, the need for a direct connection between CPH and
sensor adapters decreases the range of CPH connectivity. This
means that the mobility of a patient is restricted within the
direct range of CPH. Patients with restricted mobility and
fluctuating physiological conditions can be monitored using
the star network configuration.

Mesh network configuration has a higher packet delivery
ratio with a maximum of 1.37 and a minimum of 1.11,
ensuring high accuracy. A packet delivery ratio greater than
one signifies that more packets get delivered than the actual
generated. This behavior is attributed to the mesh network’s
characteristic of enhancing packet redundancies in the net-
work to ensure reliable data delivery. However, the mesh
configuration also introduces a significant average delay of
30 seconds and a maximum delay of 136 seconds due to
multi-hop data transmission. The mesh network can be used to
monitor a patient’s physiological parameters over long periods
of observation. Mesh network also provides the patient with
higher mobility due to its ability to network over multiple hop
communication links.

F. Scalability of the System

We evaluate the scalability of the proposed work based on
the following features of the proposed system:
• The proposed system uses wearable sensor adapters,

which easily integrate into the system without making
any changes to the existing hardware. When new phys-
iological parameters need to be monitored in a patient,
new sensor adapters can be integrated with the existing
system without changing the existing hardware.

• The system uses WiFi to connect the wearable adapters
to the CPH. WiFi allows a maximum of 250 devices to
be connected simultaneously to the network. This allows
the system to connect a huge number of wearables. This
feature is especially harnessed by the star topology, where
all the adapters connect directly through the one-hop
distance to CPH.

• The mesh network configuration increases the range of
the wearables adapters through its multi-hop data trans-
mission to the CPH. This allows for long-range data
transmission between the adapters and CPH. The network
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of adapters can be increased indefinitely until the system
delay becomes infeasible.

Fig. 11: Comparison of delay in star and mesh configurations
with varying number of adapters (A)

V. CONCLUSION

In this paper, we proposed and implemented HeDI, which
uses our developed interoperable sensor adapter for a portable
in-home wireless healthcare monitoring system with a cen-
tral processing hub (CPH) and multiple interoperable sensor
adapters. The wireless adapters have a low form factor and
provide the freedom of mobility for remote health monitoring
within the evaluated ranges. We implemented an IP mapping-
based algorithm, IPMaC for CPH and IPMaD for the adapter
to incorporate interoperability. We implemented and evaluated
the system for two different network configurations – star
and mesh and characterized the system in terms of its basic
network and device parameters.

The implemented system exhibits reliability with its wire-
less interoperable sensor adapters in both the implemented
networks with minimum PDR of 0.86 with 3 adapters con-
nected to the network with high accuracy despite the packet
loss. The mesh configuration allows each sensor adapters
in the network to act as transmission nodes. Mesh network
enables a sensor adapter to send its data to longer distances
through intermediate adapters. Additionally, the connection
traffic at CPH is also reduced. The scalability of the system
is evident from the high PDR values and low percentage
error. Our implemented interoperable adapter enables dynamic
integration of new sensors in the system.

The star and mesh networks have their limitations. In future,
star network can be supported with robust algorithms to ensure
a higher PDR and minimize network traffic.
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