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Abstract: 

In this chapter, we propose COVI-SCANNER, an IoT-based solution to overcome the issue of 

secondary spread of the virus from fomite spaces in public infrastructures. With the assumption 

that the infected individuals are already identified, we design COVI-SCANNER as two augmented 

reality-based phases: contamination and sanitization. In the contamination phase, we first detect 

the person and the corresponding bounding boxes for tracking his/her movements and highlight 

the spaces as they contaminate it. In the sanitization phase, we first identify cleaning/sanitization 

materials/objects and remove the markers as they pass (while cleaning) through the highlighted 

fomite spaces to ensure sanitization. Additionally, we minimize the delay by dividing the resource-

constrained fog nodes into two dedicated sets for performing each phase before transferring to 

centralized servers for storage, which also reduces bottlenecks at the server. Through the extensive 

implementation of COVI-SCANNER, we observe that it operates with 81% accuracy on real-time 

data with a delay of at most 0.1 and 1.2 seconds for the contamination and sanitization phases, 

respectively.  Further, due to the incorporation of the IoT-based architecture, we observe maximum 

upload and download rates of 700 Kbps in each phase. 

1.1 INTRODUCTION 

The outbreak of the COVID-19 virus has spread at an alarming rate all around the world. The 

intangible nature of the virus and its transmission mode makes containment challenging. 

Moreover, the droplets from an infected individual remain remnant in their hands in addition to 

transmission in the form of aerosols, which leads to contamination of public objects and spaces on 

interaction (touching and passage). The COVID-19 virus survives for almost 3 days on surfaces 

made of steel and plastic, and over 24 hours on cardboards (Chamola 2020). This gives rise to 

fomite spaces and such intractable contamination rapidly facilitates secondary spreading, 

especially in closed public environments. As a healthy person interacts with these fomite spaces, 

the virus enters into the body and binds itself to cellular receptors and starts multiplying, leading 

to fatality. Such a high risk of secondary transmission mandates the need for rigorous contact 

tracing (Gan 2020). In such scenarios, Internet of Things (IoT)-based solutions have the potential 

to combat the COVID-19 virus by tracking and containing the fomite spaces. The use of smart 

solutions based on image and video processing for tracking fomite spaces is beneficial in 

restricting secondary spreading in closed environments. Such image processing-based solutions 

require high configuration devices for seamless execution. However, adopting legacy and 

affordable IoT infrastructures to deploy such monitoring technologies is beneficial.  
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Figure 1.1: Overview of the proposed COVI-SCANNER scheme. 

In this chapter, we propose COVI-SCANNER, an Augmented Reality (AR)-based fomite 

space monitor in closed environments on a fog-enabled IoT platform. As shown in Figure 1.1, the 

COVI-SCANNER scheme works in two phases: 1. Contamination and 2. Sanitization. In the 

contamination phase, COVI-SCANNER records the videos from the cameras for tracking the 

movement of the infected individuals and detects the spaces/objects that the person 

interfaces/touches. On detecting any such contact, the COVI-SCANNER highlights them 

(virtually) as potentially contaminated/fomite places. In the sanitization phase, the COVI-

SCANNER tries to look for cleaning materials such as brooms, wipes, mops, and others. Upon 

detection of these objects, the COVI-SCANNER tries to detect cleaning activity by the person 

interacting with the sanitization objects. In case the person starts cleaning and the object passes 

through the fomite places identified during the contamination phase, it removes the demarcations. 

In case the cleaning activity is complete and all of the demarcations are not removed at the end of 

the sanitization phase, COVI-SCANNER raises an alarm and notifies the concerned authorities. 

This method allows us to ensure the existence of minimal fomite places in public areas and reduce 

the secondary spread. Towards this, we use the readily available machine learning models: 1. 

MobileNet-SSD (Younis 2020) for detecting the person and objects in the contamination phase, 

and 2. 3D-ResNet (Hara 2018) for identifying the cleaning activity in the sanitization phase. It may 

be noted that we assume that the concerned authorities have information on the infected individuals 

and recognize them using available face recognition techniques (Khan 2019). We further propose 

a fog-based IoT architecture to deploy the proposed COVI-SCANNER scheme on pre-installed 

infrastructures. We account for the computational complexity in the AR-based operations and 

propose assigning different fog nodes for each contamination and sanitization phase. Since the two 

phases share the information on the fomite spaces, we propose storing the points in a shared 

database with provisions for real-time updates on highlighting and removal from the two phases. 

In this chapter, we propose COVI-SCANNER, an AR-based fomite space monitor in closed 

environments to minimize the secondary spreading of the COVID-19 virus. For the ease of 



deployment on legacy infrastructures, we propose a fog-enabled IoT architecture comprising of 

resource-constrained devices. The major highlights of this chapter are as follows: 

 COVI-SCANNER: We propose an AR-based method for tracking and monitoring fomite 

spaces to reduce the secondary spread of the COVID-19 virus. 

 Modular Operations: As image processing techniques involve complex computations, we 

divide COVI-SCANNER into two phases: Contamination and Sanitization. Such modules 

helps in reducing the load from the devices. 

 IoT-Based Architecture: To facilitate easy deployment on resource-constrained devices, 

we propose an IoT-based architecture that assigns dedicated fog nodes for performing each 

phase and sharing their data from a common database server in real-time. 

 Evaluation: To show the feasibility of the proposed COVI-SCANNER scheme, we 

implement and deploy in lab-scale and present the observed results. 

 

Example Scenario: Consider a closed environment such as hospitals, industries, and any 

other environment with cameras installed for monitoring. In such environments, fog nodes 

assigned for the contamination phase in COVI-SCANNER identifies the infected individuals. It 

then creates a bounding box around the person and tracks the person, particularly the arms and its 

interaction with the nearby objects. In the case of detecting such interactions, COVI-SCANNER 

marks them as fomite spaces on the screen. On the other hand, fog nodes assigned for the 

sanitization phase in COVI-SCANNER first identifies the necessary cleaning objects such as 

wipes, mops, brooms, and others to then detect the cleaning activity. As the individual cleans the 

regions, COVI-SCANNER tracks the cleaning objects and removes the highlighted portions. The 

COVI-SCANNER notifies the concerned authorities in case all the fomite spaces are not sanitized. 

The fog nodes operating under each phase share their data through a central database server for 

simultaneously updating the data in real-time. 

 

1.1.1 Motivation 

The recent outbreak of the COVID-19 virus has spread rapidly all around the world. The intangible 

nature of the virus and its mode of spread of the droplets in the form of aerosols and contact has 

increased the challenges of containing it. Current solutions depend on contact tracing and self-

assessment tests by individuals (Menni 2020), which is not reliable as they may enter false 

information to avoid isolation and containment. The remnants of the virus in an infected individual, 

particularly in the hands cause contamination of the objects and spaces with each touch, giving 

rise to fomite spaces. Healthy individuals acquire this virus by interacting with the same set of 

fomite spaces. The virus stays alive on cardboard and plastic surfaces for a duration of 24 hours to 

3 days, respectively. Such a lifespan increases the risk of spreading to more number of individuals 

each day, which mandates the need for efficient sanitization. The intractable transmission mode of 

the virus necessitates IoT-based solutions for monitoring and tracking fomite spaces in closed 

public areas to reduce secondary spread. Moreover, we propose an AR-based method (COVI-

SCANNER) to combat the secondary spread of the virus. However, image processing techniques 



involve complex operations for execution. Facilitating such operations on legacy infrastructures 

requires task distribution techniques for seamless deployment. Such issues act as our motivation 

for designing COVI-SCANNER and its IoT-based architecture. We envision such solutions to help 

in restricting the secondary spread of the COVID-19 virus in closed public environments. 

The rest of the chapter is organized as follows. We present some of the existing works in literature 

and techniques for combating the COVID-19 virus in section 1.2. In section 1.3, we present the 

system model. We discuss our observations in section 1.4 and finally conclude in section 1.5.  

1.2 OVERVIEW OF TECHNIQUES FOR COMBATING COVID-19 

In this section, we present some of the current literature on the COVID-19 virus and IoT solutions 

towards combatting it. We then present some of the existing works on computer vision, human 

activity recognition, and fog/edge computing solutions. 

1.2.1 COVID-19 and IoT 

The COVID-19 virus needs a week to show initial symptoms of infection and some do not show 

any symptoms at all (asymptotic cases). The authors in (Benreguia 2020) identified the issue and 

the significant difference in the documented and the actual count of positively infected individuals 

due to it. They proposed an IoT-based solution to track the known individuals and locations they 

have been. As healthy individuals visit the same location, the proposed solution warns them of 

potential infection. Wang et al. (Wang 2020) exploited the Social Internet of Things (SIoT) for 

identifying social relationships and potentially infected individuals as they come in contact with 

positively infected patients. They used a graph theoretic approach coupled with reinforcement 

learning to realize the proposed patient identification method. Researchers are also exploring 

machine learning (ML) methods for combatting the pandemic. Waheed et al. (Waheed 2020) 

focused on the lack of data due to the recent outbreak and the major drawback of the ML methods. 

They developed synthetic x-ray images by considering the effects of the COVID-19 virus and 

trained an Auxiliary Classifier Generative Adversarial Network (ACGAN) for identifying infected 

individuals with high precision. The authors in (Hussain 2020) have provided a comprehensive 

description of the ML methods and its role in combatting the COVID-19 virus. 

1.2.2 Computer Vision 

In this section, we highlight some of the works in literature focusing on the development of 

computer vision techniques and their applications. Morales et al. (Morales 2019) used a 

combination of VGG-16 network and convolutional LSTM layers to detect violent robberies 

through CCTV camera footage. Wong et al. (Wong 2020) proposed a novel approach to re-

identification of a person on a campus using multiple CCTV cameras by assigning higher weights 

to combinations of parts that helped in re-identification by evaluating the relative performances of 

each of these combinations. Khandelwal et al. (Khandelwal 2020) used face detection and person 

detection algorithms to raise alarms if people were detected not wearing masks or not following 

social distancing rules and also implemented the same in manufacturing plants having multiple 

CCTV cameras. 

 



1.2.3 Human Activity Recognition 

In this chapter, we use human activity recognition to distinguish between a normal person and a 

person who is cleaning infected areas. This field has seen a lot of research work in recent years 

mainly due to the increasing popularity of deep learning. Xu et al. (Xu 2019) proposed a deep 

learning model that draws inspiration from the inception network and Gated Recurrent Unit (GRU) 

to predict human activity by detecting inputs in the form of waveform data from multiple sensors 

attached to the body. Gnouma et al. (Gnouma 2019) proposed to use a dynamic frame skipping 

method and used Gaussian Mixture Model for foreground detection, both of which reduced the 

time taken for silhouette extraction which is required for human activity recognition. Noori et al. 

(Noori 2019) trained a Recurrent Neural Network consisting of Long Short Term Memory cells 

on the OpenPose dataset to predict activity performed by a human from different camera angles. 

 

1.2.4 Fog/Edge Computing 

Edge Computing helps in keeping computational and storage units closer to the devices for 

reducing bandwidth usage and response time. Abdellatif et al. (Abdellatif 2019) discussed the 

challenges of using edge computing concepts in healthcare systems and discussed in depth how 

wearable sensors and medical devices on the edge of the network could be used to monitor the 

health conditions of patients while ensuring user privacy is maintained as well. Cao et al. (Cao 

2015) proposed a real-time fall detection system for stroke patients by dividing the computation 

of analytics between smartphones with accelerometers having lower computational speed and edge 

nodes with higher computational speed to reduce and rectify false detections. Barthelemy et al. 

(Barthelemy 2019) proposed an edge computing architecture using a live feed from CCTV cameras 

across a smart city by using popular lightweight algorithms like YOLO V3 (Redmon 2018) and 

Simple Online and Real-time Tracking (SORT) algorithm to perform object detection and object 

tracking respectively. Deb et al. (Deb 2020) proposed a digital stethoscope SkopEdge for counting 

the number of heartbeats by exploiting the features of edge computing. They proposed sending the 

recorded audio in the most suitable format based on the network state and the device conditions. 

IoT devices such as SkopEdge have the potential of addressing the problems in the identification 

of the COVID-19 virus. 

1.2.5 Synthesis 

From the discussion in this section, it is evident that IoT solutions have a major role to help combat 

the rapidly spreading COVID-19 virus. These solutions help in tracking the positively infected 

individuals and identifying potentially asymptotic carriers based on the locations that they visit. 

Additionally, ML methods also help in diagnosing the patients and categorizing them as infected 

or healthy individuals. We also notice that the popularly available pre-trained ML models based 

on image processing help in maintaining social distancing and identifying violators. Since ML 

techniques involve computationally complex operations, fog/edge computing methods help in 

deploying the trained models on resource-constrained devices. Although we notice a myriad of 

applications, we observe a lacuna in reducing the secondary spread of the virus from fomite spaces. 

Towards this, we propose the COVI-SCANNER scheme using an IoT architecture to first identify 



and highlight the fomite spaces (contamination). Then, we propose identifying cleaning objects 

and the corresponding activity to trace and remove the highlighted fomite spaces (sanitization). 

 

1.3 SYSTEM MODEL 

In this section, we present the IoT network architecture adopted for the proposed COVI-

SCANNER scheme along with the information flow. Additionally, we also explain the solution 

technique for realizing COVI-SCANNER.  

1.3.1 IoT-Based Network Architecture for COVI-SCANNER 

We consider a set of pre-installed surveillance cameras C = {c1, c2,…, cp} responsible for 

monitoring the closed environments, as shown in Figure 1.1. The images and videos from these 

cameras pass through fog nodes before reaching the centralized storage server. In this chapter, we 

consider the routers, switches, and other devices present at the edge of the network as fog nodes. 

Considering a set of fog nodes F = {f1, f2,…, fq}, we split them into two subsets for performing each 

of the two phases in COVI-SCANNER. In other words, Fc ⊂ F fog nodes for contamination and 

Fs ⊂ F fog nodes for sanitization. It may be noted that the fog nodes in Fc and Fs may not be 

mutually explicit. The fog nodes with high configurations may execute both the modules for 

contamination and sanitization, respectively. It may be noted that the selection of the optimal set 

of fog nodes is beyond the scope of this chapter and we rely on available works on resource 

allocation (Tran 2018). Fog nodes executing the contamination routine tracks the infected 

individuals and highlight the fomite spaces on the screen. It then sends the details of each of the 

fomite spaces for storage and access by the fog nodes assigned for the sanitization phase. As the 

cleaning activity proceeds and the fog nodes detect the sanitization of the fomite spaces, it removes 

the corresponding information from the server. The data in the server is simultaneously accessible 

by both sets of fog nodes so that the concerned personnel may view the results on a screen in real-

time. In case the cleaning activity is over and fomite spaces continue to persist in the region, the 

server may issue an alarm for notifying the concerned authorities. 



 

Figure 1.2: Information flow in the proposed COVI-SCANNER scheme. 

1.3.2 Information Flow in COVI-SCANNER 

Figure 1.2 depicts the information flow among the devices mentioned in Section 1.3.1. The Fc fog 

nodes determine the fomite spaces and their coordinates in the contamination phase (Step 1). They 

send the coordinates of the infected regions along with the details of the bounding boxes to the 

centralized servers (Step 2). These coordinates are accessible by the sanitization phase to keep 

track of the cleaning of the fomite spaces (Step 3) and for performing the execution routine (Step 

4). The fog nodes remove the demarcated fomite spaces as the cleaning activity proceeds (Step 5). 

In the case of residual fomite spaces after sanitization, the server notifies the concerned authorities 

(Step 6). It may be noted that there is no need for manually removing the demarcated fomite spaces 

as the sanitization phase will automatically remove the same on detecting each sequence of 

cleaning activities (recurrent Step 5). 

1.3.3 Proposed Solution 

In this section, we describe the proposed solution technique and the adopted pre-trained ML 

models for realizing COVI-SCANNER. Conforming to the network architecture in Section 1.3.1 

and the information flow in Section 1.3.2, we present each of the phases in COVI-SCANNER 

separately in the subsequent sections. 

1.3.3.1 The Contamination Module 

We execute this module on the Fc set of fog nodes. We use the MobileNet-SSD network available 

in the deep learning module of OpenCV for object detection. The MobileNet-SSD network detects 

and returns coordinates of the bounding boxes for 20 classes of objects. Among these 20 classes, 

we only use the class labeled as person for our application and ignore the other classes. As 



mentioned earlier, we assume that the infected individuals are known beforehand and facial 

recognition techniques may be used for detecting them on the screen. We use the person class as 

proof of concept for the proposed COVI-SCANNER scheme. The MobileNet class of 

convolutional neural networks uses depth-wise separable convolutions followed by 1 × 1 pointwise 

convolutions which allows these models to be much more computationally much faster (Howard 

2017). This model allows us to detect and draw bounding boxes around all person objects detected 

in each frame. This module is entirely run on the contamination devices. 

Each person detected from the developed model pi has its own bounding box coordinates, 

represented by the upper left point (x
i

1
 , y

i

1
 ) and the lower right point (x

i

2
 , y

i

2
 ). For demarcating 

the places where each person pi has visited and the interacted objects, we calculate a fomite point 

fpi ∈  R2 for each person object. We calculate the fpi in such a manner to make sure that the fomite 

point is nearer to the points in the frame which helps in tracking the cleaning objects during the 

activity. Mathematically, we calculate fpi as: 

𝒇𝒑𝒊 =  (
𝒙𝟐

𝒊 + 𝒙𝟏
𝒊

𝟐
,

𝟗𝒚𝟐
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𝟏𝟎
)     (1.1) 

This fomite point fpi is used for tracking person objects from one frame to the next. Let the set of 

all person objects detected in a particular frame j be Pj while the set of all person objects detected 

in the next frame be Pj+1. Let each person object in frame j be p
j

i
 ∈ Pj and each person in the next 

frame j+1 be p
j+1

i
 ∈ Pj+1. Let fomite point of each person object p

j

i
 be fp

j

i
 , such that fp

j

i
 ∈ F

j

i
 . 

Initially, we calculate the Euclidean distances between all pairs of fomite points in Pj and Pj+1. We 

define each of the distances such as between fp
j

i
 and fp

j+1

i
  as dist((fp, fp

j+1

i
 )). To track each 

person on the screen effectively, we rely on the following set of rules: 

 Already Detected Person: For any fixed p
j

i
 , we consider the person to be already detected 

in p
j+1

i
 if dist((fp

j

i
 , fp

j+1

i
 )) is minimum ∀ fp

j+1

i
 ∈ F

j+1

i
 . We use this to rediscover already 

detected people from the previous frame j in the current frame j + 1. 

 New Person Detection: We demarcate an object as a new person and identities on the 

screen to all objects in Pj+1 that were not mapped as a person in Pj in the previous step. This 

is used when a new person who was not present in the frame j has just entered in the next 

frame j + 1. 

 Terminate Tracking: If pj+1 remains unassigned to any person object in Pj for 10 

consecutive frames, then we remove this person pi from the screen and store the list of all 

its corresponding fomite points in the centralized server for future reference. This is used 

to stop trying to find the closest fp
j+1

i
 to a particular fp

j

i
  belonging to a person p

j

i
  who has 

already exited the area of the frame. 

 



1.3.3.2 The Sanitization Module 

We execute this module entirely on the set of sanitization fog node (Fs) devices. We pass the 

bounding box of each detected person as input to a separate deep learning model to detect whether 

the person is performing the cleaning activity or not. If the person is detected to have been 

performing the activity of cleaning then its focus point is calculated. Let this focus point of cleaner 

person object be fC. Let M ∈ R2 be the set of the history of all fomite points of all persons detected 

so far. Let mi be each fomite point in M. To remove the fomite points of people in areas where 

cleaning activity has occurred we remove all mi from M, such that dist(fC,mi) < Dmax  

In our implementation of COVI-SCANNER, we consider Dmax = 50 pixels. We use the pre-trained 

3D-ResNet deep learning model which is trained on the Kinetics Human Action Video Dataset 

(Kay 2017) for identifying up to 400 different types of human activities to detect the cleaning 

activity. Out of all the 400 activity classes, we use only 2 classes of cleaning floor and mopping 

floor and categorize them as cleaning.  We do so by taking the previous N frames as input and 

predicting the activity in the (N+1)th frame. In this chapter, we use N=16 and N=10 while 

performing our experiments. 

1.4 PERFORMANCE EVALUATION 

In this section, we present our lab-scale experimental setup and present our observations on 

deploying COVI-SCANNER on the proposed IoT architecture. 

1.4.1 Experimental Setup 

We use two arbitrary systems with i3 and i5 processors and assign them for executing the 

contamination and sanitization modules. We install the MobileNet-SSD and 3D-ResNet ML 

models on the concerned devices and use the videos from the cameras as inputs in each case. We 

use Python 3.7 platform for realizing the proposed COVI-SCANNER scheme and to present its 

performance. 

1.4.2 Results 

In this section, we present and discuss the performance of the proposed COVI-SCANNER scheme 

on deployment. Towards this, we first present its output in identifying and removing the fomite 

spaces in each phase, followed by its corresponding accuracy. We then demonstrate the delay in 

executing each phase together with the upload rate for the contamination and sanitization phases 

along with the download rate at the centralized server. 



 

Figure 1.3: Identification of fomite spaces contaminated by infected individuals in the 

contamination phase. 

1.4.2.1 Output from Contamination Phase 

We capture one of the instances from the contamination phase. As mentioned earlier, we assume 

that the identity of the infected individuals is known beforehand and they may be identified using 

available face recognition techniques. In this chapter, we consider any random person to be 

infected with the COVID-19 virus for proof of concept. We observe in Figure 1.3 that COVI-

SCANNER detects a person on the screen (bounding box). As the person moves (steps 1 through 

4), the contamination routine highlights the floor as fomite space with several fomite points (red 

dots). We comment that the proposed COVI-SCANNER identifies the fomite spaces efficiently. 

 

Figure 1.4: Removal of the fomite spaces identified in the contamination phase on detection of 

cleaning activity in sanitization phase. 

 

 



1.4.2.2 Output from Sanitization Phase 

We capture the same instance corresponding to that in Section 1.4.2.1. We observe in Figure 1.4 

that the sanitization phase in COVI-SCANNER first identifies an individual (bounding box) and 

then the broom. Upon detection of the cleaning activity, the COVI-SCANNER starts removing the 

fomite spaces. At the end of the cleaning activity (steps 1 through 4), we observe that almost all 

of the fomite spaces are removed as the cleaning object passes through them. We may safely 

comment that the proposed COVI-SCANNER works efficiently in tracking the sanitization of the 

detected fomite spaces. 

 

Figure 1.5: Number of fomite spaces detected and removed on execution of each phase. 

1.4.2.3 Detection and Removal of Fomite Spaces 

We perform a cumulative count of the fomite points with each iteration for each of the phases. We 

observe in Figure 1.5 that the number of fomite spaces increases linearly in the contamination 

phase. This is because, with each progress in the execution, the contamination routine keeps 

tracking the infected individual and marks the fomite spaces. On the other hand, we notice that on 

the detection of the cleaning activity, the sanitization phase removes the corresponding fomite 

points efficiently. We notice almost 80% removal of the fomite points. We observe a steep 

decrease in the number of fomite points as the cleaner enters the scene for the first time. This is 

because the fomite points near the cleaner initially get removed in bulk, compared to the later time 

instants. Although we observe significant removal of the fomite points, we hardly notice 100% 

removal of the same. Intuitively, this may be because the cleaning object does not pass through all 

the fomite points or it may be due to the accuracy limitations of the pre-trained models. In the next 

section, we present the accuracies in each phase. 

 

 



Table 1.1 Accuracy, precision, recall, and F1-score of the COVI-SCANNER scheme. 

Videos Accuracy Precision Recall F1-Score 

Video 1 82.75% 85.71% 80.00% 82.75% 

Video 2 81.08% 85.25% 76.47% 78.78% 

Video 3 82.05% 85.35% 77.77% 79.99% 

Mean values 81.96% 85.43% 78.08% 80.51% 

 

1.4.2.4 Accuracy of the COVI-SCANNER Phases 

We arbitrarily use 3 videos as inputs to the COVI-SCANNER routine and tabulate the accuracy 

scores in Table 1.1. We briefly define each of the columns for understanding the results. Accuracy 

is the quality of correctness of the proposed scheme. Precision represents the correctly identified 

results and recall represents the number of correctly identified points in comparison to the actual 

one. The F1-score is the harmonic mean of the precision and recall results, represented as F1 = 

2/(recall-1+precision-1). On average, we observe an accuracy of 81%. We acquire the precision and 

recall values to identify the reason behind such low accuracies. We notice that on average, COVI-

SCANNER has a precision of 85% which suggests that it has a fairly high rate of fomite space 

detection. However, we observe low recall values of 78%, suggesting that the COVI-SCANNER 

identifies fomite spaces that may not be contaminated. Intuitively, we attribute this behavior to the 

occlusions that may be present in the video and that of the accuracies of the pre-trained MobileNet-

SSD and 3D-ResNet models with 80% and 75%, respectively. In the future, we plan to address 

this issue and increase the accuracy of the proposed COVI-SCANNER scheme. 

 

Figure 1.6: Delay in processing each frame with varying N. 

 

 

 



 

Figure 1.7: Delay in processing the frames in the contamination and sanitization phases. 

1.4.2.5 Delays in Executing COVI-SCANNER and its Phases 

Execution of image processing routines involves complex computations. We account for the high 

resource demand and propose executing the phases in the COVI-SCANNER scheme periodically 

after every N frames. Figure 1.6 depicts the time taken in seconds for each frame to be processed 

in the fog nodes. We observe spikes of almost 1.75 seconds after the N frames due to the delays in 

acquiring results from the pre-trained activity detection models. As expected, we observe in Figure 

1.6 that the frequency of the spikes decreases as we increase N from 10 to 16. This is because of 

the frequency of the execution of the COVI-SCANNER routines. However, the performance of 

the COVI-SCANNER starts deteriorating if N is increased as it will miss demarcating most of the 

fomite spaces, implying the existence of a tradeoff between accuracy and the processing delay of 

COVI-SCANNER. In this chapter, we limit our experiments up to N=16. 

We present a granular insight into the delays necessary for executing each phase. In Figure 

1.7, we observe that the sanitization phase endures more delay compared to that of the 

contamination phase. This is because the cleaning activity detection model in the sanitization phase 

requires more time to process as it needs to identify the person, the cleaning objects, and the 

activity than the person identification and tracking module (contamination). This is because the 

sanitization phase identifies the person and the object and then the cleaning activity. The 

contamination phase on the other hand only needs to identify the person and then start tracking. 

 



 

Figure 1.8: Upload rate in both contamination and sanitization fog nodes. 

 

Figure 1.9: Download rate at the centralized storage server. 

1.4.2.6 Upload and Download Rates 

We capture the upload and download rates using the command line application iftop available in 

Linux distributions. We observe in Figure 1.8 that the contamination phase needs a higher upload 

rate of almost 800 Kbps, compared to that of the sanitization phase. We observe this variation in 

the upload rates as the sanitization phase sends only the information about the time instants and 

coordinates of the fomite points for removal. The contamination phase needs to send the video 

along with the fomite points while uploading the data for storage at the centralized server. 

Corresponding to the upload rates from the fog nodes, we observe a maximum download rate of 

700 Kbps at the centralized server in Figure 1.9. Such high data rates at the fog nodes and the 

centralized servers are common because of the large size of videos and images from the cameras, 



implying the dependency of the proposed COVI-SCANNER on the quality of the network. In the 

future, we plan to use lightweight streaming protocols to reduce the data rates for each device. 

1.5 CONCLUSION 

In this chapter, we proposed an AR-based solution named COVI-SCANNER for limiting the 

secondary spread of the COVID-19 virus in closed public environments. COVI-SCANNER works 

in two phases: contamination and sanitization. In the contamination phase, COVI-SCANNER 

identifies the infected individuals and tracks them to detect fomite spaces and highlight them 

accordingly. In the sanitization phase, COVI-SCANNER identifies the cleaning objects and the 

corresponding cleaning activity to remove the fomite points from the contamination phase. In the 

case of residual fomite points on the screen after the cleaning activity is complete, the centralized 

server notifies the concerned authorities for re-sanitization. We achieve the identification of the 

individuals and the concerned activities using pre-trained MobileNet-SSD and 3D-ResNet models. 

Through deployment and extensive experimentation, we presented the efficiency of the proposed 

COVI-SCANNER scheme along with the necessary delays and data rates. We hope that with 

solutions like COVI-SCANNER, we may restrict the secondary spread of the COVID-19 virus in 

public places and ensure its sanitization. 

In this future, we plan to extend this work by increasing the accuracy of detecting and 

removing the fomite points. Additionally, we also plan to incorporate lightweight streaming 

protocols to reduce the data rates at the fog nodes and the centralized server. 
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