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Abstract—This paper presents a bargaining-based resource
allocation and price agreement in an environment of cloud-
assisted Wireless Body Area Networks (WBANs). The challenge is
to finalize a price agreement between the Cloud Service Providers
(CSPs) and the WBANs, and to establish the final mapping
between them. Existing solutions primarily focus on profits of the
CSPs, while guaranteeing different user satisfaction levels. Such
pricing schemes are bias prone, as quantifying user satisfaction
is fuzzy in nature and hard to implement. Moreover, such
traditional approach may lead to an unregulated market, where
few service providers enjoy the monopoly/oligopoly situation.
However, in this work, we try to remove such biasness from
the pricing agreements and envision this challenge from a
comparatively fair point of view. In order to do so, we use
the concept of bargaining, an interesting approach involving
cooperative game theory. We introduce an algorithm – MUST-
NBS – a multi-stage Nash bargaining solution, that unfolds into
multiple stages of bargaining, as the name suggests, until we
conclude price agreement between the CSPs and the WBANs.
In addition, the proposed algorithm also consummates the final
mapping between the CSPs and the WBANs, depending on
the cost-effectiveness of the WBANs. Analysis of the proposed
algorithm and the inferences of the results validates the usefulness
of the proposed mapping technique.

Index Terms—Wireless Body Area Networks, Cloud-assisted
WBAN, Cloud Service Providers, Nash Bargaining Solution,
Pareto Optimal, Resource Allocation, Cloud Pricing Schemes.

I. INTRODUCTION

Promising advancements in the domain of wearable and
autonomous sensing of physiological parameters have enabled
the large-scale deployment of Wireless Body Area networks
(WBANs) [1]. Applications in diverse domains such as –
real-time ubiquitous health monitoring, rescue operations af-
ter disasters, military applications, interactive gaming, and
human-computer interaction exploit the benefits of this new
technology. In particular, the integration of this miniaturized
technology with Internet and wireless technology, have revolu-
tionized the development of pervasive healthcare systems [2].
Thus, the exigency of scalable storage and powerful processing
infrastructure for better services is evident. Cloud computing
plays a crucial role in addressing this technological lacuna

[3] with its attractive properties such as – virtualization of
resources, scalability, cost effective on-demand service, and
pay-per-use model [4]. These advantages have popularized the
use of cloud-assisted WBANs [5]–[7]. Therefore, consequently
there exists the necessity to develop an architecture that
performs mapping among the Cloud Service Providers (CSPs)
and the WBANs, in a cost-effective manner.

A. Motivation

Location independent, cloud-assisted WBANs enable the
scopes of pervasive and ubiquitous monitoring through modern
e-Health and m-Health applications [8]–[11]. WBANs convey
real-time physiological data to the clouds and the medical
teams continuously monitor these physiological information.
In exchange of this, the WBANs, or more precisely, the
end-users pay charges according to the healthcare monitoring
services they consume [12]–[14]. As cloud-assisted WBANs
are being exploited by the global population, the pricing of
services undergoes competition. Different CSPs follow differ-
ent pricing schemes, and try to maximize their profits, while
guaranteeing different levels of satisfaction to the customers
[15], [16]. However, it is difficult to quantify user satisfaction,
and it is even harder to optimize and implement such pricing
schemes in real-time. On the other hand, the price that an end-
user can afford for WBAN-cloud services, varies individually.
The end-users are free to change their service providers in
order to minimize their effective expenditure. Currently, it is
stressed to always maximize the profit of service providers,
which leads to massive and continuous profit to the provider,
without much consideration of the end-users. Thus, most
of the existing pricing schemes may lead to biased pricing
agreements.

Market power [17], in Economics, is the ability to individu-
ally affect either the total quantity or the market price of a good
or service. The business firms that have significant market
power, are known as “price makers”. These few business firms
may dominate the total market by influencing prices, quantity
and quality of goods or services. When a new technology
is commercialized, particularly concerning health services to
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under-privileged people in developing nations, it is unexpected
that the service providers engage themselves in profit-based
competition to achieve monopoly in the market, and set unaf-
fordable, unjustifiable service charges, which are higher than
those motivated by costs. Again, in case of oligopoly, multiple
existing service provider may collude with one another to form
a monopoly, in order to influence the market [18], [19]. Thus,
proper regulation in market is necessary in order to explore
new dimensions through which governments may interfere
with industrial activities for the benefits of the society [20].
Even improper price capping as a tool for market regula-
tion for the monopolists and prohibiting cooperation between
competitors sometimes may result into harmful outcomes for
the soceity1. Most of the existing pricing schemes directly or
indirectly try to maximize the profit of these “price makers”,
which may lead to unfair pricing agreements. Thus, there is
a need to manage the price agreement problem between the
service providers and the customers from a different point of
view. In this paper, we employ a price capping and negotiation
algorithm that repeatedly iterates in order to regulate the price
per unit resource, until an agreement is established between a
WBAN and a CSP.

In the context of cloud-assisted WBANs, the proposed
algorithm – Multi-Stage Nash Bargaining Solution (MUST-
NBS) – executes repetitive bargaining between all possible
combinations of WBAN-CSP pairing and furthermore maps
a WBAN with a CSP depending on the cost-effectiveness of
the WBANs.

B. Contribution

The specific contributions of this work are as follows:
• We conceptualize a unit that computes price utility of

WBANs and CSPs associated with the unit, in order to
execute a participatory multi-stage bargaining process.

• We envision the necessity of price capping and iterative
negotiation to control unjustifiable price hikes.

• Goodput and throughput of a particular WBAN are
considered in its utility function design during resource
allocation among the WBANs.

• This work also considers the ranking of CSPs and the
physiological severity of each WBAN while computing
final price agreement between the two agents – the CSPs
and the WBANs.

C. Paper Organization

The remainder of the paper is organized as follows. In
Section II, we briefly describe the existing literature that covers
studies relating to cloud pricing and the integration of WBANs
and cloud. In Section III, we propose the architecture that
has been used in this work and briefly describe the individual
components of the architecture. Section IV summarizes the
proposed MUST-NBS algorithm and its solution along with

1JEAN TIROLE: MARKET POWER AND REGULATION, Scientific
Background on the Sveriges Riksbank Prize in Economic Sciences in Memory
of Alfred Nobel 2014, compiled by the Economic Sciences Prize Committee
of the Royal Swedish Academy of Sciences, 13th October, 2013.

the final mapping decision. In Section V, we provide analytical
results in support of our work. Section VI concludes this work,
while citing different areas in which the proposed work can
be extended in the future.

II. RELATED WORKS

Cloud-assisted healthcare has recently been a major re-
search concern, as it supports real-time and ubiquitous health
monitoring, which is extremely beneficial in case of post-
operative care or in any mission-critical applications [5]–
[7]. Thus, deciding optimal pricing scheme in CSPs demand
significant involvement, which helps the cloud computing
technology to flourish in the existing IT market [21], [22].

Popular cloud service platforms such as Amazon Web
Services, Google App Engine, and Windows Azure follow
pay-per-use model, which is the most common model in
cloud computing [22]. The main disadvantage of this model
is the full authority of the CSPs to set a static and constant
price per unit resource. In a monopolistic market condition,
this model may behave unfairly with the customers. Among
other theoretical works on pricing, [23]–[25] are significant.
Auction-based pricing schemes were proposed by Teng et al.
[23] and Mihailescu et al. [24]. Xu et al. [25] proposed a
method based on revenue management framework, in order
to maximize the revenues of the CSPs, with the presence of
stochastic demand and perishable resources.

Also in an oligopolistic condition, the CSPs cannot scale
up or down the price depending on the varying demand. In
subscription-based models, the customers may overpay or un-
derpay for the resources [22]. Among other theoretical studies,
Feng et al. [16] proposed a game theoretic study that considers
an oligopoly market of several CSPs as a noncooperative
competition with a goal of optimizing the prices for each
CSP. Kantere et al. [15] proposed a method that considers
the correlation of cache structures (such as table columns, and
indexes) and maximizes cloud profit in a resource-economic
way, while guaranteeing some fixed user satisfaction. Another
interesting work by Pal et al. [26] formulated the price and
QoS games, which are non-cooperative in nature, between
multiple CSPs, in order to set optimal prices and QoS levels
for customers. In addition, the authors also addressed optimal
resource provisioning problem that minimizes the wastage of
resources and guarantees customers’ QoS satisfaction levels.

The approach of cooperative bargaining was also ex-
plored in the past [27]–[31]. Park et al. [27] presented two
bargaining solutions – Nash bargaining solution (NBS) and
Kalai-Smorodinsky bargaining solution (KSBS), in order to
optimally allocate the bandwidth among multiple collaborative
agents. Shrimali et al. [28] proposed a technique where internet
service providers efficiently apply NBS to optimize social
cost function. Cooperative resource bargaining among mobile
virtual network operators (MVNOs) was proposed by Hew
et al. [29]. The problem of optimal flow control in delay
constrained traffic with the help of NBS was addressed by
Mazumdar et al. [30]. Cao et al. [31] proposed a bargaining
theory-based solution in order to allocate relay power in
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a multi-user single-relay wireless network. MUST-NBS, the
proposed bargaining solution, on the contrary, is an extension
of general NBS, and it is capable of managing a thorough
bargaining process between two agents until they converge to
an agreement.

Synthesis: In most cases, the goals of the CSPs seek
to achieve profit and sales targets, which sometimes may
cause user dissatisfaction [32]. Moreover, in emergency health
monitoring situations, or in case of mission critical scenarios,
the customers should get sufficient attention, which creates a
lacuna in the above-mentioned existing studies. In addition,
practical implementation of these studies are not easy. Thus,
we envision a simple but effective approach, which we follow
in day-to-day life. When we desire to buy a product from
any shop, knowingly or unknowingly, whenever possible, we
engage ourselves in a bargaining process with the shopkeeper.
In general, the shopkeeper’s initial price bid, at which he/she
wants to sell the product is high. On the other hand, the
customer wants to buy the product with much less payment
than the shopkeeper’s bid. Eventually they form a bargaining
scenario, where the shopkeeper slowly decreases his/her price
bid, and the customer increases his/her price bid, until both
the parties achieve an agreement. We apply this concept in
the proposed algorithm for finalizing the price agreement
among the CSPs and the WBANs, followed by a cost-effective
mapping between them.

III. ARCHITECTURE

In case of modern ubiquitous healthcare, the customers are
equipped with cloud-assisted WBANs, for real-time monitor-
ing of physiological parameters. WBANs consume resources
(such as network bandwidth, and processing power at the
cloud-end) and the customers pay charges set by the service
providers, according to the resource usages. The problem
we address in this work has two-fold objectives. Firstly, the
proposed algorithm allocates resources to the WBANs, and
secondly, it decides the final agreement between a CSP and
a WBAN regarding the price per unit resource. We assume a
system where the basic components – m WBANs and n clouds
(or CSPs) are involved in communication. Apart from these
entities, the proposed architecture consists of three primary
units – the Resource Management Unit (RMU), MUST-NBS,
and Mapping Unit, as illustrated in Figure 1. These three
units act as the backbone of the proposed architecture, and
are responsible for resource allocation, price negotiation, and
WBAN-CSP mapping, in order to to get cost-effective cloud
services. Brief descriptions of these elements are given as
follows:

• Resource Management Unit: As the network resources
are limited in amount, the WBANs participate in a
cooperative game in order to achieve satisfactory amount
of resources. They participate in a bargaining process
by providing their minimum demands to the RMU. In
order to allocate resources to all the WBANs, the RMU
computes utility based on the minimum demands and
other parameters of each WBAN, and applies NBS, as

Fig. 1: WBAN-Cloud Architecture

described in Section IV.

• MUST-NBS: It is the unit that executes the proposed
algorithm, named as the Multi-Stage Bargaining Solution.
The CSPs place their maximum price bid points, per
unit resource, at which they want to sell the resource.
Similarly, the WBANs also place to the MUST-NBS unit
their minimum price bids at which they want to buy the
resource. MUST-NBS performs a repetitive bargaining
process with multiple stages, in order to minimize the
pricing difference between the CSPs and the WBANs.
Eventually, this unit conveys the final price agreements
of each CSP and WBAN to the Mapping Unit.

• Mapping Unit: Mapping Unit computes possible map-
pings among WBANs and Clouds. It also calculates
the expected service cost of each possible WBAN-
Cloud mapping, and finally chooses the optimal one for
WBANs. In the proposed architecture, one CSP is capable
of providing services to multiple WBANs.

We design the mathematical model in the next section
according to the proposed architecture, in order to achieve a
price agreement between the WBANs and the CSPs, followed
by a cost-effective mapping between them.

IV. ANALYTICAL MODEL

We formulate the problem of resource allocation among
the WBANs, and price negotiation between the WBANs and
the CSPs as bargaining games. In case of price negotiation, the
use of bargaining methods among WBANs helps to achieve
a joint agreement regarding their price bids placed against
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per unit resource. It can be viewed as a regulatory principle.
Avoiding such practice may lead to an unstable condition,
where the price bids placed by one or many WBANs are
unjust. We also apply price capping to limit the sum of
price bids against per unit resource in a particular stage, and
force the WBANs to place their price bids reasonably. In
this work, the parameter Criticality Index (CI), justifies the
reasonability of the price bids for each WBAN. Similarly,
the CSPs must have to go through a nearly same bargaining
procedure, having a price cap on their total sum of price
bids. Price caps provide strong motivations to the monopolistic
service providers to set their service charges reasonably. Price
capping is an integral part of market regulation. Interesting
works of Laffont and Tirole challenged the traditional aspects
of market regulation, and presented the necessity to consider
industry-specific conditions [33]–[35]. Thus, in the proposed
work we consider the important attributes for both CSPs and
the WBANs (such as – CI of the WBANs, ranking of the
CSPs), different costs associated with data management among
a pool of clouds, along with the bargaining and the price
capping approach.

In case of resource allocation, the WBANs participate in
a cooperative game with their minimum resource demands.
The RMU receives the minimum resource demands from the
WBANs, forms a bargaining problem, and allocates resources
after solving the bargaining problem. Similarly, in case of price
negotiation, the MUST-NBS unit manages the maximum and
minimum price bids of the CSPs and the WBANs respectively.
The unit executes the proposed algorithm in order to finalize
price agreements and the mapping between the WBANs and
the CSPs. We derive three different utility functions – resource
utility of the WBANs to allocate resources among them, price
utility of the WBANs, and price utility of the CSPs. A brief
generalized description regarding a utility function is as fol-
lows.

The utility function of the ith agent at time t is denoted by
Ui(Si,t), where i = 1, 2,..., m. Therefore, we get a closed set
to represent all possible utilities of participating agents. Let it
be denoted by S. The set S is known as the joint utility set
or a feasible utility set [36].

S = {U1(S1), U2(S2), ..., Um(Sm)} ∈ Rn. (1)

Each agent has a minimum demand, below which it does
not cooperate in the game. This point is termed as the
disagreement point. The disagreement point for the ith agent
is denoted by Simin, where i = 1, 2,..., m. Furthermore, the set
of disagreement points is defined as:

Smin = {S1
min, S

2
min, ..., S

m
min} ∈ Rn. (2)

Definition 1. (Resource Utility of WBANs): The resource
utility for the ith WBAN at present time instant (t + 1) is
defined as:

Ui(Si,t+1) =
Gi,t
Ti,t

(Si,t+1 − Smini,t+1) (3)

TABLE I: Summary of Notations

Notation Description

Si,t+1
Allocated resource amount to ith WBAN at time
(t+ 1)

Smin
i,t+1

Minimum resource demand by ith WBAN at time
(t+ 1)

Gi,t
Network goodput associated with ith WBAN at time
t

Ti,t
Network throughput associated with ith WBAN at
time t

Ui(Si,t+1) Resource utility of ith WBAN at time (t+ 1)

Cs
t+1 Total available resource amount at time (t+ 1)

CPj,t+1
Decided price per unit resource for jth CSP at time
(t+ 1)

CPmax
j,t+1 Maximum price bid by jth CSP at time (t+ 1)

Uj(CPj,t+1) Price utility of jth CSP at time (t+ 1)

Ccp
t+1

Total price capping amount for the CSPs at time (t+
1)

WPi,t+1
Decided price per unit resource for ith WBAN at
time (t+ 1)

WPmin
i,t+1 Minimum price bid by ith WBAN at time (t+ 1)

Ui(WPi,t+1) Price utility of ith WBAN at time (t+ 1)

Cwp
t+1

Total price capping amount for the WBANs at time
(t+ 1)

αj,t Ranking of jth CSP at time t

βi,t Criticality index of ith WBAN at time t

∆ij,t+1 Total payable amount of ith WBAN to jth CSP

Si,t+1 is the final allocation of resources to ith WBAN at
time (t+ 1), with the constraint given as

m∑
i=1

Si,t+1 = Cst+1 (4)

where, C is the resource available for total m WBANs.

Definition 2. (Price Utility of CSPs): The price utility for the
jth CSP at present time instant (t+ 1) is defined as:

Uj(CPj,t+1) = (CPmaxj,t+1 − CPj,t+1) (5)

CPj,t+1 is the price per unit resource decided for jth CSP
at time (t+ 1), with the constraint given as

n∑
j=1

CPj,t+1 = Ccpt+1 (6)

Definition 3. (Price Utility of WBANs): The price utility for
the ith WBAN at present time instant (t+ 1) is defined as:

Ui(WPi,t+1) = (WPi,t+1 −WPmini,t+1) (7)

WPi,t+1 is the affordable price per unit resource decided
for ith WBAN at time (t+ 1), with the constraint as

m∑
i=1

WPi,t+1 = Cwpt+1 (8)

Theorem 1. The joint utility sets considered in this work are
convex.
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Proof. In the proposed work, we consider three utility func-
tions – resource utility of WBANs, price utility of CSPs and
price utility of WBANs.

A set A is convex if for any X1,X2 ∈ A and for any
λ with 0 ≤ λ ≤ 1, λ X1 + (1 − λ) X2 ∈ A. In case of
resource sharing among the WBANs, the joint utility set is
As = {U1(S1), U2(S2), ..., Um(Sm)}. Let Xi and Yi be two
utility points in the joint utility set S. The joint utility set for
resource allocation of WBANs is convex if, [λXi+(1−λ)Yi] ∈
As.

From Equation 3, we conclude,

Si,t+1 =
Ti,t
Gi,t

.Ui + Smini,t+1 (9)

Therefore,
m∑
i=1

Si,t+1 =

m∑
i=1

Ti,t
Gi,t

.Ui +

m∑
i=1

Smini,t+1

⇒ Cst+1 ≥
m∑
i=1

Ti,t
Gi,t

.Ui +

m∑
i=1

Smini,t+1

⇒ Cst+1 −
m∑
i=1

Smini,t+1 ≥
m∑
i=1

Ti,t
Gi,t

.Ui (10)

Hence, the joint utility is expressed as follows:

As =

{
Ui(Si,t+1)

∣∣∣∣∣
m∑
i=1

Ti,t
Gi,t

.Ui ≤ Cst+1 −
m∑
i=1

Smini,t+1

}
(11)

To prove the convexity of set S, we have to show that,
f(λ) =

∑m
i=1

Ti,t

Gi,t
[λUi(Xi,t+1) + (1− λ)Ui(Yi,t+1)] is con-

vex. We conclude that,
m∑
i=1

Ti,t
Gi,t

[λUi(Xi,t+1) + (1− λ)Ui(Yi,t+1)]

=

{∑m
i=1

Ti,t

Gi,t
.Ui(Yi,t+1) if λ = 0∑m

i=1
Ti,t

Gi,t
.Ui(Xi,t+1) if λ = 1

(12)

f(λ) is non-negative when λ = 0 and 1, as Ui(Yi,t+1)
and Ui(Xi,t+1) are non-negative values. To show that f(λ) is
convex, we also need to prove that the second-derivatives of
f(λ) are also non-negative, for all 0 < λ < 1. Let the ith

term of f(λ) be denoted by fi(λ). Therefore,

dfi(λ)

dλ
=
Ti,t
Gi,t

.Ui(Xi,t+1)− Ui(Yi,t+1)

⇒ d2fi(λ)

dλ2
= 0 (13)

Hence, the function fi(λ) is convex. As the sum of convex
functions is also convex, f(λ) is convex.

Similarly, the joint utility sets for both CSPs and WBANs
pricing are,
Acp = {U1(CP1), U2(CP2), ..., Un(CPn)} and,
Awp = {U1(WP1), U2(WP2), ..., Um(WPm)}.

Therefore, these two sets Acp and Awp are expressed
as follows:

Acp =

{
Uj(CPj,t+1)

∣∣∣∣∣
n∑
j=1

Uj(CPj,t+1) ≥

n∑
j=1

CPmaxj,t+1 − C
cp
t+1

}
(14)

Awp =

{
Uj(WPi,t+1)

∣∣∣∣∣
m∑
i=1

Ui(WPi,t+1) ≤

Cwpt+1 −
m∑
i=1

WPmini,t+1

}
(15)

From Equations (14) and (15), by following a similar
approach, it can be shown that the two sets Acp and Awp
are convex. This concludes the proof.

A. Proof of Axioms
We assume F to be a function F : (St+1, S

min
t+1 ) → Rn

representing the bargaining solution for resource allocation
among the m WBANs, at time (t+1). In case of two WBANs,
the allocation is the solution of the following optimization
function.

F (St+1, S
min
t+1 )

= arg max
(S1,t+1,S2,t+1)

U1(S1,t+1).U2(S2,t+1)

= arg max
(S1,t+1,S2,t+1)

G1,t

T1,t
.
G2,t

T2,t
.(S1,t+1 − Smin1,t+1)(S2,t+1 − Smin2,t+1)

(16)

where, (S1,t+1, S2,t+1) ∈ S.
F must satisfy the following axioms [36].

1) Pareto Efficiency
2) Symmetry
3) Invariance or independence of linear transformation
4) Independence of irrelevant alternatives

Axioms 2, 3 and 4 are referred to as the axioms of fairness. The
necessary evidences, which prove that our bargaining solution
satisfies these four axioms, are given below.

Lemma 1. The proposed bargaining solution for the resource
allocation among WBANs, F : (St+1, S

min
t+1 ), satisfies Pareto

optimality.

Proof. Let, there exist new allocations Snew1,t+1 and Snew2,t+1,
in a two-user scenario. Suppose these allocations are larger
than the solution of the optimization function illustrated in
Equation (16). Therefore, certainly Snew1,t+1 > S1,t+1, and
Snew2,t+1 > S2,t+1. As the network goodput, network through-
put, and the minimum demands of the WBANs are constant,
from Equation (16), we conclude that,

(Snew1,t+1 − Smin1,t+1)(Snew2,t+1 − Smin1,t+1) >

(S1,t+1 − Smin1,t+1)(S1,t+1 − Smin1,t+1)

⇒ F (Snewt+1 , S
min
t+1 ) > F (St+1, S

min
t+1 ) (17)
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Equation (17) violates the notion of the optimization func-
tion. Therefore, it is not possible to have larger allocation
than the solution of the optimization function illustrated in
Equation (16). This concludes the proof.

Lemma 2. The proposed bargaining solution for the resource
allocation among WBANs, F : (St+1, S

min
t+1 ) is symmetric in

nature.

Proof. Let, there be allocations S1,t+1 and S2,t+1, that max-
imize the optimization function. If F is symmetric, then the
minimum demands of the two WBANs are equal, i.e., Smin1,t+1 =
Smin2,t+1. In that case we interchange the minimum demands for
the WBANs in Equation (16), and conclude that the maximum
value of the optimization function remains unchanged, even if
we alter the allocations, i.e., S2,t+1 for the 1st WBAN and
S1,t+1 for the 2nd WBAN. This concludes the proof.

Lemma 3. The proposed bargaining solution for the resource
allocation among WBANs, F : (St+1, S

min
t+1 ) is independent of

linear transformation.

Proof. Let (Stft+1, S
min,tf
t+1 ) be a linear transformation of the

bargaining problem (St+1, S
min
t+1 ), where the linear transfor-

mation is represented by following equations.

Stfi,t+1 = piSi,t+1 + qi (18)

Smin,tfi,t+1 = piS
min
i,t+1 + qi (19)

where, pi > 0.
Therefore,

F (Stf1,t+1, S
tf
2,t+1)

=
G1,t

T1,t
.
G2,t

T2,t
.(Stf1,t+1 − S

min,tf
1,t+1 )(Stf2,t+1 − S

min,tf
2,t+1 )

=
G1,t

T1,t
.
G2,t

T2,t
.(p1S1,t+1 + q1 − p1Smin1,t+1 − q1).

(p2S2,t+1 + q2 − p2Smin2,t+1 − q2)

= p1
G1,t

T1,t
.(S1,t+1 − Smin1,t+1).p2

G2,t

T2,t
.(S2,t+1 − Smin2,t+1)

= p1p2 F (S1,t+1, S2,t+1) (20)

Therefore, the proposed bargaining solution is independent of
linear transformation.

Lemma 4. The proposed bargaining solution for the resource
allocation among WBANs, F : (St+1, S

min
t+1 ) is independent of

irrelevant alternatives.

Proof. Let there be two bargaining problems (St+1, S
min
t+1 ),

and (Saltt+1, S
min
t+1 ), such that Salt ⊆ S. If F : (St+1, S

min
t+1 ) ∈

Salt, then F : (Saltt+1, S
min
t+1 ) = F (St+1, S

min
t+1 ). Therefore,

if bargaining in the utility region S results in a solution
F (St+1, S

min
t+1 ) that lies in a subset Salt of S, then a hy-

pothetical bargaining in the smaller region Salt results in the
same outcome. This concludes the proof.

Similarly, it can be proved that the solutions of the bar-
gaining problems for both CSP pricing and WBAN pricing,
also satisfy these four axioms.

Theorem 2. There exists a unique solution for the resource
allocation among the WBANs, satisfying the four axioms, and
this solution is the pair of resource utilities (s∗1,t+1, s

∗
2,t+1)

that solve the following optimization problem [36].

arg max
(S1,t+1,S2,t+1)

U1(S1,t+1).U2(S2,t+1)

⇒ arg max
(S1,t+1,S2,t+1)

G1,t

T1,t
.
G2,t

T2,t
.(S1,t+1 − Smin1,t+1)(S2,t+1 − Smin2,t+1)

(21)

such that, (s1,t+1, s2,t+1) ∈ S and (s1,t+1, s2,t+1) ≥
(Smin1,t+1, S

min
2,t+1) where, (s1,t+1 − Smin1,t+1)(s2,t+1 − Smin2,t+1) is

termed as Nash product.

Proof. Based on the proofs of Lemmas 1 to 4, we conclude
that the proposed bargaining solution satisfies the four axioms
stated by Nash.

B. Solution

In case of resource allocation among the m WBANs, the
optimization function is as follows.

F (St+1, S
min
t+1 ) = arg max

(S1,t+1,...,Sm,t+1)

m∏
i=1

Ui(Si,t+1)

⇒ F (St+1, S
min
t+1 ) = arg max

(S1,t+1,...,Sm,t+1)

m∏
i=1

Gi,t
Ti,t

(Si,t+1 − Smini,t+1)

subject to,

Si,t+1 ≥ Smini,t+1 and
m∑
i=1

Si,t+1 = Cst+1 (22)

We take logarithm of the optimization function, in order to
simplify the operation, as such an operation will not change
the expected outcome of an optimization problem. Thus, we
form the following equivalent expression of the optimization
function described in Equation (22).

F (St+1, S
min
t+1 ) =

arg max
(S1,t+1,...,Sm,t+1)

m∑
i=1

log

[
Gi,t
Ti,t

(Si,t+1 − Smini,t+1)

]
(23)

We solve the optimization function mentioned in Equa-
tion (23) using the Lagrange Multiplier approach. The corre-
sponding Lagrange Function is as follows.

L =

m∑
i=1

log

[
Gi,t
Ti,t

(Si,t+1 − Smini,t+1)

]
− λ

[
m∑
i=1

Si,t+1 − Cst+1

]
(24)

where, λ is the Lagrange Multiplier.
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The partial derivative of L with respect to Si,t+1 is given
below.

∂L

∂Si,t+1
=

Gi,t
Ti,t(Si,t+1 − Smini,t+1)

− λ = 0 (25)

The partial derivative of L with respect to λ is given below.

∂L

∂λ
= Cst+1 −

m∑
i=1

Si,t+1 = 0 (26)

Therefore, we get total (m+1) equations, and after solving
which we get the generalized solution for resource allocation
in WBANs as follows:

Si,t+1 = Smini,t+1 +
Gi,t
Ti,t

[
Cst+1 −

∑m
i=1 S

min
i,t+1∑m

i=1
Gi,t

Ti,t

]
(27)

Similarly, while deciding the pricing bids of the CSPs
and the WBANs in each stage, we follow the same principle
of NBS in order to form the respective objective functions
and solve them. The minimum price bid of the WBANs vary
between one another in every stage. As the negotiation con-
tinues, this minimum price bids increase with each iteration,
until the price bids from any two agents (one from WBANs,
and one from CSPs) converge. The situation is the same in
case of the maximum demand of the CSPs in a particular
stage. During negotiation, it follows a decreasing trend until
convergence. However, along with the minimum price bid of
the WBANs, and the maximum price bids of the CSPs, we
consider bargaining powers to implement weighted fairness in
the respective objective functions.

In case of CSP pricing, we consider αj,t as the bargaining
power of jth CSP. The value of αj,t represents the ranking of
the jth CSP in international market at time t. We represent
the optimization function as following.

F (CPt+1, CP
max
t+1 )

= arg min
(CP1,t+1,...,CPn,t+1)

n∏
j=1

Uj(CPj,t+1)αj,t

= arg min
(CP1,t+1,...,CPn,t+1)

n∑
j=1

αj,t log

[
CPmaxj,t+1 − CPj,t+1

]
subject to,
CPj,t+1 ≤ CPmaxj,t+1 and
n∑
j=1

CPj,t+1 = Ccpt+1 (28)

Solving the optimization function described in Equa-
tion (28) through a similar Lagrange Multiplier method, we
get the solution as following.

CPj,t+1 = CPmaxj,t+1 −
αj,t
n∑
j=1

αj,t

[
n∑
j=1

CPmaxj,t+1 −
n∑
j=1

CPj,t+1

]

(29)

In case of WBAN pricing, we consider βi,t as the bargain-
ing power of the ith WBAN. The value of βi,t represents the
CI of the ith WBAN at time t. We represent the optimization
function as follows.

F (WPt+1,WPmint+1 )

= arg max
(WP1,t+1,...,WPm,t+1)

m∏
i=1

Ui(WPi,t+1)βi,t

= arg max
(WP1,t+1,...,WPm,t+1)

m∑
i=1

βi,t log

[
WPi,t+1 −WPmini,t+1

]
subject to,

WPi,t+1 ≥WPmini,t+1 and
m∑
i=1

WPi,t+1 = Cwpt+1 (30)

The solution of the optimization problem described in
Equation (30) is as follows:

WPi,t+1 = WPmini,t+1+
βi,t
m∑
i=1

βi,t

[
m∑
i=1

WPi,t+1−
m∑
i=1

WPmini,t+1

]

(31)

C. Multi-Stage Nash Bargaining Solution

We formulate the pricing of per-unit resource as a multi-
stage bargaining problem. The motivation behind the extension
of the traditional bargaining approach into a multi-stage bar-
gaining one is to provide an enlarged space of negotiation
between two heterogeneous entity, i.e., the CSPs and the
WBANs in this case. The convergence in their price bids
decides the number of stages that are to be followed by the
proposed algorithm. The algorithm terminates when at least
one WBAN wishes to pay more charge than the service charge
demanded by any one of the CSPs, thereby achieving a more
reasonable negotiation between them.

Fig. 2: Multi-Stage Bargaining

As stated in the proposed algorithm, the CSPs place
their maximum price bid points, per unit resource at which
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Algorithm 1: Negotiate
Input: Initial bargaining points from n Clouds and m

WBANs.
Output: Final pricing after multi-stage bargaining.

Turn←− 0
while Turn ≥ 0 do

// Negotiating to converge at a
point

if Turn 6= 0 then
for j ← 1 to n do

Ccpt+1 ←− C
cp
t+1 −

[
CPmaxj,t+1 − CPj,t+1

]
PrevSolCPj ←− CPj,t+1

CPmaxj,t+1 ←− CPj,t+1

for i← 1 to m do
Cwpt+1 ←− C

wp
t+1 +

[
WPi,t+1 −WPmini,t+1

]
PrevSolWPi ←−WPi,t+1

WPmini,t+1 ←−WPi,t+1

// Nash Bargaining Solution for
Clouds and WBANs

CPj,t+1 ←− Solution of F (CPt+1, CP
max
t+1 ), ∀j

WPi,t+1 ←− Solution of F (WPt+1,WPmint+1 ), ∀i

if Turn = 0 then
PrevSolCPj ←− CPj,t+1

PrevSolWPi ←−WPi,t+1

Turn←− Turn+ 1

// Terminating condition
for j ← 1 to n do

for i← 1 to m do
if CPj,t+1 < WPi,t+1 then

Turn←− −1
exit loop.

exit loop.

Return (PrevSolCPj and PrevSolWPi)

they want to sell the resource. Similarly, the WBANs also
place their minimum price bids at which they want to buy
the resource. We implement price caps by assuming upper
bounds of total price bids per unit resource both for the CSPs
and the WBANs. According to the respective limits, it is
not feasible to fix prices according to their demands. Thus,
we formulate two Nash bargaining problems, one for each,
based on their respective demands and other characteristics.
In this case, NBS decides the prices for both parties, as
described earlier in this Section. However, we do not stop
the bargaining process immediately after this. In this work,
we attempt to minimize the gap between both CSPs’ and
WBANs’ pricing. Therefore, we execute on the bargaining
process further after updating their demands with the pricing

Algorithm 2: Map
Input: PrevSolCPj and PrevSolWPi for n Clouds

and m WBANs.
Output: Mapping between WBANs and Clouds.

// WBAN-Cloud Cost Matrix formation
for j ← 1 to n do

for i← 1 to m do
ϕij,t+1 ←− PrevSolWPi+PrevSolCPj

2
∆ij,t+1 ←− f(ϕij,t+1)

// Final Mapping
for i← 1 to m do

Minimum←− Infinity
UpdateMap←− 0
for j ← 1 to n do

if ∆ij,t+1 < Minimum then
Minimum←− ∆ij,t+1

UpdateMap←− j
k ←− UpdateMap
// Map ith WBAN with kth Cloud

values decided in the immediately previous bargaining stage,
as illustrated in Figure 2. We continue this process until we
get a CSP’s allocated price less than that of a WBAN’s. At
this point we terminate, the proposed MUST-NBS algorithm
and consider the previous decided values for both the CSPs
and the WBANs, as their final pricing agreements.

The proposed MUST-NBS algorithm executes two impor-
tant functions – Negotiate and Map. The Negotiate function
manages the multi-stage bargaining using the concept of NBS,
and the Map function establishes the final mapping between
WBANs and the CSPs.

The proposed Negotiate function takes the respective bids
from both the clouds and the WBANs. We assume that there
exists a limit on the sum of total bids for both sides. Ccpt+1 and
Cwpt+1, respectively, represent the limiting amount of total bids
for clouds and WBANs. Algorithm 1 solves the optimization
functions obtained in Equations (28) and (30) and decides
a temporary negotiation point for both sides. However, the
Algorithm repeats the NBS procedure for both the CSPs and
the WBANs, until the demand of jth CSP becomes less than
the wish of the ith WBAN, for any i and j. We consider
the decided pricing values in the immediately previous stage,
and take their average as the final possible agreement between
the jth cloud and the ith WBAN. The motivation behind
considering the average of these two prices is inspired by the
concept of bargaining discussed in [37]. If we assume this
final agreement as a two person bargaining game, and break
this bargaining process into N even steps each containing
an offers or a counter-offers from the persons alternatively,
then 50 : 50 share is the best option to achieve a successful
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agreement. Even if we consider an odd value for N , the final
price agreement is represented as,

(
y n+1

2n + x n−1
2n

)
, which

is approximately x+y
2 , in case of large values of N , where x

and y are the decided price bids of the ith WBAN and the jth

CSP, in the immediate previous stage.
In order to deal with the monopoly and oligopoly sit-

uations, we envision fixed upper limit price capping as a
regulation tool [38]–[40]. The price caps are updated in each
stage, for both the WBANs and the CSPs. It is managed
by the MUST-NBS unit, as described in Figure 1. It is
evident that we get some positive difference between the
decided (solved) bid and the desired bid (minimum price
bids), for each WBAN. We add these differences for every
single WBAN, and the total sum of these differences is finally
added with the previous price cap value in order to create
the modified price cap for the WBANs. In a similar manner,
the price cap is updated for the CSPs and these operations
are completed before the next bargaining event is executed to
achieve NBS. The justification behind such update of price cap
is to make the two parallel threads of price bids to converge
after some iteration. Convergence between any WBAN and
any CSP represents that the overall negotiation process is in
a reasonable phase. As the price bids are decided through a
cooperative bargaining procedure, there is no such possibility
of monopolistic behavior arising among the WBANs or among
the CSPs. It cannot be the case that a particular WBAN or a
particular CSP always becomes the one responsible for the
termination of the algorithm.

D. Cost Matrix Formation and Mapping

The parameter ϕij,t+1 represents the final possible price
agreement per unit resource between the jth cloud and the
ith WBAN at time instant (t+ 1). However, we also consider
other related costs such as scaling charge, and data sharing cost
between two clouds. The total payable amounts are defined as
follows:

Definition 4. (Total Payable Amount): The total payable
amount of the ith WBAN to the jth CSP is the cost summation
of allocation charges, scaling charges, and data sharing
charges between two clouds.

The total payable amount of the ith WBAN to the jth

Cloud is expressed as follows:

∆ij,t+1 =


ϕij,t+1.Si,t+1

+ψj .(Si,t+1 − Si,t) + γpq,t+1 if Si,t+1 > Si,t

ϕij,t+1.Si,t+1 + γpq,t+1 if Si,t+1 ≤ Si,t
(32)

where,
ψj → Cost of per unit positive scaling for the

jth cloud.
γpq,t+1 → Data sharing cost between the pth and the

qth cloud.

Definition 5. (WBAN-Cloud Cost Matrix): Υt+1 is the
WBAN-Cloud cost matrix for m WBANs and n clouds and
the element ∆ij,t+1 represents the total payable amount of
the ith WBAN to the jth CSP at time instant (t+ 1).

Υt+1 =

n Clouds
∆11,t+1 ∆12,t+1 · · · ∆1n,t+1

∆21,t+1 ∆22,t+1 · · · ∆2n,t+1

...
...

. . .
...

∆m1,t+1 ∆m2,t+1 · · · ∆mn,t+1

 m WBANs

(33)
The proposed Mapping function computes the final pos-

sible agreement point between the ith WBAN and the jth

Cloud. We also form the WBAN-Cloud Cost Matrix with the
total payable amounts, as defined in Definitions 4 and 5.
The cloud, which exhibits minimum payable amount for a
particular WBAN, will be mapped to that WBAN. A single
cloud is capable of providing services to multiple WBANs.
Therefore, it is possible to have many-to-one WBAN-Cloud
mapping, as defined in Algorithm 2.

E. Complexity Analysis of Multi-Stage Bargaining

In this subsection, we analyze the asymptotic computa-
tional complexity of the primary algorithm, i.e., the Multi-
Stage Bargaining algorithm. The running time of this algo-
rithm depends on the number of CSPs, number of WBANs,
and the number of iterations or bargaining stages.

Proposition 1. The worst-case asymptotic computational com-
plexity of Multi-Stage Bargaining algorithm is O(mnt), where
m, n, and t are the number of WBANs, number of CSPs, and
the maximum number of bargaining, respectively.

Proof. Let us first split the algorithm into different compo-
nents. The running times for the first two for loops, that
represent the negotiations among the CSPs and the WBANs,
are O(n) and O(m), respectively. The running time associated
with the bargaining solutions for both the CSPs and the
WBANs, are O(n log n) and O(m log m), respectively [41].
Updation of the variable Turn takes O(1) time, and finally the
execution time for the terminating condition is O(mn). These
components may iterate multiple times. The running time of
the algorithm depends on the number of such iterations, which,
in turn, depends on the convergence of the price bid per
resource, placed by the CSPs and the WBANs.

Let us assume the decrements and increments in price,
by the CSPs and the WBANs, respectively, are at least ∆x
unit (∆x > 0) in each iteration. Therefore, in the worst-case
scenario, the maximum number of iteration is represented as,

t =
CPmaxinitial −WPmininitial

∆x
(34)

where, CPmaxinitial is the maximum price bid among the initial
price bids placed by the CSPs, and WPmininitial is the minimum
price bid among the initial price bids placed by the WBANs.
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Fig. 3: Price Statistics of CSPs in different stages
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Fig. 4: Price Statistics of WBANs in different stages

Therefore, the running time of the algorithm is represented
as,

T (k) = T (k − 1) +O(n) +O(m) +O(n log n)

+O(m log m) +O(mn) +O(1)

= T (k − p) + p

[
O(n) +O(m) +O(n log n)

+O(m log m) +O(mn) +O(1)

]
' T (k − p) + p O(mn)

' O(mnt) (35)

This concludes the proof.

V. RESULTS

In this section, we discuss the MATLAB-based analytical
results derived from the execution of the proposed MUST-NBS
algorithm. At first, we explain the result of a single run, having
multiple stages or iterations of NBS. Secondly, we take three
different cases with different number of CSPs and WBANs,
in order to show the varying number of stages in each case.
Next, we discuss the effects of Goodput-Throughput Ratio (GT
Ratio) on resource allocation and utility value. Finally, we

describe the necessity of considering bargaining powers from
the obtained results.

A. Single-run Analysis

To illustrate the functioning of the proposed MUST-NBS
algorithm, we simulate a run with 4 CSPs and 40 WBANs.
Figures 3 and 4 describe the detailed results of this run. Each
sub-figure of Figures 3 and 4 reveals the price statistics of the
CSPs and the WBANs respectively, after each iteration of the
algorithm. The initial maximum bid points, per unit resource,
placed by the CSPs are high, as illustrated in Figure 3(a).
Simultaneously, the initial minimum bid points, per unit re-
source, placed by the WBANs are very low, as depicted in Fig-
ure 4(a). Two Nash bargaining problems, one for each, decides
the price per unit resource, for each CSP and each WBAN.
However, the MUST-NBS algorithm does not terminate at this
point, as the difference between the average price of the CSPs
and the average price of the WBANs is significantly high.
The algorithm sets new maximum and minimum price bids,
respectively, for the CSPs and the WBANs, and applies NBS
to decide new prices, as depicted in Figures 3(b) and 4(b).
The iteration ends when the decided price for any one of
the WBANs outweighs the decided price of any one of the
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Fig. 5: Termination of MUST-NBS

CSP. Thus, in this simulated run, the MUST-NBS algorithm
terminates after Stage 3, as depicted in Figures 3(c) and 4(c).

Inference: Figures 3 and 4 explain the need for multiple
iterations of the Nash bargaining solution, in order to minimize
the significant difference between the price bids of two differ-
ent agents, i.e., the CSPs and the WBANs. The simulated run
validates the claim that is depicted in Figure 2, in Section IV.

B. Pricing Decision by MUST-NBS

In order to avoid any kind of unusual price demands
by any one of the agents between clouds and WBANs, the
proposed MUST-NBS algorithm takes the responsibility to
decide a final price of per unit resource, as illustrated in
Figure 5. We simulate the scenario with different cases where
the MUST-NBS algorithm terminates after more than one stage
and the number of stages varies case-wise. Figures 5(a) - 5(c)
illustrate three different cases, each having different number of
stages or iterations of MUST-NBS algorithm. The simulation
parameters corresponding to these three cases are summarized
in Table II. We perform the simulation 50 times for each case
and consider 99% confidence interval for the average, and
minimum price bid of clouds, and the average, and maximum
price bid of the WBANs.

TABLE II: Simulation Parameters

Case No. of
CSPs

No. of
WBANs

CSP total price
limit (Rs.)

WBAN total
price limit (Rs.)

A 2 10 1000 1000
B 4 40 1800 1800
C 10 100 5200 5200

In Case A, the MUST-NBS algorithm terminates after four
iterations. Figure 5(a) depicts the status of price per unit
resource for both clouds and WBANs after each iteration or
stage. After the third stage, the maximum price bid of the
WBANs outweighs the minimum price bid of the clouds. It
means, after the third iteration of the proposed MUST-NBS
algorithm, we arrive at a situation where there exists at least

one WBAN which is ready to pay a higher amount than the
minimum price bid of the clouds. Therefore, according to the
proposed algorithm, we take the average of the minimum cloud
price and maximum WBAN price as the final price per unit
resource. Similarly, as illustrated in Figures 5(b) and 5(c), the
algorithm terminates after three and five stages, respectively,
in Cases B and C.

Inference: We infer three different conclusions from the
figures. From Figure 5(a) it is evident that the final pricing
is very close to the average price of the initial pricing bids
of the clouds and the WBANs. Therefore, we infer the initial
price bids as appropriate bids. However, in Figure 5(b), the
final pricing is closer to the average pricing of the WBANs,
as the price bids placed by the clouds are higher than normal.
Similarly, we infer from Figure 5(c) that the price bids by the
WBANs are improper, and thus, the algorithm finalizes the
price per unit resource in a way that it becomes closer to the
proper cloud price bids. In this way, the proposed MUST-NBS
algorithm avoids the monopoly situation of any agent, whether
it is a WBAN or a cloud service provider, and finalizes a price
per unit resource which is justified enough, unlike the existing
pricing schemes.

C. Effect of GT ratio

We consider two important network parameters – goodput
and throughput, in order to analyze their effects on resource
allocation. Goodput is conceived as the application level
throughput. In practical, it is always less than the throughput,
as it excludes the bit information associated with any kind of
protocol overhead and packet re-transmissions.

Figure 6 represents the effects of GT ratio on the resource
utility of the WBANs. Normally, in case of equal minimum
demands of the WBANs, we get constant utility when we do
not consider the effects of these network parameters. However,
when we consider these parameters, we observe the change in
utility. The resource utility increases with the increase of GT
ratio. Figure 6 indicates the curve-fit of utility increment.

Figure 7 illustrates the effects of GT ratio on resource
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allocation (say bandwidth) for the WBANs. It is evident from
the figure that when we do not consider GT ratio, then we
get approximately constant allocation for a particular WBAN.
The curve-fit plots a straight line which is nearly parallel to the
independent axis. The deviations from this line are due to the
different minimum resource demands, which we keep random
in our simulations. When we consider the GT ratio, we find
that the curve-fit of allocated resource is directly proportional
to the GT ratio. For a constant throughput, the WBAN having
better goodput achieves more allocation of resources such as
bandwidth, and processing power at the cloud-end for better
utilization of these network resources.

Figure 8 depicts the overall dependence between resource
utility and allocated resource. The figure represents the per-
centage contribution of utility and allocation of 60 WBANs.
Utility contributions of the WBANs vary between 0.001%
– 4.877% of the total utility, and allocation of resources
vary from 1.016% – 2.067% of the total available resource.
Evidently, the allocated resource increases with the increase
in the resource utility as depicted in Figure 8.

D. Analysis of The Bargaining Powers

We consider bargaining powers α and β, which represent
the ranking of the CSPs and the criticality indexes of the

Fig. 8: Utility - Allocation Dependency

WBANs respectively. We perform an analysis of the effects
of the bargaining power, with 20 CSPs and 100 WBANs. The
normal price represents the scenario that does not consider
any update of the price caps. It also does not welcome the
concept of bargaining powers. However, still we notice linear
change in price bids with the value-change of the bargaining
powers. This is due to the effect of the disagreement points,
i.e., the maximum price bids in case of the CSPs, and the
minimum price bids in case of the WBANs. In order to
perform stage-wise comparison between the normal and the
proposed scheme, we had to consider the same method to
update the disagreement points, which ideally is not considered
in the normal scenarios that do not follow the proposed
approach. On the contrary, the MUST-NBS price represents the
price bids both for the CSPs and the WBANs, after considering
the bargaining powers and the update of price cap, as described
in Algorithm 1. Figures 9 and 10 depict the effects of the
bargaining process on the price bids per unit resource, in the
proposed negotiation process.

It is evident from the slopes of the curve fits depicted in
Figures 9(a) to 9(c), that there exists significant effect of the
negotiation process on the decided price bids in each stage.
Though the effect is less in case of the high-ranked CSPs,
the medium and lower-ranked CSPs are comparatively more
liberal in the negotiation process. As the ranking of the CSPs
increases, the price bid per unit resource decreases, which
implies that the low-ranked CSPs wish to sell their service at
a lower price, and thus, mitigate the chance of monopoly and
oligopoly by the high-ranked CSPs. However, in the absence
of the proposed algorithm, the degree of negotiation reduces.

Similarly, in case of the WBANs the CI plays a significant
role. As the CI increases, the price bid per unit resource
increases, which means the WBANs are ready to pay more
service charge when the health status is severe. In case of low
CI the WBANs are comparatively stricter in nature to negotiate
their price bids. The degree of negotiation is less in case we do
not employ the proposed algorithm of multi-stage bargaining.

ayan
For Personal Use Only



 380

 400

 420

 440

 460

 480

 500

 520

 540

 1  3  5  7  9  11  13  15  17  19P
ri

ce
 p

er
 u

n
it

 r
es

o
u
rc

e 
(R

s)

CSP Ranking

Normal Price
Curvefit - Normal
MUST-NBS Price

Curvefit - MUST-NBS

(a) At Stage i− 1

 380

 400

 420

 440

 460

 480

 500

 520

 540

 1  3  5  7  9  11  13  15  17  19P
ri

ce
 p

er
 u

n
it

 r
es

o
u
rc

e 
(R

s)

CSP Ranking

Normal Price
Curvefit - Normal
MUST-NBS Price

Curvefit - MUST-NBS

(b) At Stage i

 380

 400

 420

 440

 460

 480

 500

 520

 540

 1  3  5  7  9  11  13  15  17  19P
ri

ce
 p

er
 u

n
it

 r
es

o
u
rc

e 
(R

s)

CSP Ranking

Normal Price
Curvefit - Normal
MUST-NBS Price

Curvefit - MUST-NBS

(c) At Stage i+ 1

Fig. 9: Decided price vs. CSP rankings
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Fig. 10: Decided price vs. criticality indexes of the WBANs

E. Running Time Analysis

We also perform an analysis on the running time of the
proposed algorithm. We consider different number of CSPs,
and WBANs with different price limits, maintaining a common
ratio. We envision 10 WBANs associated with each CSP, and
maintain this ratio, throughout in this simulation, starting from
the scenario with 5 CSPs, and 50 WBANs, to 50 CSPs, and
500 WBANs. For each such scenario, we consider several runs
to get the average running time of the algorithm. Figure 11
illustrates the running time of the algorithm with 99% con-
fidence interval. The zoomed part in Figure 11 depicts the
confidence interval with more clarity. Evidently, the running
time depends on the number of the CSPs and the WBANs.

VI. CONCLUSION

In this paper, we presented a novel approach of re-
source allocation and mapping between a set of WBANs
and a set of CSPs, based on cooperative game theory. The
proposed MUST-NBS algorithm is an innovative extension
of the general Nash bargaining solution. We executed two
different bargaining processes to decide the price bids for the
WBANs and the CSPs. The proposed MUST-NBS algorithm
repetitively follows the bargaining process, while updating the
minimum and maximum price bids of the WBANs and the
CSPs, respectively, after each stage, until they converge to a
price agreement. It also maps a WBAN with a CSP depending
on the cost-effectiveness of the mapping from the perspective
of a WBAN.
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Fig. 11: Runtime Analysis

In the future, we plan to extend this work by incorporat-
ing fuzzy characteristics of user satisfaction with necessary
modifications in the bargaining procedure. Additionally, we
envision to implement a stringent mapping protocol, based on
social choice theory, in order to achieve a collective decision
while mapping the WBANs with the CSPs.
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