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Abstract—In medical emergency situations, fair distribution
of resources multiple multiple tenant healthcare organizations is
crucial. In such resource-constrained situations, these organiza-
tions may behave in a non-cooperative and selfish manner to
maximize their individual incentives at the cost of the overall
system welfare. Existing research works on dynamic resource
allocation, have mostly assumed that the participating agents
always behave truthfully, and place bids in accordance with
their actual requirements. In practice, this assumption may not
always hold true, as organizations have positive incentives for
overstating. We design an algorithm, grounded in the theory of
distributed mechanism design, to effectively alleviate untruthful
demeanor of the organizations. The proposed resource allocation
algorithm allows such organizations to maximize their individual
incentives only by acting truthfully, whilst the overall system
welfare is also maximized. The mechanism, designed, is resilient
to selfish behavior of the organizations, and ensures voluntary
participation of the organizations in the auction. It is also
incentive compatible in nature, and dictates a truthful incentive-
payment scheme.

Index Terms—Wireless Body Area Networks (WBANs), Dy-
namic resource allocation, Selfish behavior, Mechanism design
theory.

I. INTRODUCTION

The introduction of cloud computing [1]–[3] in the do-
main of Wireless Body Area Network (WBAN)-based remote
healthcare services [4]–[7] proves to be of pivotal importance
specially in terms of analysis and storage of medical data.
However, in critical medical emergency situations, fair allo-
cation of cloud resources remains a challenge, and in certain
cases, proves to be decisive. Our work primarily focuses on
medical emergency situations, in which patients are considered
to be admitted into hospitals (or medical centres), and the
local data processing units (LDPUs) are positioned inside each
medical ward of a hospital. The LDPU acts as a sink to all
the body sensor nodes deployed on a patient admitted to the
hospital [5], [6], [8]. Fig. 1 provides a pictorial depiction of
the cloud-assisted WBAN architecture. Having received the
data-packets from different body sensor nodes, the LDPU
estimates the requirements for the cloud resources for data
transmission, analysis, and storage. Based on its resource-

requirement and resource-valuation, the LDPU prepares a bid
and forwards it to the cloud service provider (CSP). The CSP,
on the other hand, manages a pool of divisible resources, and
allocates those among the different tenant-organizations in an
on-demand basis, according to their requirements. A WBAN-
cloud framework enables dynamic allocation of networking,
computational, and storage resources, and acts as a backbone
of the remote patient health monitoring system.

Fig. 1: Cloud-Assisted WBAN Architecture

In this work, we address a problem where multiple tenant
organizations contend for a finite set of cloud resources. In
critical situations of medical emergencies, fair and optimal
distribution of cloud resources is crucial. In such scenarios,
these tenant organizations compete with one another with
a myopic view of maximizing their individual incentives at
the cost of the overall system-welfare. The LDPUs, under
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such resource-constrained context, may behave selfishly to
gain hold of the cloud resources, and in turn, maximize the
organizational profit. Existing resource allocation algorithms
[9]–[11] consider the agents to behave truthfully under all
circumstances, which however, may not be the case in a finite
resource environment. In this paper, we adopt a distributed
Mechanism Design [12], [13] theoretic approach to eliminate
such selfish behavior of organizations, and to ensure a fair
distribution of the cloud resources. We formulate a WBAN-
specific mechanism for dynamic resource allocation through
cloud that increases the social welfare of the system of
multiple healthcare organizations.

Contribution

The primary contributions of this work are listed below:
• Design of a fitness metric for each LDPU by considering

critical LDPU-properties, such as importance of the data
to be transmitted and the energy dissipation factor. Based
on their fitness, the LDPUs prepare their bid-vectors and
a relative measure of LDPUs is obtained.

• Design of an algorithm that ensures that no gain can be
made by stating untrue requirements for a resource, and
thus, the organizations are compelled to state the truth to
improve their individual incentives.

• Maximizing “Social welfare” without any active inter-
vention of the auctioneer. The mechanism makes the
participating organizations behave truthfully, and removes
any selfish behavior, which, in turn, maximizes the overall
social welfare of the WBAN system.

II. DESIGN OF FITNESS PARAMETER

We formulate a fitness parameter (Ψt), based on which the
LDPUs of each organization bid in the auction. Ψt depends
on the energy dissipation factor of the LDPU, and the health
severity index of the data packets to be transmitted by the
LDPU. From one of our previous works [5], we directly obtain
the Nodal Energy Dissipation Factor (Edt,i). Considering the
energy consumed due to sensing (Esn), transmissions (Etr),
processing (Epr), and computations (Ecm), we have,

Edt,i = Esn× t+Etr ×N +Epr ×n+Ecm× (N −n) (1)

where n and N refer to the number of packets received and
transmitted by a node during t slots. For nodes capable of
harvesting energy, Equation (1) is rewritten as:

Edt,i = Esn×t+Etr×N+Epr×n+Ecm×(N−n)−Ehr×t
(2)

From [5], we also obtain the Energy Dissipation Factor of
an LDPU at time t (ξt) as,

ξt =

Z∑
i=1

Edt,i/

Z∑
j=1

Einit,j 0 ≤ ξt ≤ 1 (3)

Einit,j being the energy of the jth body sensor at time t = 0.
Assuming the reference range of a particular health parameter
to be within Θlc and Θuc, and the recorded value of the

parameter to be Θt at a given time t, we obtain the health
severity index of a patient [5] as,

ρt =

∣∣∣∣∣ (Θuc −Θt)
2 − (Θt −Θlc)

2

(|Θuc|+ |Θlc|)2

∣∣∣∣∣ (4)

Clearly, ρt = 0 when Θt = (Θlc+Θuc)/2. Theoretically, in
some cases, the value of ρt may exceed 1 (which is hardly the
case in practical scenarios). In such cases ρt is approximated to
1 for computational benefit. Therefore, in practice, 0 ≤ ρt ≤ 1.
Finally, after discussing the factors that influence the fitness
parameter, Ψt, we define it in Definition 1.

Definition 1. Fitness Parameter: The fitness parameter (Ψt)
of a patient at time t is defined as the weighted average of
the energy dissipation factor (ξt) and the health severity index
(ρt) of that patient. Ψt is mathematically expressed as:

Ψt =
λ1ξt + λ2ρt
λ1 + λ2

(5)

where, λ1, and λ2 are constant values specific to the health
parameters to be measured.

The values of λ1 and λ2 depend on the patient’s age, gender,
and past medical history. The value of Ψt ranges between
0 ≤ Ψt ≤ 1. A high value of Ψt indicates that an LDPU is
willing to transmit highly critical health data of the concerned
patient, and vice versa.

III. FORMULATION OF THE MECHANISM DESIGN
PROBLEM

We formulate a mechanism design problem, solving which
we arrive at an optimal and fair resource distribution scheme
that fulfills the demand of each LDPU, and also maximizes
the overall WBAN welfare.

Mechanism Design Problem: A mechanism design prob-
lem for the above stated scenario is defined as:

Pre-requisites:
(a) In a system of n intelligent LDPUs, each LDPU has equal

priority before placing their individual bids of m divisible
resources.

(b) The LDPUs are equipped with the same amount of intelli-
gence. However, selfish behavior of LDPUs is completely
unknown.

Problem Definition:
(a) The system comprises of a finite set of intelligent LDPUs

A = {L1, L2, . . . , Ln|n ∈ N}, each of which competes
for a pool of resources comprising of a finite number of
divisible resources, given as R = {R1, R2, . . . , Rm|m ∈
N}, and Ω = {Ω1,Ω2, . . . ,Ωm|m ∈ N} represents the
total amount of resource available.

(b) Each LDPU Li, where i ∈ {1, 2, . . . , n}, and Li ∈ A
has an estimated valuation for each resource Rj , where
j ∈ {1, 2, . . . ,m}, and Rj ∈ R, known as its ‘preference’,
and denoted by θij as its private information.

(c) The preference profile of LDPU Li is given by θi =
{θi1, θi2, . . . , θim}. The preference profile of all LDPUs
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are given by θ = {θ1, θ2, . . . , θn}, with θ ⊂ Θ and
Θ = Θ11×Θ12× . . .×Θ1m . . .×Θn1×Θn2× . . .×Θnm.
Here, θ is called the preference domain.

(d) The LDPUs prepare an undisclosed bid according to their
valuation of resources and submit it before the auctioneer.
The auctioneer is presented with bids from all the LDPUs
β = {β1, β2, . . . , βn}, where βi = {βi1, βi2, . . . , βim},
∀i = 1(1)n. Each bid βij has two components: the price-
per-unit that LDPU Li is willing to pay for resource Rj ,
given as bij , and the resource demand, dij .

(e) LDPUs are charged an amount of ‘cost’ equivalent to the
bid placed for each resource. The cost value for LDPU
Li is dependent on its preference and the bid placed for
resource Rj is denoted by ϕij .

(f) The finite output set of the mechanism is given by
the vector Z, and is represented as Z = {ζij |i =
{1, 2, . . . , n}, j = {1, 2, . . . ,m}}, with Z ∈ Z, the set
of all feasible outcome sets. ζij represents the allocation
amount of resource Rj to LDPU Li, based on the mech-
anism. Clearly, Z is dependent on the bid-vector β.

Objectives:
(a) LDPU perspective: Each LDPU has a solitary goal to

maximize its profits by gaining maximum incentives, and
paying minimum cost for the service. An LDPU may state
an untruthful preference profile to the auctioneer in order
to maximize its utility values. The utility for LDPU Li

with respect to a resource Rj is denoted by ξij . The
net utility value of the LDPU is given by the following
equation.

m∑
j=1

ξij =

m∑
j=1

ρij −
m∑
j=1

ϕij (6)

where ρij denotes the incentives awarded to LDPU Li

corresponding to its bid for resource Rj . It can also be
seen that the LDPU utility function is a quasi-linear one.

(b) Mechanism perspective: The goal of the mechanism is to
dictate a truthful and optimal resource allocation algo-
rithm, and enhance the social welfare as a whole. The
mechanism should be designed to choose a dominant
strategy output set Z that maximizes the overall social
welfare, given as:

max

n∑
i=1

m∑
j=1

ϕij (7)

Challenges Faced:
The LDPUs are allowed to behave strategically or selfishly

while maximizing their goal at the cost of the overall social
welfare. In a pursuit for such a goal, an LDPU has to “lie”
about its true preference profile. The reported preference
profile of LDPU may vary from its true preference profile
as the reported profile could fetch better incentive for the
LDPU. The reported profile of LDPU Li is given as θ̂i =
{θ̂i1, θ̂i2, . . . , θ̂im}. The mechanism is to be designed in a way
that eliminates the necessity of reporting untrue preference

profile, θ̂i, instead of the correct one, θi, for all LDPUs in the
system.

IV. DESIGN OF THE MECHANISM

In this Section, we propose a mechanism that is to be
followed by the system to allocate multiple divisible resources
among several LDPUs. We adhere to the multi-unit VCG
auction principle [14], [15] for multiple goods, and extend it
for the case of divisible ones. The mechanism is a sealed-bid
auction that is applicable to any problem where the bidders
have a quasi-linear utility function.

Algorithm 1 Distributed Mechanism Design Theoretic Re-
source Allocation Algorithm: LDPU View
Input: Types of resources available through the auction,
R = {Rj}. The total available amount of resources of each
type Ω = {Ωj}, ∀j = 1(1)m.
Output: A bid-vector that includes bids for every resources,
given as βi = {βij , j = {1, 2, . . . ,m}}.

1: Estimate θij = {θi1, θi2, . . . , θim} for an LDPU Li, where
j = {1, 2, . . . ,m}

2: Calculate dij based on θij .
3: Determine a optimal value of bij as well.
4: Formulate a truthful bid-vector βij(bij , dij).
5: Submit the bid-vector βij(bij , dij) before the auctioneer.

6: A truthful βij(bij , dij) maximizes
m∑
j=1

(ρij − ϕij).

Algorithm 2 Distributed Mechanism Design Theoretic Re-
source Allocation Algorithm: Cloud Resource Provider View
Input: Bids for all the resources submitted by all LDPUs,
given as β = {β1, β2, . . . , βn}.
Output: An optimal allocation vector Z, such that
Z = {ζij |i = {1, 2, . . . , n}, j = {1, 2, . . . ,m}}, with Z ∈ Z.

1: βj = {β1j , β2j , . . . , βnj}, where βj is computed ∀j =
1(1)m.

2: Sort the elements in βj to maximize
n∑

i=1

bijdij .

3: Choose an optimal output function Z ∈ Z such that .

(i) Sj(ζ1j , ζ2j , . . . , ζnj) = arg max

n∑
i=1

ζij , Sj ∈ S

(ii)
n∑

i=1

ζij = Ωj , ζij ≥ 0 ∀j = 1(1)m

The proposed mechanism ensuring fair resource allocation
is as follows:

(i) Each LDPU Li estimates its preference profile, θi, de-
pending on its fitness parameter at time t, Ψt.

(ii) A bid-vector, βi, is prepared based on the preference
profile, and is submitted before the auctioneer.
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(iii) Bids from all LDPUs are categorized resource-wise, as
βj = β1j , β2j , . . . , βnj , where βj represents the bid-
vector consisting of bids from all LDPUs corresponding
to the resource Rj .

(iv) For each resource Rj , the mechanism dictates an out-
come that maximizes the social welfare. The outcome
satisfies the following set of criteria:

Sj(ζ1j , ζ2j , . . . , ζnj) = arg max

n∑
i=1

ζij ,Sj ∈ S (8)

n∑
i=1

ζij = Ωj , ζij ≥ 0 ∀j = 1(1)m (9)

where Sj(·) is the social welfare function for the event
where n LDPUs compete for resource Rj .

(v) The price paid by LDPU Li for resource Rj is given by:

ϕij =
∑
k 6=i

bkjS−ij −
∑
k 6=i

bkjSj (10)

with S−ij marks the social welfare with LDPU Li not
present in the auction for the resource Rj , i.e., dij = 0.

(vi) Incentives handed over to LDPU Li corresponding to a
resource Rj is expressed as:

ρij = bijSj (11)

We devise two different algorithms for the auctioneer (cloud
service provider) and the bidders or LDPUs, which collectively
act to maximize the overall social welfare. The output of
Algorithm 1 serves as input to Algorithm 2.

V. PROPERTIES OF THE DISTRIBUTED MECHANISM

We discuss the different properties of the proposed dis-
tributed mechanism and establish some of those in this Section.

Definition 2. Truthful Mechanism: A mechanism is said
to be truthful or strategy proof, if for every LDPU, the
best strategy to gain maximum incentive is to state its true
preference profile. Any untruthful statement for the preference
profile results in deduction in incentives.

Theorem 1: The proposed distributed mechanism is truthful.

Proof: The utility value of an LDPU Li with respect to a
resource Rj is given as:

ξij = ρij − ϕij

= bijSj − [
∑
k 6=i

b̂kjS−ij −
∑
k 6=i

b̂kjSj ]

= [bijSj +
∑
k 6=i

b̂kjSj ]−
∑
k 6=i

b̂kjS−ij

Clearly, the term
∑
k 6=i

b̂kjS−ij is independent of LDPU Li’s bid

and, hence, we ignore it. Therefore, it is required to maximize:

ξij = bijSj +
∑
k 6=i

b̂kjSj

The only factor that LDPU Li can control is b̂ij , as rest of
the parameters are dependent on several factors. Moreover,
choosing b̂ij = bij only ensures optimal strategy for the
LDPU to maximize its own utility, regardless of the strategies
adopted by the other LDPUs in the system. Therefore,
b̂ij = bij indeed proves to be the dominant strategy for LDPU
Li. This concludes that the mechanism is truthful.

Definition 3. Incentive Compatible: An incentive compatible
mechanism dictates that the best response for agents is to
reveal their true preference profiles before the auctioneer, even
after gaining complete knowledge about the preference profiles
of all other agents in the system.

Theorem 2: The distributed mechanism is incentive
compatible in nature.

Proof: This can be proved intuitively as a direct corollary
of the proof of Theorem 1. In the proof of Theorem 1, we
have established that the best strategy for an agent while
bidding is to act truthfully. However, in terms of incentive
compatibility, where the agent is aware of the true preference
profiles of all other agents, the scenario does not change
significantly. The optimal bidding strategy for all agents is
b̂ij = bij .

Definition 4. Voluntary Participation: A mechanism ensures
voluntary participation of all the agents if the agents partic-
ipate in the mechanism, rather than opting out of it for its
own benefits. This also establishes individual rationality for
the agents.

Theorem 3: The distributed mechanism ensures voluntary
participation of all the agents in the mechanism.

Proof: In order to prove voluntary participation of the
agents in the mechanism, it must be ensured that an agent must
gain a higher incentive for participating in the auction than to
opt out of it. Agents must have a positive expected utility
for participating in the game. For the proposed distributed
mechanism, utility of agent Li is given as:

ξij = ρij − ϕij

= bijSj − [
∑
k 6=i

bkjS−j −
∑
k 6=i

bkjSj ]

= [bijSj +
∑
k 6=i

bkjSj ]−
∑
k 6=i

bkjS−ij

=
∑
i

bijSj −
∑
k 6=i

bkjS−ij

Sj is the outcome that maximizes the social welfare for
resource Rj . Now, clearly,∑

bijSj >
∑

bijS−ij (12)
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Furthermore, as there are no negative externalities, we have

bijS−ij > 0 (13)

⇒
∑
i

bijSj >
∑
k 6=i

bkjS−ij (14)

This proves ξij > 0, and, hence, establishes voluntary partic-
ipation of all agents.

Definition 5. Truthful Incentive-Payment: A mechanism is
said to have a truthful incentive-payment scheme, if it estab-
lishes a non-negative payment function for all participating
agents.

Theorem 4: A truthful incentive-payment scheme is main-
tained by the distributed mechanism.
Proof: As we have shown in the proof of Theorem 3, ξij > 0,
any agent that participates in the distributed mechanism is
rewarded with a positive net incentive for acting truthfully.
Also, it can be shown that

n∑
i=1

m∑
j=1

ξij <∞ for

m∑
j=1

Ωj <∞ (15)

Therefore, the mechanism has a truthful and finite incentive-
payment scheme.

VI. SIMULATION RESULTS

In this Section, we study the variation of the node-fitness
parameter with and without the health criticality factor, and
compare the impact of health criticality in WBAN-based
resource allocation algorithms. We also show how the mis-
behaving LDPUs are penalized for their selfish behavior, and
are prevented from behaving likewise.

A. Effect of Health Criticality on the fitness parameter

We first plot the deviation in value of Ψt with and without
considering the health data importance factor, and establish
its importance in the context of WBANs. We show the impact
of health criticality, while plotting the node-fitness at time t
(Ψt) with and without the presence of the parameter in an
experimental setup with 50 LDPUs. The energy dissipation
factor, however, is kept unaltered in both the cases. Also, the
values of λ1 and λ2 are taken as 3 and 5, respectively, to
ensure ordered preference amongst the factors, i.e., λ1 < λ2.

We analyze the plot in Fig. 2, and note that the value of Ψt

ranges between 0.002 and 0.374, with a mean and standard
deviation of 0.213 and 0.115, respectively, when the criticality
of health data is neglected. In contrast, when ρt is taken
into consideration, Ψt ranges from 0.113 to 0.924 , having
mean = 0.532 and standard deviation = 0.167. We observe
that the range of Ψt increases significantly in presence of ρt.
Thus, an LDPU, having important health data to transmit, has
a higher Ψt value compared to one that transmits periodic
health data, with an equal Υt. In comparison to the design of
utility functions in the existing literature, our formulation of
the fitness parameter proves to be more realistic in the context

Fig. 2: Fitness vs. LDPU ID graph

of WBANs, as it takes into consideration the health criticality
of a patient.

B. Performance Analysis in Presence of Selfish LDPU

We examine the impact of selfish behavior of LDPUs in
a WBAN system in the context of resource allocation using
cloud. In this case, the experimental WBAN system consists
of 5 LDPUs, among which the 5th LDPU is misbehaving,
and overstates its resource requirement. However, we focus
on the auction for a single divisible cloud resource, Rj , with
multiple instances available through auction. Also, throughout
our experiments, we assume Ωj = 20.

In Fig. 3, three experimental plots are shown which illustrate
resource allocation against the minimum resource demand for
the LDPUs. LDPU 5 is selfish, and gradually increases its min-
imum demand to get hold of maximum resource instances. We
observe that although the selfish LDPU keeps on increasing
its minimum demand (dij), the mechanism prevents it from
gaining high profit at the cost of the system welfare. The
factor (d5j − ζ5j) proves to be monotonically increasing with
increasing values of d4j . Therefore, in order to minimize its
loss, LDPU 5 stops overstating its resource requirements, and
behaves rationally, after some iterations.

Fig. 4 depicts the payment scheme for the LDPUs in terms
of incentives gained, cost incurred to the system, and the net
utility of the LDPUs. Negative value of “cost” in the graph
indicates that instead of paying to the system, the LDPUs
are rewarded for their truthful behavior by the system itself.
We observe that against high gain of incentives, LDPU 5
suffers from high cost payment to the system due to the
harm caused to the system welfare, and thereby, gains a
negligible net utility. For a rational LDPU, however, it is
awarded for its unselfish behavior, and has a net utility more
than the incentives earned. As a part of the artificial learning,
a misbehaving LDPU learns from its low invective gains, and,
thus, refrains from doing so.
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Fig. 3: Bid vs. Resource allocation graph

Fig. 4: Payment vs. Net utility graph

The proposed distributed mechanism successfully eliminates
the utility of misbehaving while bidding in an auction, and,
thus, ensures fair resource allocation in a WBAN-cloud frame-
work. A fair cloud resource allocation algorithm guarantees
optimal usage of resources, and, hence, proves to be significant
during medical emergency situations.

VII. CONCLUSION

We conclude that a fair distributed resource allocation algo-
rithm can be achieved by stating a robust auction mechanism
that effectively alleviates the utility of “lying to win” the
auction. A truthful, incentive compatible distributed mecha-
nism can efficiently handle the auction of multiple divisible
cloud resources among several healthcare organizations. The
distributed mechanism proposed is also proven to dictate a
truthful payment scheme for the organizations, and ensure
voluntary participation in the auction.
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