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Abstract: One of the major challenges in wireless sensor network (WSN) research is to curb down 

congestion in the network’s traffic, without compromising with the energy of the sensor nodes. 

Congestion affects the continuous flow of data, loss of information, delay in the arrival of data to the 

destination and unwanted consumption of significant amount of the very limited amount of energy in the 

nodes. Obviously, in healthcare WSN applications, particularly in the ones that cater to medical 

emergencies or in the ones that closely monitor critically ailing patients, it is desirable in the first place to 

avoid congestion from occurring and even if it occurs, to reduce the loss of data due to congestion. In this 

work, we address the problem of congestion in the nodes of healthcare WSN using learning automata 

(LA)-based approach. Our primary objective in using this approach is to adaptively make the processing 

rate (data packet arrival rate) in the nodes equal to the transmitting rate (packet service rate), so that the 

occurrence of congestion in the nodes is seamlessly avoided. We maintain that the proposed algorithm, 

named as Learning Automata-Based Congestion Avoidance Algorithm in Sensor Networks (LACAS), can 

counter the congestion problem in healthcare WSNs effectively. An important feature of LACAS is that it 

intelligently “learns” from the past and improves its performance significantly as time progresses. Our 

proposed LA-based model was evaluated using simulations representing healthcare WSNs. The results 

obtained through the experiments with respect to performance criteria having important implications in 

the healthcare domain. For example, the number of collisions, the energy consumption at the nodes, the 

network throughput, the number of unicast packets delivered, the number of packets delivered to each 

node, the signals received and forwarded to the Medium Access Control (MAC) layer, and the change in 

energy consumption with variation in transmission range, have shown that the proposed algorithm is 

capable of successfully avoiding congestion in typical healthcare WSNs requiring a reliable congestion 

control mechanism.  
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1. Introduction 

 

Due to the growing demand for low cost “networkable” sensors, in conjunction with the recent 

developments of Micro-Electro Mechanical System (MEMS) and Radio Frequency (RF) technology, new 

sensors come with advanced functionalities for processing and communication. A WSN consists of such 

sensors, which have tight constraints with respect to computational power, storage and energy resources 

[1]. WSNs, in recent years, have advanced in leaps and bounds due to their innumerable applications in 

various fields including the military, civilian, mining, healthcare and scientific monitoring for commercial 

purposes. One of the popular application domains of WSNs is healthcare, specifically, the remote 

monitoring of the conditions of ailing patients [2, 3, 4, 5, 6]. In general, in healthcare applications, the 

sensor nodes are, typically, deployed over a region in space and, based on the specific healthcare related 

task they are targeted for, they generate data (such as the pulse rate of a critically sick patient), which are 

eventually delivered to the control center for analysis by medical personnel. As such, WSNs are 

characterized by several features, out of which their unique network topology, diverse applications, 

distinct traffic characteristics and message size are of concern. Additionally, the hard energy consumption 

constraints imposed on the nodes in WSNs make the different protocols and mechanisms devised for 

these networks consider the energy consumption parameters with prime importance. Quite intuitively, 

superposing the healthcare criticalities, such as fast response to medical emergencies, high reliability of 

transmission of data from the source nodes to the sink node and their prompt delivery, bring further 

challenges in healthcare WSNs.  

In this paper, we focus only on the issue of congestion in healthcare WSNs. In particular, we focus on 

large-scale medical disaster response applications. As will be discussed elaborately in Section 2.1, 

congestion is a severe problem in such situations. Obviously, it is unwanted to have packets containing 

life-critical information being queued-up in the intermediate nodes in the multihop paths thereby delaying 

the transmission of information, or such packets being dropped because of occurrences of congestion in 

the intermediate nodes. In short, the issue of occurrences of congestion in WSNs is linked to the 

following. Congestion leads to either dropping the packets at the intermediate nodes or the formation of 

queues in them, which, again, in effect, would lead to packet delay. These challenges are to be mitigated 

in a very effective and efficient manner so that fairness, in terms of the distribution of the packets 

amongst the nodes, is guaranteed without unwantedly withering away much of the nodes’ energy. There 

are two terminologies relating to how congestion could be handled – one is congestion control and the 
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other is congestion avoidance.  While some researchers have used them in the same context, in this paper, 

in order to avoid confusion of the terminologies, we maintain the following stance, although the 

preference of choice of the terminologies has minimal impact, if any, on the run through our proposed 

solution in the rest of the paper. We maintain that while the former attempts to treat the problem once it 

occurs, the later avoids the occurrence of the problem before its onset. The previous works, in fact, 

typically, take a curative approach to deal with congestion, rather than a preventive one. Using automata 

stationed in the sensor nodes, our algorithm “intelligently, attempts to avoid the onset of congestion. 

Having said that, obviously, the complete eradication of the onset of congestion is difficult. Our approach 

minimizes the chances of occurrences of congestion to the extent possible, while saving some of the 

important/critical network resources. 

 

1.1.  Motivation 

Although in this work we specifically targeted healthcare WSN applications, the problem of congestion is 

not limited to these. The problem of congestion exists almost in all types of networks. Without 

specifically citing the different network types and the congestion control and avoidance schemes that exist 

in them, it suffices to mention that congestion is probably one of the most important concerns against 

affirming the reliability of transmission of information in any network – this is especially true for 

healthcare WSN applications due to the time criticality and content criticality of data carried in them. In 

the case of WSNs, congestion in the network increases traffic to such an extent that energy is dissipated in 

a colossal amount in the sensor nodes and also it leads to loss of packets, thereby creating a barrier for fair 

and reliable flow of packets. In many healthcare applications of WSNs (such as sensors installed inside 

the body of humans undergoing internal organ rehabilitation of some kind) [4, 5, 6], the nodes are 

mandated to work uninterruptedly for months and, possibly, years together in a continuum, without 

having the possibility of replacing the sources of energy in them. Therefore, optimizing the consumption 

of energy at the sensor nodes becomes an issue of prime concern. Typically, in most healthcare 

applications, and especially in the case of the medical disaster relief WSN applications, different nodes 

sense a large number of events. All these nodes, then, try to transmit the information to the sink node 

(control centre) with the help of other intermediate nodes and localized control centers, if any. This leads 

to increased possibilities of congestion at the intermediate nodes. Coupling this fact with the high levels 

of energy limitations in the sensor nodes makes the congestion problem in healthcare WSNs, evidently, 

more challenging than the congestion problem in other application domains. It is this challenge that has 

inspired us to address this problem in this paper. 
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Perhaps the most fundamental step that should be taken in avoiding congestion is limiting the flow of 

packets at the intermediate nodes to an apt value so that smooth, fair and reliable packet flow takes place 

in the network. This is what we did in this work using an LA-based approach. 

The idea of using LA to address the congestion control problem in healthcare WSNs is novel. As a 

matter of fact, we are unaware of any existing LA-based approach that addresses the congestion control 

problem in any other type of network. Our LA-based approach is designed in such a manner that the 

automata stationed in the intermediate nodes of the network continuously interact with the environment 

and adaptively learns, depending on the traffic load at each node, the optimum rate at which the rate of 

flow of data should be maintained. This rate can change, when the network traffic congestion level 

changes. Essentially, this restricts at all times the flow of data through a node to an optimum level and, in 

effect, prompts other nodes through other multihop paths to relay the data.  

LA has found a number of applications for solving different engineering problems (e.g., [14]-[31]. Its 

attractiveness lies in its ability to successfully address complex engineering problems characterized by 

high levels of uncertainty. The applications of LA are not myopic to any single domain. LA can help to 

adaptively learn optimum actions amongst different candidate actions offered to an automaton. Our LA-

based approach limits the number of packets flown through the intermediate nodes so that a node does not 

get overloaded by the number of packets and eventually leads to a congestion-free and energy-efficient 

network system. Our prime motive was to increase the efficiency of the network and this was, in turn, 

motivated by the need for better utilization of some of the critical network resources for healthcare 

services. 

 

2. Related Works: 

In recent years, a number of research efforts worldwide have targeted how the congestion problem in 

sensor networks can be countered (e.g., [7, 8, 9, 10, 11, 12, 13]). Before elaborating on our work and the 

specific contributions we have made, and to help the readers understand the typical approaches that exist 

currently, let us review briefly a few of the popular congestion control mechanisms that exist currently. 

One of the popular congestion control mechanisms for WSNs that is also based on adaptation to data 

flow characteristics, like ours, is adaptive rate control (ARC) [7]. In ARC, the constant bit rate (CBR) of 

the source and the intermediate nodes are changed, whenever a node receives a feedback regarding 

congestion from its child node. It follows the additive increase and multiplicative decrease (AIMD) 

algorithm, which is, essentially, a rate-based mechanism, in which the intermediate node increases its 

sending rate by a constant, , when its parent node forwards the packet successfully. Otherwise, the 

intermediate node multiplies its sending rate by a factor,  , where  0< <1. 
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In another popular algorithm, CODA [8], congestion is detected based on the queue length of packets 

at the intermediate nodes. CODA comprises of three elements – congestion detection, open loop hop-by-

hop backpressure and closed loop multi-source regulation. In open loop hop-by-hop backpressure, the 

source gets the backpressure signals depending on the local congestion state. In closed loop multi-source 

regulation, the source gets an ACK from the sink and when the congestion occurs, the sink stops sending 

ACKs to the source.  Like ARC, CODA also controls the rate of flow of packets based on the AIMD 

algorithm. This technique is energy-efficient, but the reliability of the successful delivery of the packets to 

the destination is not guaranteed because, on receiving backpressure signals, meaning that the signals 

received by the source node from the intermediate nodes, the nodes drop their packets based on the 

congestion parameters.  

Some other congestion control protocols such as Fusion [11], PCCP [9] (priority based congestion 

control protocol), CCF [10] (congestion control and fairness), Trickle [12] and Siphon [13] have also 

been proposed. Fusion controls the congestion in stop and start manner. Here the neighboring nodes stop 

emitting data packets when congestion is detected in the network. PCCP also uses rate adjusting 

algorithm unlike that of the AIMD technique. CCF controls the congestion based on the packet service 

time by adjusting the transmission rate. Trickle achieves performance comparable to TCP/IP. It has a 

periodical event in each node that suppresses broadcasting if the metadata that it receives from its 

neighboring node exceeds the threshold. Siphon uses virtual sinks in the network to remove data events 

from the sensor network when any symptom of traffic load occurs. 

       We planned to mitigate the congestion problem by placing some simple autonomous learning 

machines, called automata (can be construed as small pieces of code capable of taking “intelligent” 

actions), at each of the nodes of the network that are capable of controlling the rate of flow of data at the 

intermediate nodes based on probabilistically how many packets are likely to get dropped if a particular 

flow rate is maintained. An automaton stationed at each node “learns” from the past behavior and chooses 

a “better” data flow rate that is likely to avoid congestion from occurring in the network. Most of the 

existing protocols (discussed earlier), typically, approach the congestion problem by attempting to 

constantly change the rate of the flow of packets at the source node, based on congestion notifications 

from the intermediate nodes. This can lead to delays in the delivery of the packets, which is undesirable 

for the medical disaster applications, for reasons stated earlier in our discussions. What we attempted to 

do is that, instead of changing the data flow rate at the source at all instances of occurrence of congestion, 

the intermediate nodes themselves can be fed with the knowledge of the traffic flow characteristics at all 

instances so that congestion can be avoided even before it occurs. 

To be more specific, the contributions of this work can be summarized as follow: 
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 We have designed a LA-based scheme for healthcare WSNs, which avoids congestion in a very 

effective manner. All the intermediate nodes have automata stationed in them, which are tasked to 

monitor and control the rate of flow of data through them, so as to minimize the likelihood of 

occurrences of congestion. 

 We base our approach on equating the packet arrival rate and the packet service rate, i.e., we try 

to make both of these rates equal, preventing any kind of queuing at the nodes to a large extent 

and, hence, any packet delay because of that. Each automaton is tasked to compute the “best” or, 

to be precise, the most optimal rate of flow of packets, based on the number of packets dropped 

and, finally, that action is selected to be the output of the system comprising of the automaton 

adaptively interacting with its environment. 

 Our proposed algorithm is capable of adaptively learning and “intelligently” choosing “better” 

data rates in the future, based on the past experience with congestion with the other data rates. 

 Our proposed algorithm does not require the source nodes to be fed back by the intermediate 

nodes to slow down, as is, typically, done in many existing WSN congestion control schemes. In 

our approach, we save this time, by making the intermediate nodes to take a proactive approach in 

controlling the current rate of flow of packets, thereby improving the overall performance of the 

network. 

 Our approach is useful in large-scale WSN healthcare applications having increased likelihood of 

congestion for reasons that are elaborated in Section 2.1.  

 

2.1. Healthcare WSN and Congestion Avoidance 

 

The popularity of WSNs being used in healthcare is attributed to the properties of WSNs such as 

reliability, interoperability, efficiency, wearability, low-power consumption and inexpensiveness. 

Continuous patient monitoring and diagnostics [23], most often remotely, by doctors and nurses, without 

them being physically present in the patient sites is one of the popular applications of WSNs today. 

Figure 1 shows how a WSN can be deployed for remote patient monitoring. Sensors are attached to 

different patients and those sensors are capable of sensing vital patient information that can be transmitted 

to the control center with the help of some other neighboring nodes. Although, as shown in Figure 4, 

some of the WSN nodes (e.g., a sensor attached to a patient in an ambulance) in such healthcare 

applications, can be mobile, in our current work, we have restricted ourselves to such healthcare 

applications in which all the sensor nodes are stationary (at least they do not change their locations for a 

few hours), e.g., monitoring a number of patients donating vital organs in a organ donation camp).  
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Irrespective of the specific patient monitoring application in which the WSNs are used, the events 

sensed and the information collected by the different sensors about different patients, are transferred to 

the control centre, typically, through a multihop path, for proper and continuous monitoring. Let us 

consider the times of large-scale disasters, whether caused due to any natural calamity such as 

occurrences of earthquakes and spread of epidemic diseases, or due to human acts, such as the 9/11 

terrorist attacks on the World Trade Center in New York, or mass casualties in a battlefield during a war, 

the doctors in hospitals and relief camps need to monitor hundreds of patients at the same time. Often, the 

number of doctors designated to look after the patients is much lesser compared to the number of patients 

needing attention. In such cases, use of WSNs can be indispensable for both pre-hospital and in-hospital 

patient monitoring. For example, after the patients are admitted to the hospital in bulk, after first aid 

treatment, or even prior to that, the patients can be equipped with specialized sensor devices capable of 

monitoring vital patient information such as the heart rate, breathing condition and possibilities of 

formation of blood-clots.  

 

Figure 1: A Sensor Network for a Large-Scale Medical Emergency Situation Involving a Number of 

Patients Being Monitored at the Hospital Control Room 

 

Localized control 

centre1 

Main Control at the 
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or a team of doctors monitoring 
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Challenges/Issues: Although the above applications of WSNs, for example, for remote patient monitoring 

during large-scale medical emergencies appear to be potentially appealing, there exists an associated 

challenge – the challenge of congestion control – that is typical to such applications
2
. During such large-

scale medical emergencies, it is quite likely that the sensors placed in the different patients, will sense and 

transmit vital patient information very frequently and simultaneously, leading to increased likelihood of 

congestion in the networks in such applications than in other healthcare WSNs. As congestion in WSNs 

leads to dropping of packets at the nodes, increased consumption of limited energy in the nodes and 

reduction of the throughput of the network. Evidently, in such life-critical applications involving a large 

number of patients, congestion is extremely undesirable.  The implications of congestion in such 

situations can be appraised better if we consider a case in which the packets carrying information of a 

dying patient gets dropped due to congestion in a node. Such an event can be so disastrous that it can lead 

to the death of a patient, which would have, otherwise, survived, if those packets reached their 

destinations on time. Obviously, it is unlikely that the occurrences of congestion can be eliminated 

completely.  However, what can be definitely achieved is significantly reducing the effects of congestion, 

i.e., significantly decreasing the number of packets that gets dropped due to congestion, the large amount 

of unwanted consumption of the limited energy at the sensors and increasing the number of packets that 

get successfully delivered with respect to the number of packets that are sent from the different nodes.  

We addressed this problem by proposing a novel approach using which congestion can be avoided 

effectively. Through simulations, we establish in Section 6 that our approach is indeed capable of 

significantly reducing the number of packets that can get dropped due to congestion, the amount of 

energy that gets consumed at the nodes due to congestion and increasing the throughput of the network. 

Additionally, we should mention that, obviously, the back-buffering approach, in which the source node 

sending the data is fed back by the intermediate nodes to slow down, which is typically used in the 

previous schemes such as CODA [8], is of limited help in such life-critical applications requiring low 

latency. As mentioned earlier, we attempted to address this problem by taking a preventive approach 

rather than a curative one. In our solution mode, we station an autonomous learning machine (automaton) 

at the sensor nodes. These automata can be perceived to be small pieces of code that can interact with the 

environment and make intelligent decisions based on the environment characteristics. In our approach, we 

make these automata to act from the start itself and adjust to a data flow rate that significantly minimizes 

the likelihood of the dropping of packets and the consumption of energy at the nodes and maximizes the 

                                                 
2
 Although congestion is more likely to occur frequently in medical emergencies and disaster situations, other 

healthcare WSNs (such as where a sensor network is used to monitor the movement of the limbs of a newborn) may 

also relatively infrequently experience different levels of congestion. 
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throughput of the network. In sum, our approach helps us to avoid congestion in a “busy” network, so that 

a continuous and non-interruptible monitoring and diagnosis of the patients can take place without losing 

vital patient data. 

 

3. Congestion Problem for Many-to-One Traffic Pattern in Healthcare WSNs 

For congestion control in WSNs, for most healthcare applications, we primarily deal with many-to-one 

traffic patterns. In many-to-one traffic patterns, we have a single sink node and multiple source nodes 

which can be considered to be affixed with the patients. The congestion takes place when the sink node 

(control centers) in the network does not find enough resources, for the data packets, received from the 

multiple sources.   

 

3.1. Congestion Control in WSN 

The congestion control problem is primarily localized to the MAC layer (Data-Link layer), as shown in 

Figure 2
3
. Typically, most existing congestion control efforts limit the flow of packets through a node in a 

suitable manner – the exact approach depends on the specific mechanism that is used.  

                         

                                            Figure 2: Network stack model 

 

In typical WSNs, a source node emits data packets at some specific CBR. These data packets reach 

the intermediate nodes in the multihop path to the sink and the intermediate nodes, in turn, forward the 

                                                 
3
 In Figure 2, we show only the five important layers that are used. Since the layers, other than MAC, are not much 

concern to us in this work, for the sake of brevity, we do not elaborate on them here. However, interested readers 

may refer to standard books on WSN such as [1]. 
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packets to the next hop node. This process continues until the packets reach the final destination. This is 

diagrammatically shown in Figure 3. If, in an intermediate node, the rate at which the node receives the 

packets is not equal to the rate with which it is forwards it to the next node, different problems such as 

dropping of packets, queuing delay, collisions and congestion arises. Also, the problem is prominent due 

to the many-to-one traffic or funnel pattern [24] of WSN, wherein the data is sent from multiple sensor 

nodes to a destination continuously with the help of other intermediate nodes in the multihop path.                     

 

 

                                       

Figure 3: Basic traffic pattern in WSN 

 

3.2. Rate Control 

As controlling the rate of flow of traffic to a sensor node is one of the generic approaches for congestion 

control, few existing works discuss mechanisms for doing it. Examples include source control mechanism 

and hop-by-hop backpressure mechanism [7, 8]. In sum, in the source control mechanism, the rate of flow 

of data is carried out at the sink node or the destination node. On detection of congestion, the sink informs 

the source to control its rate of dispatch of packets. In hop-by-hop backpressure mechanism, the 

intermediate nodes, based on their congestion, state informs the source to adjust their rate. 

  In our approach, we controlled the rate of flow of data in a fashion that includes the intermediate 

nodes as well as the sink node. In our approach, the intermediate nodes do not provide any feedback to 

the source node; rather, the intermediate nodes adjust themselves according to the output of automaton 
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stationed in them. The automaton does that by continuously interacting with the environment. This helps 

the node to select the rate of transmission of packets. Compared to the existing source control and the 

hop-by-hop backpressure mechanisms mentioned earlier, our approach helps us to increase the efficiency 

of the network by optimizing the unnecessary consumption of valuable network resources such as the 

residual energy at the nodes and the link capacities. In Section 4, we discuss our approach in detail. 

 

4. LACAS: Our LA-Based Approach for Congestion Avoidance in WSN 

In this Section, we elaborate on the LA-based approach that we took to avoid congestion in WSNs. 

Before describing our solution approach in Section 4.2, we first introduce in Section 4.1 the concepts 

underlying the theory of LA. These concepts are essential for understanding the different elements 

constituting our proposed congestion-avoidance algorithm.  

 

4.1 LA 

 

The theory of LA centers on the notion of an “automaton”, which is a self-operating machine or a 

mechanism that responds to a sequence of instructions in a certain way, so as to achieve a certain goal. 

The automaton either responds to a pre-determined set of rules, or adapts to the environmental dynamics 

in which it operates. The latter types of automata are of interest to the research results we report in this 

paper, and are termed as adaptive automata. The term “learning” refers to the act of acquiring knowledge 

and modifying one’s behavior based on the experience gained. Thus, in our case, the adaptive automata 

we study in this paper, adapt to the responses from the Environment through a series of interactions 

within them. The automata, then, attempt to learn the best action from a set of possible actions that are 

offered to them by the random stationary or non-stationary environment in which they operate. The 

automata, thus, act as decision makers to arrive at the best action. 

The operation of LA can be best described through the words of the pioneers Narendra and 

Thathachar [25]: “… a decision maker operates in the random environment and updates its strategy for 

choosing actions on the basis of the elicited response. The decision maker, in such a feedback 

configuration of decision maker (or automaton) and environment, is referred to as the learning 

automaton. The automaton has a finite set of actions, and corresponding to each action, the response of 

the environment can be either favorable or unfavorable with a certain probability” ([25], pp. 3). 

LA finds applications in optimization problems in which an optimal action needs to be determined 

from a set of actions. It should be noted that in this context, learning might be of best help only when 

there are high levels of uncertainty in the system in which the automaton operates. In systems with low 

levels of uncertainty, LA-based learning may not be a suitable tool of choice [25]. 
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A comprehensive overview of research in the field of LA can be found in the classic text by Narendra 

and Thathachar [25], and in the August 2002 special issue of the IEEE Transactions on Systems, Man, 

and Cybernetics, Part B [28]. However, to ease out the understanding of the philosophy underlying our 

solution approach, we briefly review below some of the fundamental concepts. 

 

4.1.1 The Automaton 

 

The Automaton, in our case, is, generically defined by a quintuple {A, B, Q, F(.,.), G(.)}, where [25]: 

(i) A={1, 2,…,r} is the set of outputs or actions, and (t) is the action chosen by the automaton at 

any instant t.  

(ii) B is the set of inputs to the automaton, {1, 2,…, r}. Here, (t) is the input at any instant t, 

while the set B can be finite or infinite. 

(iii) Q = {q1 (t), q2 (t),…, qs (t)}is the set of finite states, where q(t) denotes the state of the automaton 

at any instant t. 

(iv) F (.,.): QBQ is a mapping in terms of the state and input at the instant t, such that, q(t+1) = 

F[q(t), (t)]. It is called a transition function, i.e., a function that determines the state of the 

automaton at any subsequent time instant (t+1). This mapping can either be deterministic or 

stochastic, depending on the environment in which the automaton operates. 

(v) G(.,.): is a mapping function G:QA, and is called the output function. Depending on the state at 

a particular instant, this function determines the output of the automaton at the same instant as: 

(t) = G[q(t)]. This mapping can, again, be considered to be either deterministic or stochastic, 

depending on the environment in which the automaton operates [25, 28]. Without loss of 

generality, G is deterministic. 

 

4.1.2 The Environment 

 

The Environment, E, typically, refers to the medium in which the automaton functions. The Environment 

possesses all the external factors that affect the actions of an automaton. Mathematically, an Environment 

can be abstracted by a triple {A, C, B}. A, B, and C are defined as follows [25].  

(i) A= {1 , 2 , …, r} represents a finite input set  

(ii) B= {1 , 2 ,…, l} is the output set of the environment, and  

(iii) C= {c1 , c2 ,…,cr} is a set of penalty probabilities, where element ci  C corresponds to an input 

action i.  

The process of learning is based on a learning loop involving the two entities: the Random 

Environment (RE), and the LA, as described in Figure 4. In the process of learning, the LA continuously 
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interacts with the Environment to process responses to its various actions. Finally, through sufficient 

interactions, the LA attempts to learn the optimal action offered by the RE. The actual process of learning 

is represented as a set of interactions between the RE and the LA.  

The RE offers the automaton with a set of possible actions {1, ..., r} to choose from. The 

automaton chooses one of those actions, say i, which serves as an input to the RE. Since the RE is aware 

of the underlying penalty probability distribution of the system, depending on the penalty probability ci 

corresponding to i, it “prompts” the LA with a reward (typically denoted by the value ‘0’), or a penalty 

(typically denoted by the value ‘1’). The reward/penalty information (corresponding to the action) 

provided to the LA helps it to choose the subsequent action. By repeating the above process, through a 

series of Environment-Automaton interactions, the LA finally attempts to learn the optimal action from 

the Environment. 

 

 

 

 

 

 

 

Figure 4: The Automaton-Environment Feedback Loop [25, 28]. 

We now provide a few important definitions used in the field of LA. Given an action probability 

vector P(t) at time ‘t’, the average penalty is defined as [25]: 

 

   

   
r

i i

i=1

r

i i

i=1

M(t) =E β(t)|P(t) =Pr β(t)=1|P(t)

= Pr β(t)=1|α(t)=α ×Pr α(t)=α

= c p (t).





       (1) 

The average penalty for the “pure-chance” automaton is given by:  

 
r

0 i

i=1

1
M = c .

r
            (2) 

   = {1, ..., r}  

Random  
Environment 

Learning  
Automaton 

{c1, ..., cr}  

 = {0, 1}  
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As t, if the average penalty M(t)<M0, at least asymptotically, the automaton is generally considered to 

be better than the pure-chance automaton. E[M(t)] is given by: 

       E M(t) =E E β(t)|P(t) =E β(t) .        (3) 

4.1.3. Action Probability Updating  

 

In our work, we deal with the Variable Structure Stochastic Automata (VSSA). VSSA are the ones in 

which the state transition probabilities are not fixed. In such automata, the state transitions or the action 

probabilities themselves are updated at every time instant using a suitable scheme. The transition 

probabilities and the output function in the corresponding Markov chain vary with time, and the action 

probabilities are updated on the basis of the input. VSSA depend on random number generators for their 

implementation. The action chosen is dependent on the action probability distribution vector, which is, in 

turn, updated based on the reward/penalty input that the automaton receives from the RE. The action 

probability updating scheme that we have designed is, essentially, a Linear Reward-Inaction Scheme (LRI) 

scheme. It is based on the principle that whenever the automaton receives a favorable response (i.e., 

reward) from the environment, the action probabilities are updated, whereas if the automaton receives an 

unfavorable response (i.e., penalty) from the environment, the action probabilities are unaltered.  

Mathematically, it is presented below [25, 28]: 

 

pi(n+1) = 1 - Σj≠i λr pj(n)   if αi is chosen and β = 0 

pj(n+1) = λr pj(n)    if αi is chosen and β = 0         (4) 

pj(n+1) = pj(n)    if αi , αj chosen, and β = 1,   

 

where λr (0 < λr < 1) is the parameter of the scheme. Typically, λr is chosen to be close to unity. Note that 

only rewards are processed in this scheme. Therefore, if αi is chosen and it receives a reward, the 

probability of choosing this action in the next iteration, pi(n+1), must be increased. This is accomplished 

in two steps. First, the probabilities of choosing any other action αj, for all j≠i, on the next iteration are 

reduced by setting pj(n+1) to λr pj(n) for all j≠i. Next, the probability of choosing αi on the next iteration, 

pi(n+1), is increased by subtracting the sum of all pj(n+1) for j≠i, from unity. 

 

5. LACAS 

Let us now explain the specifics of our LA-based model, LACAS, which can be used for congestion 

control in WSNs. An automaton, which we explained earlier, to be a simple autonomous machine (code) 

capable of making decisions, is stationed at every node in the network, as shown in Figure 5.  

ayan
For Personal Use Only



LACAS: Learning Automata-Based Congestion  

Avoidance Scheme for Healthcare Sensor Networks: 15 

 

                               

 

 

Figure 5: Diagram showing a node with an automaton stationed in it. 

 

What is noteworthy is that, only the nodes that act as intermediate nodes during the transmission of 

specific information will have their automata work for controlling congestion locally in that node. In other 

words, at any time instant, if we look at the network topology, the automata stationed in the intermediate 

nodes, and not the ones in the source nodes, will act as controllers of congestion of data arriving from 

source nodes. Moreover, we should note that each node is independent in the network in its approach for 

controlling the congestion. The algorithm is non-distributed in nature. In a distributed approach, the 

complexity of network will increase manifold and is also likely to decrease the reliability, since there are 

chances of the operations getting unsynchronized. 

  

For the input to the automaton at time, t=0, in our work, we limited the number of actions associated with 

an automaton to 5 
4
, which are based on the rate with which an intermediate sensor node receives the 

packets from the source node. We denote these actions by 1 2 3 4 5{ , , , , }      , as shown in Figure 5. 

                                                 
4
 However, we should clarify that, although our algorithm is explained and the results presented in this paper are 

with the help of 5 actions, the choice of the number of actions is purely arbitrary. It is designed to be a parameter 

that can be set by the user. It can be, trivially, established through theoretical means, that the choice of the number of 

actions does not affect the overall functionalities of the algorithm. 

Set of input 

actions:

1, 2, 3, 4, 5      

Sensor Node 

Automaton stationed 

in the Node 

Most optimal action, can 

be any one of 

1, 2, 3, 4, 5      
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The rates, “ ”, that are taken as inputs to an automaton stationed in a particular node, are based on the 

number of packets dropped till then in the concerned node. The most optimal action, at any time instant, 

among the set actions in a node, is decided by the number of packets dropped. To be precise, the rate of 

flow of data into a node for which there is the least number of packets dropped is considered to be the 

most optimal action. At any time instant, the choice of an action by the automaton, i.e., the rate at which 

data should flow into the corresponding node is rewarded/penalized by the environment. Initially, at t=0, 

these actions have the equal probability (say, ( )
i

P n ) of getting selected by the automaton. Let us assume 

that the automaton selects, 1 , initially, based on the probability values of all the actions at time t=0. The 

chosen action, which maps to a certain rate of flow of data, which is predefined, then, interacts with the 

environment. The environment examines the action, 1 , and rewards/penalizes that action based on the 

packets dropped at the node. If the action, 1 , is rewarded, the probability value of 1  is increased and 

the probability values of the other actions, i.e., 2 3 4 5, , ,    , are decreased as per the equations shown 

below in (5a) and (5b) 

1 1 1

1
( 1) ( ) (1 ( ))P n P n P n  


                                            (5a) 

2,3,4,5 2,3,4,5

1
( 1) (1 ) ( )P n P n 


          (5b) 

 

If, in case, 1  is penalized, the probability value corresponding to this action as well as for rest of the 

actions 2,3,4,5 ,will remain unaffected
5
. This is shown, mathematically, in Equations (6a) and (6b).  

 
1 1
( 1) ( )P n P n                                                                           (6a) 

 

                                                              (6b) 

 

The probability values associated with all the actions should be such that at every time instant the 

summation of their probabilities should equal unity, i.e.,
1

( ) 1
i

r

i

P n


 . This is a fundamental law of 

probabilities. At the next time instant, again, the automaton will select an action based on the updated 

probability values. The selected action will interact with the environment again and will be rewarded or 

penalized accordingly. The probabilities of all the actions will be updated repeatedly in a continuous 

                                                 
5
 In our approach, we follow the LRI probability updating scheme, which is known to be efficient [25, 28]. 

2,3,4,5 2,3,4,5
( 1) ( )P n P n  
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cycle. This vicious cycle will continue until the most optimal action is selected, i.e., lim ( ) 1
it

P n


 , 

which means that the probability of most desirable action tends to unity as time tends to infinity. Let us 

assume that as t  , the automaton selects action, 2 , to be the most optimal action for the system. 

The sensor node will then emit the packets based on the rate corresponding to action 2 . Since this is the 

most optimal action selected by the automaton, the chance of the node getting congested reduces. For 

action, 2 , the number of packets dropped reduces to the minimum value out of the case if other actions 

were chosen. Also, it will transmit the data packets with the rate that corresponds to 2  
6
. The above-

mentioned approach is also followed at all the nodes of the network. 

 

 

 

 

 

Figure 6: The figure demonstrates the network model consisting of 7 nodes. Also, it                                     

shows that the automata stationed in the intermediate nodes help in the adaptation of the data flow 

rate. 

 

We, now, present the important steps of the LACAS algorithm. This algorithm executes at every 

intermediate node in the network that has an automaton stationed in it. 

 

                                                 
6
 We should clarify that we are considering a stationary environment in which the probability distribution itself does 

not change with time. It is worth restating that, if such is not the case, the algorithm will not function as explained in 

the paper. The LA-based analysis of problems involving non-stationary distributions is non-trivial. We plan to 

consider non-stationary distributions as a work to be done in the future. 

SINK 

Source1 

ASN2 

Source2 

ASN1 

ASN3 
ASN: automaton-stationed node 
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Algorithm: LACAS 

 

Input:  

 G: The network. 

 N’: The number of nodes in G. 

 N: The number of nodes acting as intermediate nodes during any run. 

 Set of actions  = 1, 2, 3, 4 ,..., n     for an intermediate node. 

 Rate corresponding to each of the actions i = i  bits/sec in an automaton, where 1 i n  . 

 

Output:  

 For each automaton, the rate corresponding to the most optimal action o , where 1 o n  . 

 

Principal Steps: 

 

BEGIN 

 

Step 1: /*********Put the loop for all the intermediate nodes********/ 

For every intermediate node, execute Steps 2 to 4 until lim
t

P[ i ]1.. 

Step 2: /*******Initialize the probability of selecting an action from the set of actions 

1, 2, 3, 4 ,..., n     *******/ 

Initialize the probability of selecting i =
i

P .  

Step 3: /*********Select an action randomly out of n actions present ********/ 

Choose an action randomly out of a set of n actions as follows: 

i =rand ( )%n+1.  

Step 4: /*********Update the probabilities at every node until an optimal action is chosen at that 

node *********/ 

while(1) 

{  

          if action i is chosen and the Environment response, 0,  update the probabilities according the 

following scheme: 

1
( 1) ( ) (1 ( ))

1
( 1) (1 ) ( )

i i i

j j

P n P n P n

P n P n

  

 





   

  

 

          else update the probabilities according to the following scheme:  

( 1) ( )

( 1) ( )

i i

j j

P n P n

P n P n

 

 

 

 
 

} 

 

Step 5: /******Transmit the packets corresponding to the rate selected by the automaton********/ 

Transmit data packet with the rate i  bits/sec corresponding to i  

 

END 
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Example: To help the readers better understand our solution approach, let us consider the small sample 

network topology that consists of six nodes, as shown in Figure 6. In this example, two nodes are shown 

as source nodes, three nodes as intermediate nodes in which automata are stationed and one node as a sink 

node. Let us consider the automaton stationed in the intermediate node, denoted by ASN2. The automaton 

in ASN2 is provided with a set of inputs as action . As required in Step 2, each of the actions of ASN2 

is initialized. After getting the actions as the input, the automaton selects an action i  randomly out of 

the available ‘N’ actions, as per Step 3 of LACAS. The selected action’s probability,
i

P , will be updated, 

based on whether it is rewarded or penalized by the environment, as shown in Step 4. The process of 

updating the probability will go on until an action, i , is selected whose probability tends to unity at time 

t tending to infinity. The above mentioned steps will occur even for the nodes, ASN1 and ASN3, since an 

automaton is stationed in them too. Finally, after a suitable action is selected by the automaton, the node 

will transmit data packets corresponding to the rate of selected action i  as stated in Step 5.  

 

6. Simulation Results 

We evaluated the performance of LACAS through simulations. Simulation studies were performed using 

the Global Mobile Simulator (GloMoSim) [26, 32]. We compared the performance of LACAS by 

simulating it in both the congested and the normal modes of the network. The results of simulation show 

that LACAS, elaborated below, that LACAS is, indeed, capable of curbing down congestion in the nodes 

of the network significantly. In this Section, we will first present the configurations of the simulator 

which were used in our studies. Following this, we will elaborately present the results we have obtained. 

 

6.1. Setting and Configuration 

The testbed for the simulation consisted of 100 nodes. In the congested mode, we selected 5 sources 

(Node 1, Node2, Node3, Node70, and Node80) and 4 sinks (Node4, Node6, Node99, Node100) and the 

number of packets to be emitted was set to 10,000, each packet having a size of 2,048 bytes. The rest of 

the nodes were set as intermediate nodes. In the normal mode, the number of packets was reduced to 

1,000, but the sizes of the packets were kept the same. Also, the nodes used as sources and sinks were 

kept unchanged. The LACAS algorithm was evaluated in the congested mode to check its effectiveness in 

reducing congestion. The LACAS implementation was done by modifying the 802.11 protocol of the 

MAC layer. There were other choices of MAC layer protocols such as CSMA, MACA, TSMA [1, 27], 

but we decided to restrict ourselves to 802.11, because it effectively deals with the problem of hidden 
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node and exposed terminal problems [1, 27, 33]. A summary of the simulation parameters set in our 

experiments is presented below. 

 

Simulation Time                                                          : 100 secs. 

Seed for generation of random numbers                                : 3 

Terrain Dimension                                : (500m, 500m) 

Number of Nodes                                         : 100 

Node Placement                                   : Uniform/Grid/Random 

Mobility                                                : None 

Propagation limit                                              :  -111.0 dBm 

Propagation path loss                            : Two ray 

Noise figure                                           : 10.0 

Temperature                                          : 290.0 Kelvin 

Radio Type                                            : Radio-Accnoise(standard radio model)       

Radio Rx type                                        : SNR bound 

Radio Tx power                                     : 10 dBm/15dBm/20dBm 

MAC protocol                                        : 802.11 

Routing                                                  : Bellman-Ford Algorithm 

 

6.2. Performance Metrics 

Various performance metrics have been considered for evaluating the performance of LACAS. The main 

measures of performance were:  

 Energy consumption: Sensor nodes, especially, those used in healthcare applications, have tight 

constraints in terms of energy. Any protocol designed specifically for healthcare WSNs should 

take the amount of energy consumption into account. The criticality of the amount of 

consumption of energy can be understood better by considering the following examples related to 

remote patient monitoring. Let us consider an application in which the activities of the vital 

organs (e.g., heart, lungs and brain) of a patient undergoing a critical surgery are monitored using 

a network of sensors. In such a case, it would be extremely undesirable to have one of these 

sensors run out of battery and stop working. To appreciate the importance of energy consumption 

in the nodes in healthcare WSN applications, let us cite another example. Referring to the 

example shown in Figure 1, which shows a network of sensors for monitoring the pre-

hospitalized and the post-hospitalized patients during a large-scale disaster, it would be 

undesirable to have the sensor monitoring a critically injured patient in an ambulance runs out of 
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battery.  It is, therefore, required to measure the amount of energy the sensor nodes in LACAS 

consume. It would be extremely undesirable to have a congestion control/avoidance scheme that 

consumes a lot of energy. 

 Throughput: Throughput measures the average rate of a successful packet delivery over a 

communication channel. It is a measure of the number of packets received with respect to the 

number of packets that are transmitted. As mentioned earlier, this measure is important in 

networks for healthcare applications, because the importance of the reliability of the transmission 

of packets, and the rate in which the packets, especially the ones carrying vital patient/medical 

data, are received at the destination. 

 Number of collisions: This metric captures the total number of collisions occurring in the network 

due to the flow of data packets through the nodes. Collisions result in loss of packets. This is also 

an important measure of performance for any MAC protocol designed to work in healthcare 

domain, in which critical patient information is carried. 

 

A few other metrics were also considered in our study. They are self-explanatory and are not 

elaborated in this Section. The simulation results obtained using all these metrics are presented in Section 

6.3. 

 

6.3. Performance Results 

 

Energy Consumption: Figure 6 shows the energy consumption, in mWh, at the different nodes of the 

network in the congested mode, normal mode and with LACAS. 
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                               Figure 7: Energy consumption by the Nodes 

 

As is evident from Figure 7, the energy consumed during the transfer of packets is less in the case of 

LACAS compared to the congested and the normal modes. In the congested mode, the packets arriving 

from different nodes collide, because the flow of packets is not controlled. In the case of LACAS, the rate 

of flow of packets is controlled, leading to a fair and reliable transfer of the packets in the network. This 

leads to reduced energy consumption at the nodes compared to the congested and the normal modes. This 

is an important achievement of LACAS, because, as mentioned earlier, the nodes in WSNs are extremely 

energy constrained and in most applications it is infeasible to replaces the sources of energy in the nodes, 

when they run out of power. Another observation of importance is that, initially, the energy consumption 

at the nodes is not significantly different. However, as the simulation includes more and more nodes into 

the network, the energy utilization also increases. However, in LACAS, throughout the network, all of the 

nodes have similar levels of energy consumption, which is better than that in the congested and normal 

modes. 

 

Collisions: The comparative results of the number of collisions taking place in the network in the normal 

mode, the congested mode and with LACAS are shown in Figure 8. 
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                                                Figure 8: Collisions in the Network 

 

In this case, as well, we find that the levels of collisions are far more pronounced in the normal and 

the congested modes compared with LACAS. We observe from Figure 7 that the maximum value of the 

number of collisions in LACAS is just 888, but in the congested and the normal modes it is 2,348 and 

1,985, respectively. The significant improvement in reducing the number of collisions in LACAS, 

testifies to its effectiveness as a congestion avoidance algorithm for use in WSNs. 

 

Throughput: The comparative results in the normal mode, the congested mode and with LACAS are 

shown in Figure 9. In the congested mode, there is an uncontrolled flow of packets. Therefore, an 

intermediate node receives a significantly increased number of packets and even transmits accordingly. 

With LACAS, the rate of flow of packets into and out of a node is controlled by an automaton. Therefore, 

the number of packets a node receives and the number it transmits is lesser compared to when there is no 

control of the flow of packets. Increased levels of throughput (i.e., signifying the successful delivery of 

packets) are desirable. As shown in Figure 9, the ratio between the numbers of packets received at a node 

with that of the numbers of packets that are transmitted in our study shows that the throughput in case of 

LACAS is higher with respect to that observed in the normal and the congested modes. 
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                                                Figure 9: Throughput Performance Results  

 

We observe that the ratio between the received packets and the transmitted packets with LACAS is 

quite high and is nearly equal to 0.8. In the normal mode, we observe fluctuations in the throughput 

pattern, but it can be easily inferred that the aggregated ratio is somewhat near to 0.55. In case of the 

congested mode, this ratio is very poor and it is nearly equal to 0.1. With LACAS, successful packet 

delivery is quite high because an automaton at a node is selecting the rate that is optimum with respect to 

the number of packets dropped. This leads to reduced queuing of packers, reduced levels of collision and, 

in effect, increased throughput. 

 

Number of Packets Delivered to the Nodes / Unicast Packets Received: The total number of packets 

delivered to the intermediate nodes and the unicast packets received by the nodes are shown in Figures 10 

and 11. In unicast delivery, data packets are sent between two designated nodes. While Figure 11 shows 

only the unicast packets delivered to each of the nodes in the network, the total number of packets 

(unicast and broadcast) delivered is shown in Figure 9. From a close inspection of Figure 10, it is evident 
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that with LACAS, the number of packets delivered is much larger compared to the execution in the 

normal and the congested modes.   

 

                                Figure 10: No of Packets Delivered to the Node 

 

The number of unicast packets delivered gives us an indication of the effect on congestion due to 

unicast packets between two nodes only. When two or more nodes send unicast packets, collisions 

between different packets are likely to take place and this likelihood increases as more and more nodes 

get involved. In cases of collisions, not all the packets destined to a particular node reach their target. The 

more the number of unicast packets received at the nodes, the lesser is the number of collisions in the 

network, which leads to greater reliability and energy efficiency. 

From Figure 11, it can be inferred that, with LACAS, the number of unicast packets received by the 

sensor nodes is more than that in the other two modes. 
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                                         Figure 11: Unicast Packets Received  

 

Variation in the Number of Collisions with Change in Transmission (Tx) Range of the Nodes in 

LACAS: In the previously presented results, the radio transmission range was set to 10dBm for all the 

nodes in the network. We were also interested to observe the variation in the collision pattern with the 

change in the Tx range of the nodes when LACAS is executed. Let us consider 4 nodes, namely, Node A, 

Node B, Node C and Node D, in which A acts as the source, D as the sink and the remaining ones as the 

intermediate nodes. Initially, the Tx range was such that the packets transmitted by A will be captured 

only by B or C but not by D. In this scenario, there exists less traffic which, in turn, will result in less 

collision. After increasing the Tx range of Node A, it not only gives some packets to Node B as well as to 

Node C, but also some of the packets are directed towards Node D as well. In this scenario, the number of 

collisions will increase resulting in the unwanted loss of energy and the reduction in throughput. We 

collected the results of collisions for 3 different transmission ranges, i.e., 10dBm, 15dBm and 20dBm 

plotted them as shown in Figure 12. We observed that the pattern of the plots is somewhat similar in all 

the three cases, but the aggregated number of collisions increase with the increase in the Tx range. 

ayan
For Personal Use Only



LACAS: Learning Automata-Based Congestion  

Avoidance Scheme for Healthcare Sensor Networks: 27 

 

                                Figure 12: Collisions with Change in Tx range for LACAS 

 

Energy Consumed Versus Tx Range in LACAS: We were also interested to observe the variation in 

the consumption of energy with the variation in the Tx range when LACAS is executed. The results 

obtained are shown in Figure 13. As seen in Figure 12, an increase in the Tx range of a node increases the 

area to which the data packets can be sent, which, in turn, results in an increase in the collision of packets. 

As the collisions increase, the energy consumed by each node also increases. Increased consumption of 

energy at the sensor nodes is undesirable, because the nodes are difficult to be recharged in most 

healthcare applications of WSN. The loss of energy of a node will result in its decreased lifetime of the 

nodes, which will render them from being used uninterruptedly for longer periods of time, as is mandated 

in most healthcare applications. 

From Figure 13, it can be inferred that when the Tx is 10dBm, the energy consumed by the sensor 

nodes is 23.5mWh (approx.). When we increased the Tx to 15dBm the energy consumption increases to 

25.5mWh (approx.).  Finally, when the Tx was increased to 20dBm, it was found that the energy 

consumption increases to 26.2mWh.  
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    Figure 13: Variation in Energy Consumption with Change in Tx Range in LACAS 

 

Variation in Throughput with the Change in Tx Range: In this Section, we tried to observe the 

variation in the throughput for LACAS with change in the transmission range of the nodes. As in the case 

of the previous two experiments, we used the same three Tx ranges, namely, 10dBm, 15dBm and 20dBm. 

The number of data packets transferred from one node to other and the aggregated throughput reduces 

with the increase in the Tx range. For 10dBm Tx range, the ratio between the transmitted packets and the 

received packets varies within the range of 0.6 – 0.9, which shows that most of the packets are 

successfully transmitted. In the second case, when the Tx range is 15dBm, the above stated ratio 

decreases to 0.55. Finally, when the Tx range is increased to 20dBm, this ratio changes to 0.4 

approximately. These observations can be had from the plot presented in Figure 14.  
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                  Figure 14: Variation in Throughput with the Change in the Tx range in LACAS 

 

Signals Received and Forwarded to MAC: When a sensor node sends some data packets for another 

node, the packets traverse a path through the different layers, including the MAC layer, of the protocol 

stack of the corresponding nodes. Figure 15 shows the number of signals received and forwarded by the 

MAC layer. The importance of this plot lies in the fact that it gives us an indication as to how much the 

MAC layer is affected, in terms of the flow of signals through it, by the change in the implementation of 

LACAS, compared to the normal and the congested modes. We observe that, in LACAS, the number of 

signals engaging varies between 6,000 and 9,000, compared to 3,000 and 8,000 in the normal mode, and 

2,500 and 6,500 in the congested mode. Therefore, we can conclude that, on an average, LACAS does not 

significantly affect the normal functionalities of the MAC layer. 
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                           Figure 15: Signals Received and Forwarded to MAC layer 

 

Variation of Throughput in LACAS with the Change in Node Placement Type: The previous 

experiments were undertaken by keeping the placement of the nodes as uniform. A very high level 

explanation of uniform, random and grid placement of nodes is provided below. In uniform placement, 

the terrain is divided uniformly into a number of cells, based on the number of nodes in the network. The 

nodes can be stationed anywhere in those cells. In random placement, the nodes are placed randomly 

anywhere within the physical terrain. Finally, in grid placement, the node placement starts from (0, 0). 

The node number has to be a square of an integer for grid-based pattern. So, 100 nodes in a network were 

sufficient for the grid placement type. In this experiment, we changed the location of the nodes based on 

their node placement type and observed the variation in throughput for the nodes in the network, as shown 

in Figure 16. The results show that throughput depends significantly on the positioning of the sensor 

nodes. 
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                             Figure 16: Variation in Throughput with Node Placement Type 

 

For uniform placement type, the ratio was best of the three, close to about 0.8 to the precise. In the 

grid placement type, the ratio fluctuated in the vicinity of 0.7 and for the random topology it varied 

between 0.6 and 0.68. 

 

7. Conclusions 

To conclude, we have designed a novel congestion control algorithm, suitable for use in healthcare 

applications. The proposed scheme is capable of effectively avoiding congestion while increasing the 

throughput, the number of packets delivered to the sink node, while consuming significantly less amount 

of scarce energy available at the nodes and decreasing the number of collisions at the intermediate nodes. 

Our approach is underpinned in the principles of Learning Automata (LA). The advantage of our 

proposed algorithm, LACAS, is that, the automata stationed in the different sensor nodes interact with 

their environment to select a locally optimal action at every time instant, based on the knowledge of 

previous levels of congestion, to finally offer a globally optimal solution, capable of reducing congestion 

significantly, for the future. We conducted extensive simulation experiments to assess how LACAS 

behaves, with respect to metrics such as the energy consumed, throughput and collisions, for different 
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network settings and operating conditions typical of WSN healthcare applications. As stated earlier, our 

results show that LACAS is, indeed, capable of curbing down congestion in WSNs. Also, the number of 

packets that are delivered from one node to other increases significantly.  

Let us now present some of our thoughts for future work. For the implementation of our algorithm, 

we took P-model [25, 28] for the simplicity. In this model, the environment offers only binary responses 

for any action selected by the automaton. We are currently trying to observe how the Q-model, in which 

the environment response can take place multiple values in the interval [0, 1], would affect our proposed 

solution approach. The interest for Q-model is that it is representative of a set of healthcare applications 

such as monitoring of emergency rescue vehicles such as ambulances. Also, we did our experiment for 

stationary environments where the penalty probability does not change with time. But, it would be 

interesting to observe how our approach needs to be changed for non-stationary environments. This 

particular work is limited to WSNs with stationary nodes. However, we are planning to extend the work 

for mobile sensors in the future. Finally, we have seen promising simulation results for our proposed 

algorithm, it would be interesting to assess and compare usefulness and efficiency of our proposed LA-

based algorithm in a multitude of real-life current generation and future generation healthcare WSN 

applications. 
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