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Abstract—In this paper, we propose a scheme, criticality-
aware data transmission (CARE), in CPS-based healthcare sys-
tems, for increasing the processing rate of the sensed physi-
ological parameters’ values of a patient. The criticality of a
patient may vary at any instant of time, and thus, continuous
monitoring and quick processing of the physiological parameter
value of a patient is essential. Therefore, in order to reduce the
latency of data processing of a critical patient, we consider a
fog computing based architecture to address the problem. Based
on the criticality value of physiological parameters, a Local
Processing Unit (LPU) transmits the sensor data either to the fog
aggregation node or cloud. We use a cooperative game theory-
based Nash bargaining approach, where the LPUs bargain
among themselves to decide whether the sensor data need to
be transmitted to cloud or fog aggregation node. Based on the
criticality index and the weight factor assigned to the LPU
participating in the bargaining process, the utility of each LPU is
computed. Analytical results show that the utility increases with
the increase in the criticality index of any patient. Considering
the total number of WBANs 5, 10, and 15, the average utility
varies between 75-80%. Moreover, the data dissemination delay
and power consumption are reduced by 23.39% and 31.089%,
respectively, in the presence of fog node.

Keywords—Cyber Physical Systems, WBAN, Criticality index,
Nash Bargaining, Fog aggregation node, Cooperative game.

I. INTRODUCTION

The rapid development in Cyber Physical Systems (CPS)
[1] requires efficient connectivity between the physical and
cyber world. The increasing number of physical devices
results in significant use of cloud platform for storing and
processing of data. The cloud computing systems use data-
centric network (DCN), which acts as a monopolized unit
for computation and storage. Currently, the processing of
the huge volume and variety of data produced from billions
of physical devices is quite challenging. However, the fog
computing adapts a decentralized architecture, which has
limited computing capabilities along with short-term storage
facilities. Fog computing [2] provides a platform, where
heterogeneous devices are able to communicate, cooperate,
and process tasks among themselves without the help of a
third party. Additionally, fog computing allows the analysis
of time-sensitive data at the network edge and process it
within a very short time duration. Therefore, fog computing
reduces latency and consumes less bandwidth.

CPS plays an important role for ubiquitous patients’
health monitoring. [3]. In a CPS-based Wireless Body Area

Network (WBAN), different physiological sensors are typ-
ically placed on the patient’s body to keep continuous
track of the physiological parameters of a patient. In the
existing literature, the authors addressed different issues of
WBAN, including data-rate tuning [4], data distribution cost
minimization [5], and cost-effective resource allocation [6].
However, the time-sensitivity of critical data processing is
not focused significantly. The criticality of a patient may
vary at any time instant. With the increasing criticality of a
patient, the processing speed of the physiological parameters’
values must also be increased for further immediate decision
making. The delay in processing of physiological data of a
patient may result in degradation of a patient’s health condi-
tion. Therefore, we design a scheme to transmit physiological
data based on the criticality of the patient, so that the data are
further processed. We use a cooperative game theory-based
approach, where LPUs located on patients’ body bargain
among themselves to decide whether the physiological data
need to be transmitted to the fog aggregation node or to the
cloud directly.

A. Motivation

The delay in transmission and processing of physiolog-
ical parameters may result in increase of a patient’s health
criticality. Thus, the time-sensitiveness of physiological data
transmission is an essential issue, which needs to be taken
into account for a WBAN-enabled hospital. Therefore, we
motivated to design a novel scheme for prioritized data
processing among several patients based on their health-
criticality value. In an IoT-enabled WBAN scenario, the
physiological data are transmitted to the fog nodes or to
the cloud-end directly. In our proposed scheme, CARE, we
use a cooperative game theoretic Nash bargaining approach.
Bargaining takes place among the LPUs of different patients
in order to provide an equal priority to each patient for
physiological data transmission based on their criticality
values. We consider the scenario in which multiple patients
are present in a hospital, where CARE is able to decide
whether the sensed physiological data of patients are needed
to be transmitted to the cloud or fog.

B. Contribution

In this work, we focus on the time-sensitiveness of
physiological sensor data of a patient’s body. The specific
contributions of this work are as follows:
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1) We propose a novel scheme, CARE, which decides
whether to transmit the physiological sensor data to the
fog aggregation node or the cloud, based on the patient’s
criticality.

2) We derive an index, which measures the health criticality
of a patient, based upon which the physiological param-
eters are transmitted to the cloud or the fog. Further, we
model the problem as a Nash Bargaining process, where
the LPUs act as players and bargain among themselves
to transmit the data to a cloud or fog node.

3) The proposed scheme, CARE, is analyzed through sim-
ulation and analytical studies.

The rest of the paper is organized as follows. Section II
describes the related research works done in Wireless Body
Area Networks (WBAN). The system architecture of CARE
is described in Section III. The proposed architecture, CARE,
is evaluated in Section IV and performance analysis is done
in SectionV. Finally, the work concludes in Section VI, while
citing directions for future work.

II. RELATED WORK

In recent years, research on WBANs is explored ex-
haustively and the authors in the existing literature [4]–
[7] addressed several issues in WBANs. Ivanov et al. [7]
proposed an architecture for virtual group formation of
nurses, doctors, and patients to remotely analyze WBAN
data. Group formation and modifications are performed using
high-level policies. The authors defined a new metric, Quality
of Health Monitoring, using which doctors provide feedback
about the quality of the received physiological parameters of
the patient. In real-time data streaming of WBANs, Quality
of Service (QoS) plays an important role. Thus, Misra et
al. [4] applied a cooperative game theoretic approach for
priority based data-rate tuning among the sensor nodes to
improve the QoS. Moulik et al. [6] introduced the concept
of Multi-stage Nash Bargaining for allocating resources in
WBAN. The authors cost-effectively map WBANs to the
Cloud Service Providers (CSP). Moosavi and Bui [8] focused
on the physical layer security aspects. The authors proposed
a game-theoretic Nash network topology in order to improve
the security in data transmission.

Fog computing provides the platform to analyze the
time-sensitive data at the network edge. Vaquero et al.

[2] presented a complete definition of fog and the various
research challenges related to fog. Further, Misra et al. [9]
proposed the architecture of fog computing. In this work, the
authors mathematically derive power consumption, service
latency, and CO2 released to the environment in the case of
renewable and non-renewable energy resources. The fog layer
offers gateways to provide various techniques and services
at the edge network. Gia et al. [10] designed a healthcare
monitoring system for ECG feature extraction using fog
computing. In this system, the ECG signals are examined
by extracting the various features.
Synthesis: In the existing literature, the researchers addressed
different problems in WBAN, including data rate tuning,
mapping of WBANs with CSPs, quality of physiological
data, and security. On the other hand, fog computing be-
came an emerging topic of research. Different authors in
the existing literature explored fog computing, and there-
after, provide solution to strengthen the concept theoretically
and practically. However, none of the existing literature to
our knowledge discussed about the implementation of fog
computing in WBAN, considering the criticality based data
delivery for processing. Therefore, we design a scheme to
transmit data based upon the value of the criticality index
of the patient. The criticality of any patient varies at any
time instant. Therefore, any delay in the delivery of the
physiological parameters may worsen the patient’s condition.

III. PROBLEM DESCRIPTION

A. Problem Scenario

We consider a WBAN provisioned hospital scenario,
where multiple heterogeneous on-body sensor nodes are
placed on the bodies of patients. Each of these sensor nodes
transmits the values of physiological parameters of a patient
to the LPU. The health criticality of any patient is influenced
by the deviation of the sensors’ values from their normal
values. Therefore, in such a situation, constant monitoring
of the patient is important. Additionally, the physiological
data of a patient, which are required to be transmitted by
the LPU, are time-sensitive. Consequently, for a critical
patient, the quick processing of physiological sensor data is
required. Based on the patient’s criticality, the LPU transmits
physiological data either to the fog node or the cloud, as
shown in Fig. 1.

Fig. 1: CARE – The System Architecture
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B. Problem Formulation

Let W = {W1,W2,W3, · · · ,Wd} be the set of WBANs
present in the system, where 1 ≤ i ≤ d. We consider ξWi

=
{X1, X2, · · · , Xn} to be the set of sensors attached to the
body of W th

i WBAN, where Xj ∈ ξWi and 1 ≤ j ≤ n. Each
sensor has a normal value, N, such that Nmin ≤ N ≤ Nmax.
The deviation of the sensor’s value of any patient beyond
Nmin and Nmax is considered to be critical. The value of the
physiological sensor less than Nmin is denoted by Dmin and
the physiological sensor value more than Nmax is denoted by
Dmax. Smin and Smax denote the minimum and maximum
possible value of a sensor, such that Smin ≤ N ≤ Smax.
Mathematically,
Dmin = Nmin −Oc, and Dmax = Oc − Nmax (1)

where Oc is the current observed value of the sensor. Let
x, y, and z denote the set of physiological sensors, which
attain Oc < Nmin, Oc > Nmax, and Nmin ≤ Oc ≤ Nmax
respectively. Therefore,

x+ y + z = ξWi
(2)

We define the criticality index (CIWi
) of the W th

i patient
mathematically in Equation (3), where S = Smax − Smin.

IV. SOLUTION APPROACH

We provide a solution of the proposed problem using a
cooperative game-theoretic Nash bargaining approach. We
focus on the health criticality of the patients in order to
transmit the sensed physiological data from a patient’s body
to the fog aggregation node or cloud.

A. Game formulation

We formulate the problem of selection between fog and
cloud for physiological data processing of a patient as a
cooperative game. Each WBAN’s LPU acts as a player and
cooperatively bargains with other LPUs to attain an optimal
solution for choosing cloud or fog node. Through bargaining,
the players mutually agree to transmit the selected WBAN’s
physiological parameters’ value to the fog aggregation node
or cloud, as illustrated in Fig. 1. Based on the health criti-
cality index of any patient, the utility of the corresponding
LPU is computed at that time instant. Each LPU bargains
with others, depending on their individual utility values.
Therefore, we map this problem scenario with the bargaining
process [11]. Depending upon the bargaining outcome, a LPU
transmits the physiological parameters of the corresponding
patient to the cloud or fog node.

We consider L = {L1,L2,L3, · · · ,Lk} to be the set
of LPUs. Each LPU, Li (1 ≤ i ≤ k) is associated with a
WBAN, Wj (1 ≤ j ≤ d) belonging to the set W present
in the system. Let m LPUs participate in the bargaining
process. We use a parameter as weight factor, γ, to provide
certain weightage to the LPUs participating in the bargaining
process. The weight factor, γ varies in the range 0 ≤ γ ≤ 1.
However, each participating LPU possesses different weights
based on the criticality of the patient. For example, a critical
patient, with high value of criticality index has greater weight
compared to a patient with low criticality index. Therefore,
Ltx = γtxL

t
x. The utility function of the xth LPU at any time

instant t is denoted by Ux(Ltx), where x = 1, 2, · · · ,m. We
consider the m participating LPUs in the bargaining process
as a closed set, which is denoted by Ψ. Therefore, the set of
feasible utilities is mathematically represented as:

Ψ = {(U1(L1), U1(L2), · · · , U1(Lm))|L = (L1,L2, · · · ,Lk) ∈ Kc}
(4)

where Kc is the space over which the players bargain to
reach the outcome.

Each WBAN’s LPU has a set of physiological parameters
to transmit to the cloud or fog aggregation node. Based on the
health criticality of the patient, a weight factor is associated
with each participating LPU. Below a certain value of weight,
γmini , the ith LPU, Li does not cooperate in the game. This
point is the disagreement point for the LPU participating in
the bargaining process. Therefore, the set of disagreement
points is mathematically represented as:

D = {D(min,1), D(min,2), D(min,3), · · · , D(min,m)} ∈ Kc
(5)

where D(min,1) denotes the disagreement point of Lth1
LPU corresponding to WBAN, W1, with minimum weight,
γmin1 . D(min,1) = U1(d1), where d1 is the point with
minimum utility of Lth1 LPU.

Therefore, the bargaining problem is defined as (Ψ,D),
where Ψ ⊂ Kc and D ∈ Ψ, such that it follows Theorem 1.

The utility of the xth LPU, Lx, at the present time instant
(t+ 1) is mathematically represented as :

Ux(Lt+1
x ) =

CIWx

tan−1
(
e
(γt+1

x Lt+1
x )−(γ

min,t+1
x Dt+1

(min,x)
)
) (6)

where Lt+1
x ≥ Dt+1

(min,x).

Theorem 1. The joint utility set, Ψ, is a non-empty convex
set.

Proof: A set S in Kc is said to be convex [12], if a set
of points (y1, y2) ∈ Kc and λ ∈ (0, 1), then f(λy1 + (1 −
λ)y2) ≤ λf(y1)+(1−λ)f(y2). Let Ψa and Ψb be two utility
points in the joint utility set, Ψ, which are represented as:

Ψa = {(U1(γ1a1), U2(γ2a2), U3(γ3a3), · · · , Um(γmam))} (7)

Ψb = {(U1(γ1b1), U2(γ2b2), U3(γ3b3), · · · , Um(γmbm))} (8)

The set Ψ is convex if,

Ux(λγxax + (1− λ)γxbx) ≤ λUx(γxax) + (1− λ)Ux(γxbx) ∈ Ψ
(9)

Therefore, the utility functions are represented as:

Ux(at+1
x ) =

CIWx

tan−1
(
eγ

t+1
x at+1

x −γmin,t+1
x at+1

min,x
) (10)

Ux(bt+1
x ) =

CIWx

tan−1
(
eγ

t+1
x bt+1

x −γmin,t+1
x bt+1

min,x
) (11)

The first-order derivative of Equations (10) and (11) w.r.t.
ax and bx are mathematically represented in Equations (12)
and (13). Therefore,

γt+1
x (at+1

x −bt+1
x )

(
∇Ux(γt+1

x at+1
x )−∇Ux(γt+1

x bt+1
x )

)
≥ 0 (14)
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From Equations (12) and (13), we observe that the utility
functions are differentiable on Kc. Thus, from Equation (14),
we conclude that Ψ is a non-empty convex set.

Among m selected LPUs, the pair (Ψ,D) defines the
bargaining process. The point (γ1L1, γ2L2, · · · , γmLm) is
said to be the Pareto Optimal Point, where no other better
allocation exists ({γ′xL′x ∈ Ψ|γ′xL′x > (Ψ,D)→ Kc}) in the
bargaining problem.

The solution to the bargaining problem F : (Ψ,D)→ Kc
is mathematically expressed as:

F (U1(L1), U2(L2)) = (U1(L1)−D(min,1))

(U2(L2)−D(min,2)), ∀(U1(L1), U2(L2)) ∈ Ψ
(15)

The bargaining outcome must satisfy the following four
axioms [13]:

1) Pareto Efficiency
2) Symmetry
3) Invariant to affine transformations
4) Independence of irrelevant alternatives

Axiom 1. The bargaining solution F = (Ψ,D) is Pareto
efficient.

Justification: Suppose, there exist a point(
(γ′1L

′
1, γ
′
2L
′
2) ∈ Ψ

)
, so that γ′1L

′
1 > γ1L1 and

γ′2L
′
2 > γ2L2. Moreover, γxLx > Fx(Ψ,D) for some

x. Additionally, each LPU participating in the bargaining
process must select a Pareto-efficient outcome where no
LPU is preferred over the other participating LPUs.

Axiom 2. The bargaining solution F = (Ψ,D) is symmetri-
cal in nature.

Justification: Let us consider
(
(γ′1L

′
1, γ
′
2L
′
2) ∈ Ψ

)
max-

imize F over Ψ, if and only if
(
(γ′2L

′
2, γ
′
1L
′
1) ∈ Ψ

)
and

D(min,1) = D(min,2). Therefore, F1(Ψ,D) = F2(Ψ,D),
such that the bargaining solution would not differentiate
among the players.

Axiom 3. The bargaining solution F = (Ψ,D) is invariant
to affine transformation.

Justification: Suppose (Ψ′,D′) is the linear transformed
form of (Ψ,D) considering Ψ′x = αxΨx + βx and D′x =
αxDx + βx, where αx > 0. Mathematically,

Fx(Ψ′,D′) = αxFx(Ψ,D) + βx (16)
Therefore, the outcome of the bargaining is invariant to linear
transformation.

Axiom 4. The bargaining solution F = (Ψ,D) is indepen-
dent of irrelevant alternatives.

Justification: Let us consider two bargaining problem sce-
narios (Ψ,D) and (Ψ′,D), such that Ψ′ ⊆ Ψ. If F (Ψ,D) ∈
Ψ′, then F (Ψ′,D) = F (Ψ,D). We conclude that if the
bargaining is performed in the utility region Ψ, it results
in the solution F (Ψ,D), such that Ψ′ lies in Ψ. Therefore,
hypothetical bargaining is performed in the utility region Ψ′,
which will also lead to the same outcome. The m LPUs, who
participate in the bargaining process, bargain among them
depending upon the criticality index of the patient. The LPUs
negotiate among themselves to reach the bargaining outcome.
Therefore, depending upon the outcome achieved, the LPU
transmits data either to the fog aggregation node or cloud.

Theorem 2. There exists a unique solution for the criticality-
based data transmission among the LPU’s participating in
the bargaining process, satisfying the four axioms, and this
solution is the pair of utilities (γ∗1L

∗
1, γ
∗
2L
∗
2) that solves the

following optimization problem.

argmax
(γ1L1,γ2L2)

(U1(L1)−D(min,1))(U2(L2)−D(min,2)) (17)

such that (γ1L1, γ2L2) ∈ Ψ and (γ1L1, γ2L2) ≥
(D(min,1), D(min,2)) where, (U1(L1)−D(min,1))(U2(L2)−
D(min,2)) is termed as the Nash product.

Proof: As per Theorem 1, the joint utility set, Ψ is a
non-empty convex set. To prove the existence of equilibrium,
if the axioms (1)-(4) are satisfied, we infer that the bargaining
problem has a unique solution as stated by Nash. The solu-
tion to the optimization problem gives the Nash bargaining
solution.

In case of m LPUs bargaining together, Theorem 2 cannot
be applied directly. Hence, we increase the dimension of the
convex set to m. The generalized optimization function is
mathematically represented as:

argmax
(γ1L1,γ2L2,···γmLm)

m∏
i=1

(Ui(Li)−D(min,i)) (18)

such that,(
γ1L1, γ2L2, · · · γmLm

)
∈ Ψ and γiLi ≥ D(min,i). The

solution of the Generalized Nash Product as given in Equa-
tion (18) satisfies the four axioms in the m-dimensional
space. Based on the solution to this bargaining process, the
physiological parameters of the patient are transmitted by the
LPU to the fog aggregation node or cloud.

V. SIMULATION SETUP AND RESULTS

In this Section, we analyze the performance of the
proposed scheme, CARE. The simulation parameters used
for the experiment are listed in Table I. In our experiment,
we consider the presence of 2-20 WBANs. We perform
our analysis for 100 rounds with 95% confidence interval.

∇Ux(at+1
x ) = −

CIWx

(
eγ

t+1
x at+1

x −γmin,t+1
x at+1

min,x
)(

1 + (γt+1
x at+1

x − γmin,t+1
x at+1

min,x)2
)(

tan−1
(
eγ

t+1
x at+1

x −γmin,t+1
x at+1

min,x
))2(

γt+1
x − γmin,t+1

x at+1
min,x

) (12)

∇Ux(bt+1
x ) = −

CIWx

(
eγ

t+1
x bt+1

x −γmin,t+1
x bt+1

min,x
)(

1 + (γt+1
x bt+1

x − γmin,t+1
x bt+1

min,x)
2)(

tan−1
(
e
γt+1
x bt+1

x −γmin,t+1
x bt+1

(min,x)
))2(

γt+1
x − γmin,t+1

x bt+1
min,x

) (13)
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Fig. 2: Variation of Overall utility with Criticality index

Fig. 2 depicts the variation of the utility, Ux(Lt+1
x ) with

TABLE I: Simulation Parameters

Parameter Value
Number of WBANs (N) 2 – 20
Number of types of sensor nodes in a WBAN 5
Drain efficiency (η) 15.7%
Path-loss exponent (α) 2
Constant value (ξ) 0.0005
Power consumption of transmitting circuit (PT0) 15.9mW
Power consumption of receiving circuit (PR0) 22.2mW

the criticality index of a patient. The x-axis represents the
change in the criticality index with an interval of 0.1 in
the presence of 5, 10 and 15 WBANs. The criticality of a
patient is measured by the criticality index, and thus, the
utility must increase with the increment of criticality index.
Consequently, we observe an increasing trend in utility value
with criticality. Additionally, the rate of increase in utility is
almost similar in case of different number of WBANs.

Fig. 3 shows the comparison of the parameter values of
various LPUs in our scenario. X-axis shows the id of the
LPU present in the system. The parameter value includes the
criticality index, and the maximum and minimum weightage
provided to the LPU. We observe that the maximum value
of weight factor of each LPU increases with the increase in

TABLE II: System information for simulation time

Parameter Value
Processor Intel(R) Core(TM) i5-2400S CPU

@2.50GHz
RAM 6GB
System type 64-bit OS, x64-based processor
Application software MATLAB R2015a

criticality index. Similarly, the value of minimum weightage
is also increased with the increasing range of criticality index.
The patient with LPU 5 is most critical among all LPUs.
Thus, the maximum weight of LPU 5 is highest.

The criticality of a patient is calculated using Equation
(3). In this plot, we consider the total number of WBANs
as 20, starting from 4 with an interval of 4. Based on the
criticality of a patient, the physiological data of the patient
are either transmitted to the cloud or fog node, which is
decided by the outcome of the Nash Bargaining process.
Therefore, the data dissemination delay may worsen the
patient’s condition. Fig 4 illustrates the combined analysis
of data dissemination delay in case of traditional cloud and
CARE. In this plot, we notice the data dissemination delay
increases with the increase in the total number of WBANs
in the system. However, irrespective of number of WBANs,
the data dissemination delay is lesser in CARE as compared
to the use of traditional cloud.

To evaluate the power consumption of each WBAN, we
use the energy model given in [14]. The minimum power
consumption to transmit data from the WBAN to the cloud
or the fog aggregation node is mathematically expressed in
Equation 19, where Dij is the Euclidean distance between
the WBAN and the cloud or fog aggregation node(d).

PTi
= PT0

+
ξ ×Dα

ij

η
(19)

Fig. (5) depicts the variation in power consumption of the
networks using traditional cloud and CARE, in the presence

Algorithm 1 CARE
INPUTS:

1: ξWi : Set of sensors attached to the W th
i WBAN.

2: γt+1
x : Weight of xth LPU at (t+ 1)th time instant

3: L : Set of LPU’s corresponding to each WBAN.
4: CIWi : Criticality index of W th

i patient.
5: Ψ: Joint utility set.
6: D : Set of disagreement point.

OUTPUT:
1: F : Bargaining solution of (Ψ,D).

PROCEDURE:
1: Weight given to m LPU’s participating in the bargaining based

upon CI
2: while Ψ == non-empty convex set do
3: Ux(Ltx) is calculated. . Utility of xth LPU at time instant
t.

4: m participating LPU’s bargain among themselves
5: Satisfy the four axioms of Nash Bargaining process.
6: end while
7: Depending upon F , LPU transmits data either to the fog

aggregation node or cloud.
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Fig. 4: Comparison of data dissemination delay with the
number of WBANs

of 2− 12 WBANs. Along the x-axis represents the number
of WBANs present in the system, which is incremented with
an interval of 2. We notice that the total power consumption
increases with the increase in the total number of WBANs in
the system. However, using CARE, the power consumption
is reduced by 30% (approximately) than that of traditional
cloud.

The system specifications are represented in Table II, on
which we experimented the performance of CARE. Fig. 6
shows the simulation time in case of 50 and 100 iterations
for computation of he utility. The number of WBAN varies
from 4 − 20 along the x-axis. The simulation time varies
from 0.001− 0.0035 seconds.
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VI. CONCLUSION

This work focused primarily on the criticality-aware
physiological data transmission of a patient, in CPS-based
healthcare systems. The main aim of this paper is to design
a scheme to transmit the critical data to the fog node for
quick processing through the available transmission unit. We
used a cooperative game-theoretic Nash bargaining approach,
in order to determine the selection of cloud or fog node
for physiological data transmission. The results of compar-
ative analysis show that the power consumption and data
dissemination delay is lesser using CARE, as compared to
the traditional cloud.

In the future, we plan to extend our work with real im-
plementation of CARE in hospital scenario and ambulances.
Privacy is an essential component in medical data. Thus,
we plan to incorporate the privacy in the proposed scheme,
CARE. In order to provide physiological data privacy, we
plan to use hashing technique.
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