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Abstract—In critical medical emergency situations, Wireless
Body Area Network (WBAN) equipped health monitoring sys-
tems treat data packets with critical information regarding
patients’ health in the same way as data packets bearing
regular healthcare information. This snag results in a higher
average waiting time for the local data processing units (LDPUs)
transmitting data packets of higher importance. In this paper,
we formulate an algorithm for Priority-based Allocation of Time-
Slots (PATS) that considers a fitness parameter characterizing
the criticality of health-data that a packet carries, energy con-
sumption rate for a transmitting LDPU, and other crucial LDPU
properties. Based on this fitness parameter, we design the constant
model hawk-dove game that ensures prioritizing the LDPUs
based on crucial properties. In comparison with the existing
works on priority-based wireless transmission, we measure and
take into consideration the urgency, seriousness, and criticality
associated with an LDPU, and, thus, allocate transmission time-
slots proportionately. We show that, the number of transmitting
LDPUs in medical emergency situations, can be reduced by
25.97%, in comparison to the traditional time-division based
techniques.

Index Terms—Wireless Body Area Network, Hawk-Dove
Game, Priority-Based Allocation of Time-Slots.

I. INTRODUCTION

Healthcare in modern days has been undergoing crucial
changes, as the common practice of clinical treatment is
gradually being overhauled by ubiquitous healthcare systems
[1]. In the past decade, healthcare organizations underwent
steep rise of pressure to provide improved healthcare, as the
number of chronic disease patients steeply increases every
year world-wide [2], [3]. Chronic diseases such as heart and
lung diseases require real-time, continuous, and long-term
follow-ups. WBANs [4] can help in ubiquitous and remote
health monitoring of patients [5]. A WBAN comprises of
multiple heterogeneous body sensor devices which are capable
of monitoring different health-attributes, record it in the form
of raw health-data, and subsequently transmit the data to a
local data processing unit (LDPU). The LDPU temporarily
stores the health-data specific to a patient, and disseminates
the same for follow-up analyses. Doctors can remotely monitor

patients’ physiological condition in real-time, and provide
crucial medical suggestions in less time. Our work focuses
on WBAN-based remote healthcare and medical services in
situations of medical emergencies. We propound an efficient
solution of the challenges encountered from a communication
perspective while health data are transmitted in a critical
medical situation.

A. Motivation

In situations of medical emergencies, multiple LDPUs may
transmit healthcare data simultaneously during the same time
interval. It is important to discriminate the LDPUs transmitting
critical heath data from the ones transmitting data of regular
importance. In situations of medical emergencies, a frequency
division-based wireless transmission in a multi-source-single-
sink communication topology flood the sink’s receiver-buffer,
which leads to packet loss and consequent retransmission of
the packets. Moreover, it fails to establish priority among the
transmitting LDPUs, based on the criticality of the healthcare
information being transmitted. An alternate time division-
based wireless transmission scheme could, however, prevent
the receiver-buffer from being overwhelmed by excessive data
arrival-rate. But the major limitation of this uniform time-slot
distribution algorithm is that it fails to assign priorities to the
transmitting LDPUs based on the importance of the health
data that is being transmitted. Also, due to non-discrimination
of data packets, every sender (LDPU) has to wait for a fixed
number of time-slots before it gets it turn again. However, from
a judgemental perspective, the transmitting LDPUs should
have a waiting time proportionate to the criticality of their
health condition.

B. Contribution

Our work addresses the aforesaid issues by analyzing
priority-based time-slot allocation along LDPUs during critical
medical emergency situations from a evolutionary game theory
perspective. The primary contributions of this work are listed
below.
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• Critical LDPU-properties such as the importance of
health-data to be transmitted, energy dissipation factor
of an LDPU, and time elapsed since last successful
transmission are taken into account to formulate a fitness
parameter for each LDPU to which the sensor nodes
broadcast. Through this formulation, we compute a rel-
ative measure of node-importance, and, thus, prioritize
their influence.

• We design an algorithm for Priority-based Allocation
of Time-Slots (PATS) based on an evolutionary game,
referred to as the constant model hawk-dove game, which
allows the LDPUs to choose its strategy based on its
fitness. Adoption of such strategy enables the LDPUs with
important health-data gain preference over the regular
ones.

• LDPUs with higher fitness are awarded with the high-
est preference ensuring minimum waiting time between
successive transmissions of data packets.

II. RELATED WORKS

Karim et al. [6] proposed a priority-based preemptive
packet scheduling algorithm that outperforms the traditional
FCFS and multi-level queue schedulers in terms of transmis-
sion delay. A learning-automata-like random early detection
(LALRED) of congestion in wired networks is proposed in [7].
The goal of LALRED is to optimize the queue size based on
a learning automaton, and, thus, detect, and avoid congestion
early. Michopoulos et al. [8] discussed about packet loss, lower
throughput, and energy inefficiency in congested wireless sen-
sor networks (WSN). The proposed algorithm automatically
adjusts a node’s data forwarding strategy with a view of
minimal packet drops due to congestion. Congestion control
in WSN using ant-based agents is discussed in [9]. In [10],
the authors have analyzed the importance of packet drops in
WSN through the evaluation of link quality between network
nodes. They have used a variant of link state protocol where all
nodes gather information regarding the link packet loss from
all neighbours. Based on this packet drop information table,
each node chooses a cluster head. A fusion of three different
techniques spanning across three different layers, viz., hop-by-
hop flow control, rate limiting source traffic in the presence of
transit traffic, and a prioritized medium access control (MAC)
protocol are implemented in [11] to improve WSN efficiency.
But in context of WBANs, these protocols are deficient as
no inter-node priority considerations are made. Therefore, no
distinction can be drawn between LDPUs transmitting crucial
health-data from the ones that transmit regular health check-up
related data-packets. Also, a WBAN consists of heterogeneous
sensor nodes — each node has a specific purpose to monitor
some specific health parameters. Clearly, in a cluster of such
nodes, every node should not be assigned the same priority.

In [12], the authors contributed towards the convergent
feature of traffic in WBANs in certain cases which involve
packet loss, retransmission, delay in packet delivery, and
consumption of extraneous energy arising due to congestion.
The authors, however, do not enlighten on the importance

of body sensors transmitting critical life-saving health-data.
A game theoretic approach to minimize contention delay is
proposed in [13]. A modified Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocol is used to
allow one sensor at a time to deviate from the standard
rules and act like a ‘cheater’. The network performance is
analytically derived using a Markov model for worst case
conditions. Misra et al. [14] proposed on a learning automata
based congestion avoidance scheme (LACAS) that proves to
be an efficient automata-based congestion avoidance policy.
However, most of these works do not take into consideration
the importance-factor associated with the health-data to be
transmitted. Our work, nonetheless, in distinctive due to the
specific contributions made for the use of WBANs in medical
emergency situations.

III. COMMUNICATION ARCHITECTURE

Ubiquitous health monitoring relies on some special char-
acteristics of wireless body sensor nodes. The basic principle
of these sensors is that the source of the signals received is the
living tissue. In this paper, we discuss the problem scenario
only from an on-body sensor perspective. These body sensor
nodes are mounted on the patient’s body to enable remote
monitoring of health parameters. Each such sensor node is
deployed to monitor a specific health parameter. For instance,
a pulse oximeter measures the oxygen saturation level in blood
and the heart rate, and an EKG sensor monitors and records
the EKG-graph for a patient [16], [17].

Fig. 1: Communication Architecture

The on-body sensor nodes sense health parameters as a
continuous function of time, and transmit the same to a
portable LDPU via Bluetooth or ZigBee. These LDPUs, in
turn, disseminate the data acquired to an anchor node placed
inside a medical ward of a hospital. Such a medical ward
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may have multiple anchor nodes situated distantly to act
as a sink to the neighboring LDPUs deployed on patients
admitted in that ward. The events sensed and data collected
by the body sensors are broadcast to this sink (LDPU).
LDPUs may be designed to communicate with its concerned
anchor node through GPRS or Wi-Fi. The anchor nodes are
capable of transmitting data-packets to remote health-data
acquisition center over the Internet for real-time analyses
of sensed data. Any deviation from standard health-data is
taken into account, and necessary actions, treatments, or even
medicines are rushed to the concerned patient as per doctor’s
recommendation. Fig. 1, provides a pictorial presentation of
the WBAN communication architecture.

IV. FORMULATION OF UTILITY FUNCTION

In this Section, we focus on designing a ‘fitness parameter’
that is used as a measure of LDPU priority. The value of the
fitness parameter at time t (Ψt) for an LDPU is mathemati-
cally calculated based on certain parameters such as (a) the
energy dissipation factor, (b) token starvation factor, and most
importantly, (c) health-data criticality factor. We discuss the
importance of these factors in the formulation of the fitness
parameter below.

A. Energy Dissipation Factor

Sensor nodes are, in general, capacitated with limited
amount of energy to survive on. Consequently, energy looms
large as a constraint for these sensing devices, and, therefore,
is crucially important to ensure that the rate of dissipation
of energy can be minimized for these sensors. On the other
hand, thermal energy harvesting (TEH) has emanated to be
path breaking [18], [19] in the context of body sensor nodes.
Few popular sources to harvest energy for body sensors
are movement of limbs, locomotion of the human, or even
the human body temperature. The prototype development of
thermo-electric generator (TEG) chips has certainly acted as
a major boost in practical implementation domains involving
WBANs. Energy dissipation in an LDPU may result due to
multiple reasons, as listed below.

Sensing energy (Esn): As body sensor nodes continuously
monitor and record the concerned health parameter of a person
over time, there is continuous drainage of energy in sensing.
The energy expended due to sensing in a single time-slot by
each body sensor node is denoted as Esn.

Transmission energy (Etr): The transmission energy of a
body sensor node, Etr, is the energy dissipated due to the
transmission of a single data packet by that node. The packet
may be either originated from the node itself, or it could have
reached the node as an intermediate hop towards its destina-
tion. Etr usually has a higher magnitude, as broadcasting of
health parameters in the form of packets requires considerable
amount of energy.

Processing energy (Epr): In a WBAN, a body sensor node
not only acts as a sensing device, but also as a routing
device. As a part of intra-WBAN communications, each body
sensor receives numerous data-packets from multiple other

sensors, and route those data-packets further, either towards the
destination anchor node, or towards another body sensor in its
path, after processing the data packet. Processing energy Epr

of a body sensor is the energy expended due to processing of a
single packet retrieved from the input-buffer, and subsequent
mapping of the same to its destination through the routing
table.

Computational energy (Ecm): The energy consumed to per-
form preliminary computations on the raw sensed data before
it is converted into a packet is termed as the computational
energy of that node, and is denoted by Ecm. It is noted that
the energy consumption due to computations is much less
compared to the energy exhausted due to transmission of a
data packet.

Definition 1. Nodal Energy Dissipation : The nodal energy
dissipation (Edt,i) is defined as the total energy expended by
the ith body sensor node after t time-slots is defined as the sum
of the energy consumed due to sensing (Esn), transmissions
(Etr), processing (Epr), and computations (Ecm) purposes,
and is represented as:

Edt,i = Esn× t+Etr ×N +Epr ×n+Ecm× (N −n) (1)

where n and N refer to the number of packets received and
transmitted by a node during t slots.

For nodes capable of harvesting energy, Definition 1. can
be modified as:

Edt,i = Esn×t+Etr×N+Epr×n+Ecm×(N−n)−Ehr×t
(2)

Definition 2. Energy Dissipation Factor: We define the
energy dissipation factor of an LDPU at time t (ξt) as the ratio
of the total energy dissipated after t time-slots by Z number
of component body sensors connected to the LDPU to the sum
of each of their initial energy levels. Mathematically,

ξt =

Z∑
i=1

Edt,i/

Z∑
j=1

Einit,j 0 ≤ ξt ≤ 1 (3)

where Einit,j is the energy of the jth body sensor at time
t = 0 and Edt,i follows from Definition 1.

B. Token Starvation Factor

In our algorithm, an LDPU may not transmit a data-packet
without bothering about the transmission status of the other
LDPUs. It can only transmit its packets upon reception of
a permission token from the anchor node it is connected to.
Following the acquisition of the token, an LDPU sends data
packets within its permissible time-slots.

Let τt denote the time-stamp corresponding to the last
token acquisition by an LDPU, i.e., the time the LDPU
has last started transmitting a data-packet. τc indicates the
current system time, and τi gives an estimate of the time
interval during which the LDPU has been idle since its last
transmission. Clearly, τi can be computed as:

τi = τc − τt (4)
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Evidently, τc has a value greater than or equal to τt, indicating
τi ≥ 0. Again, let each time-slot, for which the LDPUs
contend, be of δ duration (δ > 0).

Definition 3. Idle Time-Slots: Idle time-slots of an LDPU
(νt) is expressed as the ceiling of the ratio of the time duration
elapsed since the LDPU has last transmitted (τi) to the duration
of a single slot (δ).

νt = dτi/δe (5)

Definition 4. Limiting Idle Time-Slot: Limiting idle time-
slot (νmax) is the maximum number of time-slots that an
LDPU may theoretically spend without transmitting. νmax is
expressed as,

νmax = 2Z − 1 (6)

where Z denotes the number of LDPUs associated to the
concerned anchor node. Hence, νt ∈ {0, 1, . . . , (2Z − 1)}.

Definition 5. Token Starvation Factor: Token starvation
factor (νt) for an LDPU at time t (Υt) is defined as the ratio
of the number of time-slots the LDPU has been idle since its
last transmission to the limiting idle time-slot value (νmax).

Υt = νt/νmax (7)

As νt < νmax, 0 ≤ Υt ≤ 1.

C. Health Severity Index

The third and the most important factor taken into consider-
ation is the health severity of the patients. In this paper, we put
forward a generalized metric for measurement of the average
importance of the healthcare data that is to be transmitted by
the LDPU at a given time instant.

Let, for person of a given age and sex, the reference range
of a particular health parameter that is being monitored, be
within Θlc and Θuc, under normal health conditions. Θlc and
Θuc denote the upper and lower limits of the reference range,
respectively. At a given time t, the recorded value of that
particular health parameter is denoted by Θt.

Definition 6. Health Severity Index: The health severity in-
dex of a patient at time t is denoted by ρt. It is mathematically
expressed as:

ρt =

∣∣∣∣∣ (Θuc −Θt)
2 − (Θt −Θlc)

2

(Θuc + Θlc)2

∣∣∣∣∣ (8)

Finally, after properly defining the factors that influence the
fitness parameter, Ψt, we define it in Definition 7.

Definition 7. Fitness Parameter: The fitness parameter (Ψt)
of a patient at time t is defined as the weighted average of the
energy dissipation factor (ξt), token starvation factor (Υt), and
health severity index (ρt) of that patient. Ψt is mathematically
expressed as:

Ψt =
λ1ξt + λ2Υt + λ3ρt

λ1 + λ2 + λ3
(9)

where, λ1, λ2, and λ3 are constant values specific to the
health parameters to be measured. Also, they depend on the

patient’s age, sex, and past medical history. The value of Ψt

ranges between 0 ≤ Ψt ≤ 1. A high value of Ψt indicates
that an LDPU is willing to transmit highly critical health data
of the concerned patient, and vice versa.

V. PATS: PRIORITY-BASED ALLOCATION OF TIME-SLOTS

In this Section, we propose an algorithm for Priority-based
Allocation of Time-Slots (PATS) using an extension of the
evolutionary game theory [20]. Evolutionary game theory
is an branch of classical game theory [21] which involves
repeated interactions within the population. Each entity in the
population adopts a game-playing strategy, and acts in accor-
dance with a particular strategy. The pay-offs corresponding
to the strategy depend on the strategies adopted by the co-
players as well. Unlike other simpler traditional algorithms,
in evolutionary game theory, an individual’s move during a
game is not out of deliberation; rather, it is an act driven by
learning. In this paper, we design an n-player, non-cooperative
evolutionary game algorithm, termed as, the constant model
hawk-dove game, which can be treated as a variant of the the
traditional hawk-dove game.

In the game proposed in this work, the anchor nodes stand
as the game coordinator with the LDPUs connected to it as
the participating players of the game. A new game is played
after every T interval of time. Mathematically,

T = ε+ kδ (10)

where k is the total number of time slots to be distributed
among the LDPUs, each of duration δ, and ε is the overhead
time spent by the anchor node for game computation, evalua-
tion, and analyses.

In our game model, a player (an LDPU) can take either an
aggressive strategy (hawk) or a timid one (dove), based on
the fitness parameter, Ψt. The resource that the LDPUs play
for is the time-slot(s) that allow(s) an LDPU to transmit its
data packets over the acquired time-slots. As we have shown
before, 0 ≤ Ψt ≤ 1. An LDPU chooses the hawk or dove
policy (S = {H,D}) according to the following strategy:

S =


D if 0 ≤ Ψt < φ1

D if φ1 ≤ Ψt < φ2 with probability (1-p)

H if φ1 ≤ Ψt < φ2 with probability p

H if φ2 ≤ Ψt ≤ 1

φ1 and φ2 are LDPU specific, experimental constants,
typically ranging of 0 < φ1, φ2 < 1 and φ1 < φ2. φ1 indicates
the value of Ψt, below which an LDPU is bound to adopt the
dove strategy. If Ψt has a value above φ2, the LDPU adopts the
hawk policy. An intermediate value of Ψt lets an LDPU choose
the hawk strategy with p probability, and the dove strategy with
complementary probability, based on its learning. The value
of p (0 ≤ p ≤ 1) is determined by a player as a part of its
learning policy. Each LDPU chooses a policy whenever it opts
to send some data-packets, and sends its choice (H or D) to
the connected anchor node. The anchor node receives multiple
such requests for contention of time-slots. It, then, sends back
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tokens in a prioritized fashion among the LDPUs. For a set of
LDPUs L = {L1, L2, ..., Lm} connected to an anchor node,∑
Li∈A,A⊆L

k1×Li +
∑

Lj∈B,B⊆L

1×Lj = k,A∩B = ∅, |A|+ |B| = m

(11)
where |A| and |B| are the number of players adopting H or
D strategies, respectively. k1 is the number of slots allocated
to each hawk. We introduce a function f(·, ·) to compute the
time-slots to be distributed among the dove-strategic LDPUs.
f(·, ·) considers the number of hawks h and doves d as inputs,
such that h+ d = m and is expressed as,

f(h, d) =

{
1 if d < k%h
b, b ∈ {0, 1} otherwise

k%h are the slots remaining to be distributed among the
doves. f assigns every dove a unit time slot if possible, other-
wise it assigns unit time-slot to few randomly chosen doves.
to We design and analyze the pay-off matrix corresponding
to the constant model hawk-dove game as shown in Table
I. It is designed for a specific scenario, where a total of
(m = x + y + 1) LDPUs wish to transmit data at time t.
For an h-hawk-d-dove system, hawks are each awarded with
b khc unit time-slots, and the doves are awarded time-slots as
per f(·, ·). Algorithm 1 elaborates the time-slot allocation by
the LDPU.

TABLE I: Pay-off matrix for constant model hawk-dove game

(x+y) Hawks x Hawks + y Doves (x+y) Doves

Hawk b k
x+y+1

c b k
x+1

c k.
Dove f(x+ y, 1) f(x, y + 1) f(0, x+ y + 1).

Using PATS, we achieve two objectives. First, we distin-
guish the LDPUs possessing critical health-data and willing
to transmit from the ones transmitting regular health check-up
related data. This helps us to increase the precedence of nodes
transmitting important data-packets, and, to ensure that critical
healthcare data packets are transmitted before the regular ones.
Thus, we minimize the transmission delay for these critical
packets. Secondly, we ensure that other nodes are restricted to
transmit when a node with critical health-data does so. This
diminishes the chance of packet collision in the network, and
also the chance of the LDPU input-buffer overflow. We now
discuss some of the results obtained through PATS in WBAN.

Proposition 1. The running time complexity of PATS is
O(mt), when m LDPUs are present in the system at time
t.

Proof: From Algorithm 1, we obtain the recurrence
relation of PATS as,

T (mt) = T (mt − 1) + c, T (1) = c (12)

where, Tm is the time taken to execute PATS for mt LDPUs.
c = O(1) is the running time complexity for executing line 12

Algorithm 1 Priority-Based Allocation of Time-Slots (PATS)
Input: Strategy vector comprising of individual strategies of
m LDPUs, denoted by SL = {SL1 , SL2 , ..., SLm}, such that
SLi
∈ {H,D}.

Output: Allocation of time-slots based on the game outputs.

1: hawk count = 0; dove count = 0;
2: for each Li do
3: if SLi

= H then
4: hawk count++ ;
5: else
6: dove count++;
7: end if
8: end for
9: hawk slots← hawk count×b k

hawk countc /* Total slots
to be allocated to hawks */

10: dove slots ← k − hawk slots /* Total slots to be
allocated to doves */

11: for each Li do
12: if SLi

= H then
13: Allocate b k

hawk countc unit time slots;
14: else
15: if SLi = D and dove slots 6= 0 then
16: Allocate unit time slot ;
17: dove slots – –;
18: else
19: Transmit NAK;
20: end if
21: end if
22: end for

to 21 of Algorithm 1. Applying it by the method of recurrence
relation we get that,

T (mt) = T (mt − k) + kc

Finally, we get,

T (mt) = T (1) + (m1 − 1)c (13)

⇒ T (mt) = O(m1 − 1) ' O(mt) (14)

This completes the proof.

Proposition 2. The total number of LDPUs allowed to trans-
mit within T interval is h+min(d, k%h).

Proof: For an h-hawk-d-dove system, total number of
time-slots allocated to h hawks are hb khc. Remaining slots
are, k − hb khc = k%h. Thus, total number of doves allowed
to transmit are min(d, k%h). Thus, total number of LDPUs
that are awarded with time-slots are h + min(d, k%h). This
completes the proof.

Proposition 3. For an h-hawk-d-dove system, the tightest
lower bound of the LDPUs allowed to transmit within T
interval is O(h).
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Proof: For a total of k time-slots, hawks are allocated
time-slots as per Table I. So the total number of slots (htot)
allocated to the hawks are,

htot = h× bk/hc (15)

In order to obtain the tightest lower bound, minimum number
of doves should be allocated. Thus, we should have,

k = htot = h× bk/hc

⇒ k − (h× bk/hc) = 0

⇒ k = ch, c = 1, 2, ...upto ∞
⇒ k%h = 0

Thus, no time slots are allocated for doves. Only the hawks are
allowed to transmit. Thus, the tightest upper-bound is equal to
O(h). This completes the proof.

Corollary V.1. Unlike traditional time-based or frequency-
based transmission of m LDPUs within time T , PATS reduces
the number of transmitters by m− h−min(d, k%h).

VI. SIMULATION RESULTS

In this Section, we evaluate the performance of the proposed
algorithm, PATS, using MATLAB. We study the variation of
Ψt with the variation of each contributing factor, and measure
and compare the results in each such case. We also project
some performance comparison of PATS with standard TDMA
and FDMA transmission protocols.

A. Effect of the contributing factors on the fitness parameter

Experimental Settings: The experimental WBAN system
consists of 30 LDPUs. We first show the impact while plotting
the LDPU-fitness (Ψt) against a parameter, the other two
parameters are kept constant (in our case, 0.5). Also, the values
of λt, λ2, and λ3 are taken as 3, 2, and 5, respectively, to
ensure ordered preference amongst the three factors.

Fig. 2(a) shows the plot of the energy dissipation factor
(ξt) against Ψt. Analyzing the graph, we observe that, with a
wide range of variation in the value of ξt, Ψt varies mostly
between 0.35 and 0.65, denoting a variation of around 0.15
in either side of its mean value (0.5). Fig. 2(b), depicts the
fluctuation of the value of Ψt with the change in the token
starving factor (Υt). We observe that the variation of the values
of Ψt, lies within 0.1 units of the mean value, in each side of
it, symbolizing a comparative low impact of Υt on Ψt. In Fig.
2(c) the plot of health severity index (ρt) against Ψt is shown.
Unlike the previous two cases, we observe that the values
of Ψt are generally spread widely between 0.25 and 0.75,
in either side of the mean (0.5). A higher variance indicates
a higher influence of ρt on Ψt, compared to the other two
factors.

After analyzing the above three graphs thoroughly, we attain
a clearer perspective regarding the influence of certain factors
on Ψt, and also an impression on the assignments of the
weights (λ1, λ2 and λ3) corresponding to each of the factors.

B. Performance Analysis

Experimental Settings: The experiments performed for per-
formance analyses involves wireless communication over a
single AWGN channel for 20 LDPUs over 20 time-slots. The
data modulation scheme used is BPSK, and the buffer size
at the receiver-end is assumed to be constant throughout the
experiments.

Fig. 3(a) demonstrates the comparison of the number of
LDPUs allowed to transmit to the total number of such LDPUs
present in the system. Unlike the standard TDMA solutions,
PATS considers the fitness of the LDPUs while allocating
time-slots, thereby prioritizing the critical data transmitting
LDPUs by rewarding with higher number of time-slots. PATS
also outperforms traditional FDMA solutions with respect to
the number of packet drops, as shown in Fig. 3(b). Since
the number of transmitting LDPUs is considerable reduced,
eventually only the critical data packets manage to the receiver
end successfully, thereby, improving the packet drop rate
remarkably. As a consequence of the packet drop rate, the
total energy exhausted due to transmission and successive
retransmission(s) is also reduced, as reflected in Fig. 3(c).

VII. CONCLUSION

This work considers an evolutionary game model that allows
an LDPU to adopt an active or a passive strategy while
transmitting sensed data, and compete in the game. A fair
game strategy based on LDPU-fitness helps LDPUs that run
low on energy, or transmit crucial data, or has been idle for
a longer period, through gaining higher priority. We conclude
that controlled transmission by the LDPUs not only diminishes
the average number of packets transmitted over the WBAN
during a time interval, but also ensures distinctive reduction
in the packet-drop rate and the energy dissipation. Most
importantly, PATS rewards critical LDPUs with higher number
of time-slots, and, thus, eventually prioritizing patients with
high severity in health conditions.

Finally, future work include investigating variable buffering
delays and variable queue capacities. Also, we have an aim
to implement PATS in a prototype model of medical disas-
ters. Implementation of LDPU-specific health data importance
factor is also a challenge as each LDPU collects health data
from the heterogeneous body sensors. An intelligent measure
of variance of measured health data from a standard data-set
is always a challenge.
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(a) Fitness vs. energy dissipation factor graph (b) Fitness vs. token starvation factor graph (c) Fitness vs. health severity index graph

Fig. 2: Effect of contributing factors on fitness parameter
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