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Abstract—This paper presents a priority-based MAC-frame
payload tuning mechanism with reduced energy consumption
for healthcare systems that use Wireless Body Area Networks
(WBANs). A fundamental problem in WBANs is to prioritize
the physiological sensors depending on several health and ex-
ternal criteria. The challenge is to design a dynamic decision
making model that can optimize the energy consumption of each
physiological sensor. To address this problem we employ the
concept of Fuzzy Inference System (FIS) in order to calculate
Criticality Index (CI), which signifies the severity or the priority
of the physiological data sensed by each sensor. Considering the
obtained CI value we proceed with designing a dynamic decision
making model based on the concept of Markov Decision Process
(MDP) in order to tune MAC-frame payload by optimizing the
energy consumption of each sensor node. We achieve around 25%

decrease in the overall energy consumption using our proposed
mechanism.

Index Terms—Wireless Body Area Network, Fuzzy Inference
System, Markov Decision Process, Prioritized Payload Tuning.

I. INTRODUCTION

A number of modern healthcare applications are egressing,

among which eHealth oriented applications based on Wireless

Body Area Networks (WBANs) are prominent. Priority-based

health monitoring, and maximizing the life of each low-power

physiological sensor through the reduction of overall energy

consumption are the open areas of innovation. Therefore,

health criticality measurement and priority-based dynamic

decision making based on measured health criticality is the

main objective of our proposed work.

A. Motivation

Health parameters such as body temperature, heart rate,

pulse rate, blood pressure, and oxygen saturation in blood can

be sensed using different physiological sensors. The values

of these parameters depend not only on the health condition,

but also on other external constraints such as the age, height,

weight and the sex of a particular human being. It is not

accurate if we use the concepts of crisp set to categorize health

status into different groups. In crisp set theory, we can only

interpret a particular health parameter as ‘low’,‘moderate’, and

‘high’ compared to its normal value. However, it is a challenge

to quantify how much it is low, moderate or high from its

expected measure. Therefore, it results into inefficient decision

making in any application where this approach has been taken.

This problem in traditional healthcare system motivates us to

propose a fuzzy inferencing-based health criticality assessment

approach followed by an efficient decision making model

based on the concepts of Markov Decision Process (MDP).

B. Contribution

The specific contributions of this work are as follows:

• We quantify the severity of a physiological parameter

through Criticality Index (CI).

• We envision a fuzzy approach to determine the severity

of a particular physiological parameter.

• The proposed payload tuning mechanism is also efficient

in terms of total energy consumption by the network.

II. RELATED WORKS

Though modern world is moving towards advanced health-

care systems using WBANs [1]–[4], there is inadequacy of

work on efficient MAC-frame payload tuning mechanisms

in this network technology. There exists some simulation-

based works [3] and some analytical studies [4] to deal with

throughput, delay, and power consumption of IEEE 802.15.4.

Park et al. proposed a three dimensional Markov chain model

for IEEE 802.15.4 and presented optimization techniques for

optimizing different network parameters such as reliability,

delay, and energy consumption in [5]. However, none of them

considers the severity of health data and its effect on the

overall network performance.

Lack of relevant works using fuzzy logic and Fuzzy

Inference Systems (FIS) in healthcare systems are also noticed.

Lau et al. proposed a fuzzy logic based hand-off algorithm that

controls signal variation and dynamic adaptation of hysteresis

level with the signal differences between two stations [6].

Similarly, in the domain of cellular network, a fuzzy logic

based algorithm is proposed to make hand-off decisions in the
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Fig. 1: LPU Functionalities

boundary between adjacent cells [7]. Qiu proposed congestion

avoidance and control schemes based on fuzzy set theory

[8]. Our literature survey does not reveal any work related

to healthcare systems that employ fuzzy set theory concepts.

There are some relevant works on the use of MDP for

addressing different network and healthcare problems. In [9],

the authors proposed an MDP-based solution to address the

problem of how the failed nodes are to be replaced, to obtain

a profitable balance between maintenance cost and network

performance. Bennett and Hauser [10] developed a general

purpose computational/artificial intelligence framework to ad-

dress a simulation environment for exploring various health-

care policies, and payment methodologies.

Synthesis: In our work, we use the concept of fuzzy infer-

encing to fuzzify health parameters and external constraints.

We also use MDP as the decision making approach in such

a manner that the system harnesses the benefits from both

networking and medical perspectives.

III. PROBLEM SCENARIO

In order to address the problem discussed in Section I, we

define three fuzzy sets and a membership function to represent

the grade of membership of a particular health parameter value

to a particular fuzzy set. We also do the same for the external

factors such as age, height, and weight that have significant

influence on health parameters. We form several fuzzy rules

depending on these fuzzy sets and membership functions to

achieve a justified value of Criticality Index (CI) for each

sensor. The advantage of using fuzzy sets is that all fuzzy rules

are fired with some degree of membership. In other words, we

get contributions from all treated criteria while appropriating

the CI value for a particular sensor at a given instant of time.

Definition 1. (Criticality Index) The Criticality Index (ψs,t)
of the sth sensor is the measure of seriousness of the health

parameter that is being measured by that physiological sensor

at the time instant t.

Fig. 2: Payload schemes

After defuzzifying we get a crisp value of CI that strictly

ranges from 0 (low critical) to 1 (high critical). We use this ψs,t

value while modelling cost functions in the proposed MDP.

The physiological sensors can take certain decisions from a

pool of randomized decision based on different criteria that

are explained thoroughly in Section IV. The problem is to

select a particular decision regarding the operational modes

of sensors and MAC-frame payload schemes in a particular

state, considering probabilistic transitions within these states,

and considering the associated cost of each possible decision

in that state. We consider three payload schemes which are

different from each other in terms of their minimum and max-

imum values. The IEEE 802.15.6 protocol allows maximum

256 Bytes (including header), as the maximum size of a MAC-

frame [11]. We divide the total payload range (excluding the

header) into three equal ranges, as illustrated in Figure 2. Each

of the three payload schemes possesses different minimum and

maximum values. We employ the theory of MDP to select

appropriate payload scheme for a particular sensor, so that

the sensor can use a payload size within the payload range

(PR) of the selected scheme. All the necessary computations

are done by the Local Processing Unit (LPU) associated with

each WBAN or each human being, as illustrated in Figure 1.

IV. MATHEMATICAL MODEL

In this Section, we briefly discuss the concepts of fuzzy

logic, FIS, and MDP and how they help us to address the

problem stated in Section III.

A. Fuzzy Inference System

A fuzzy inference system consists of several fuzzy sets and

fuzzy rules. First, we describe the fuzzy sets we consider in

this inference system. In fuzzy set theory an object can be a

member of more than one set. This kind of partial membership

can be defined using a membership function for that particular

set. A fuzzy set F is represented as a set of ordered pairs [12],

F = {(x, µF (x))|x ∈ X} (1)

where X denotes a collection of objects and x represents

each object from this collection. µF (x) is the membership

function or grade of membership [13] of an object x in a

fuzzy set F . This membership function is a mapping of the

collection of objects to a membership value set. The motivation

behind the use of fuzzy logic is to avoid binary assessment
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Fig. 3: Fuzzy Sets and Membership Functions

of health parameters to get more appropriate view. Different

fuzzy sets and membership functions are required to estimate

the severity of each parameter related to human health. Human

age also plays a crucial role to determine normal values of

different physiological parameters [14]. Thus, along with the

direct health parameters, we also consider human age as an

influential criteria to judge the criticality of health data.

We envisage linguistic sets such as ‘LOW’, ‘MODER-

ATE’, and ‘HIGH’ to categorize the severity of each health

parameter and define the corresponding membership functions

for them. In case of human age we acknowledge three sets

such as ‘YOUNG’, ‘ADULT’, and ‘AGED’. For example,

Figure 3(a) represents the mapping between human body

temperature and its degree of membership at different values.

Similarly, Figure 3(b) represents the fuzzy logic behind the

categorization of human age and Figure 3(c) represents the

fuzzy logic behind the criticality of a particular health param-

eter. The fuzzy sets are represented through full lines, dashed

lines and dashed dotted lines in these figures.

Linguistic variables are dependent on one another and these

dependencies can be represented through conditional (if-then)

statements or rules [12]. We employ more than one antecedent

(inputs) and single consequent (output) approach, where the

output is the defuzzified CI value of each sensor. We foresee

different rules in order to capture the combined effect of health

parameters and external constraints on criticality index. We

store these rules in a rule-base where each rule is assigned a

unique ID. The ith rule is represented as Ri such that [15],

Ri =

{

x1 = α1,i, x2 = α2,i, ..., xn = αn,i

→ y = βi
(2)

where, x1, x2, ..., xn are the antecedent or input variables

and α1, α2, ..., αn are the fuzzy sets. βi is the fuzzy set of

consequent or output for ith rule.

We use the Mamdani model [16], the most commonly used

fuzzy inference technique on these fuzzy rules. In a nutshell,

this technique fuzzifies the input variables, evaluates the rules,

aggregates the rule outputs and defuzzifies to get a final crisp

value of CI for each physiological sensor. For example, we

select a rule from the rule-base, say rule Ri. If we use m

inputs or antecedents, then the fuzzification process produce

m membership values such as µA1,t(x1), µA2,t(x2), and so on

upto µAm,t(xm) respectively for criteria A1, A2, upto Am at

a time instant t. Mamdani model evaluates each rule through

its firing strength. The firing strength of Ri at time instant t

(µRi,t) is the minimum membership value of the associated

antecedents in the rule. Mathematically,

µRi,t(x1, ..., xm) = min

[

µA1,t(x1), µA2,t(x2), ..., µAm,t(xm)

]

(3)

If we consider n such rules, then the aggregation of these

n rules in the Mamdani model takes place through the max

operator. The output can be represented as,

µR,t(c) = max

[

µR1,t(x1, ..., xm),µR2,t(x1, ..., xm), ...,

µRn,t(x1, ..., xm)

]

(4)

The last step of the fuzzy inference process is defuzzification,

which converts the fuzzy aggregated output into a crisp num-

ber, which denotes the Criticality Index (ψ) in this work. Most

popular defuzzification technique is the centroid technique.

Mathematically, the Criticality Index for the sth sensor at the

time instant t can be represented as,

ψs,t =

∫ 1

0
µR,t(c).c dc

∫ 1

0
µR,t(c) dc

(5)

B. Markov Decision Process

From the proposed FIS we get a defuzzified value of ψ

for a particular sensor node. We introduce the concept of

different operational states such as ‘REST’, ‘ACTIVE’, and

‘HIGHLY ACTIVE’ for each sensor and different possible

decisions in those states. Based on certain criteria such as

the state transition probabilities, the probability of taking a

particular decision at a particular state, and the associated cost

with probable decisions, the proposed MDP optimizes the cost

and finalizes the decisions for each of these states. A state can

opt for more than one decision, but not at the same time. The

decisions considered in this work are summarized in Table I.

Before proceeding further we need to discuss some basic

properties of Markov chain in order to focus on our problem.

In our paper, we formulate a Markov chain as a sequence of

stochastic operational states S1, S2, S3, ... and so on, satisfying

the Markov property. Mathematically, P (Sn+1 = x|S1 =
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x1, S2 = x2, ..., Sn = xn, ) = P (Sn+1 = x|Sn = xn), for

n = 0, 1, ..., and so on [17].

We also describe m-step transition probabilities, as follows

[17]: Pm
ij = P (Sn+m = j|Sn = i).

We need to understand another property of Markov chain

in order to focus on our problem. While calculating the m-

step transition probabilities, if m is large enough, then there

exists a limiting probability that the system will be in state

j after a large number of transitions, and this probability is

independent of the initial state. It is known as the steady-

state probability. For any irreducible ergodic Markov chain,

limm→∞ Pm
ij exists, and is independent of i.

lim
m→∞

Pm
ij = ηj > 0, (6)

where the steady-state probability of state j (ηj) uniquely

satisfies the following steady-state equations [18]:

ηj =

m
∑

i=0

ηiPij (7)

for j=1, 2,..., m, and m
∑

j=0

ηj = 1. (8)

We now explain the application of this property in our

problem.

TABLE I: Set of decisions

Decision Action Next State

1 Rest
2

Enable payload scheme 1
Active

3 Highly Active

4 Rest
5

Enable payload scheme 2
Active

6 Highly Active

7 Rest
8

Enable payload scheme 3
Active

9 Highly Active

The model of the MDP considered in this paper is sum-

marized as follows.

1) The state i of a discrete time Markov chain is observed

after each transition (i = 1, 2,..., N).

2) After each observation, a decision k is chosen from a set

of K possible decisions (k = 1, 2,..., K). We define the

corresponding State-Decision Probability Matrix below.

Definition 2. (State-Decision Probability Matrix) As,t,ik

is the State-Decision Probability Matrix of the sth sensor

with N states and K decisions and the element aik is the

probability of opting decision k at state i at time t.

As,t,ik =











a11 a12 · · · a1K
a21 a22 · · · a2K

...
...

. . .
...

aN1 aN2 · · · aNK











(9)

where each row sums to 1 and 0 ≤ aik ≤ 1.

3) If decision k is made in state i for the sth sensor at time

instant t, an immediate cost is incurred by that decision,

that is expressed by the following definition of State-

Decision Cost matrix.

Definition 3. (State-Decision Cost Matrix) ∆s,t,ik is

the State-Decision Cost Matrix of sth sensor with N

states and K decisions and the element ∆ik(ξ, ψ) is the

immediate cost incurred by decision k made at state i at

time instant t.

∆s,t,ik =











∆11(ξ, ψ) ∆12(ξ, ψ) · · · ∆1K(ξ, ψ)
∆21(ξ, ψ) ∆22(ξ, ψ) · · · ∆2K(ξ, ψ)

...
...

. . .
...

∆N1(ξ, ψ) ∆N2(ξ, ψ) · · · ∆NK(ξ, ψ)











(10)

where ∆ik(ξ, ψ) is a function that takes ξ and the

defuzzified ψ value as parameters and calculate the cost

for that particular state-decision pair. ξ is the variable

that represents the ratio of total energy dissipation due

to payload scheme change (ξp) and state change (ξs) to

the residual energy of sth sensor at time instant t (ξt).
Mathematically ξ can be represented as below.

ξ =
ξp + ξs

ξt
(11)

4) We propose a learning-based State Transition Probability

Matrix to represent all the transition probabilities for sth

sensor at time instant t.

Definition 4. (State Transition Probability Matrix) Ps,t,ij

is the Transition Probability Matrix of the sth sensor node

for N states and the element Pij is the probability of

transition from state i to state j at time instant t.

Ps,t,ij =











P11 P12 · · · P1N

P21 P22 · · · P2N

...
...

. . .
...

PN1 PN2 · · · PNN











(12)

where each row sums to 1 and 0 ≤ Pik ≤ 1.

5) The objective of this work is to find an optimal policy

by minimizing the cost associated with the decisions.

By allowing randomizing policies, so that As,t,ik are

continuous variables instead of integer ones, it is now possible

to formulate a linear programming model for finding an

optimal policy. For each i = 1, 2,..., n, and k = 1, 2,..., k,

let there be a steady-state unconditional probability that the

system is in state i and decision k is made. It is represented

as, δs,t,ik = P (state = i and decision = k) for s-th

sensor at time instant t. Each δs,t,ik is closely related to the

corresponding As,t,ik. From the conditional probability rules,

δs,t,ik = ηs,t,i As,t,ik (13)

where ηs,t,i is the steady-state probability that the sth sensor is

in state i at time instant t. From the properties of steady-state

probability, we have [19]:

ηs,t,i =

K
∑

k=1

δs,t,ik (14)
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Therefore, from Equations (13) and (14), we have,

As,t,ik =
δs,t,ik

K
∑

k=1

δs,t,ik

(15)

There are some constraints on δs,t,ik. They are as follows [17].

1)
N
∑

i=1

ηs,t,i = 1 (16)

From Equations (14) and (16) we have:

N
∑

i=1

K
∑

k=1

δs,t,ik = 1 (17)

2) From the results of steady-state probabilities stated in

Equation (7), we conclude:

K
∑

k=1

δs,t,jk =
N
∑

i=1

K
∑

k=1

δs,t,ik Ps,t,ij(k), for j = 1, 2, ..., N.

(18)

3) δs,t,ik ≥ 0, for i = 1, 2,..., N, and k = 1, 2,..., K.

We formulate the total cost incurred by a particular sensor

node during decision making at time instant t and we follow

the procedure for each sensor. The expected average cost per

unit time is given below [17].

E(s, t,∆) =
N
∑

i=1

K
∑

k=1

ηs,t,i ∆s,t,ik As,t,ik

=

N
∑

i=1

K
∑

k=1

∆s,t,ik δs,t,ik (19)

Therefore, the linear programming model is to solve δs,t,ik so

as to minimize

Z =

N
∑

i=1

K
∑

k=1

∆s,t,ik δs,t,ik (20)

subject to the constraints,

1)

N
∑

i=1

K
∑

k=1

δs,t,ik = 1,

2)

K
∑

k=1

δs,t,jk −
N
∑

i=1

K
∑

k=1

δs,t,ik Ps,t,ij(k) = 0,

for j = 1, 2,..., N.

3) δs,t,ik ≥ 0, for i = 1, 2,..., N, and k = 1, 2,..., K.

This linear programming model is solvable by several existing

methods. After getting the δs,t,ik values, we also compute the

As,t,ik values using Equation (15). These As,t,ik values decide

the optimal and cost-effective set of actions that we should

adopt in a particular state of sth sensor at time instant t.
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V. ANALYTICAL RESULT

In this Section, we evaluate the influence of physiological

parameters along with an external criteria on health. We also

provide comparative results to prove energy efficiency of the

proposed solution.

A. Analysis of proposed FIS

We consider three health parameters such as body tempera-

ture, heart rate, and systolic blood pressure along with the age

as an external criteria in our experiment done through Fuzzy

Toolbox in MATLAB. For example, the fuzzy sets and mem-

bership functions for body temperature and age is illustrated in

Figure 3 in Section IV. Figure 4(a) illustrates the effect of body

temperature on health criticality for different ages. The Z-axis

represents the severity of health in terms of Criticality Index.

Analyzing the graph, we can easily verify that Criticality Index

gets maximum value (approximately 0.8) mostly when aged

persons are suffering from high temperature. Similarly, high

temperature for children is equally critical. Figure 4(b) depicts

the effect of heart rate with age as same external criteria.

Similarly, Figure 4(c) illustrates the influence of systolic blood

pressure on Criticality Index.

B. Analysis of proposed MDP and final result

This experiment involves minimum 5 and maximum 40

physiological sensors in a WBAN environmen. We consider

the transmission energy dissipation rate for each sensor as 50

nJ/bit. We compare the proposed solution with existing system

that constantly uses a maximum payload size of 256 Bytes as

defined in IEEE 802.15.6 protocol for WBANs.

Figure 5(a) illustrates the effect of health criticality on

priority-based MAC-frame payload tuning. Existing system

uses a constant amount of payload irrespective of the health

condition sensed by a particular physiological sensor. How-

ever, using a high payload for the sensors which are in less

critical condition, leads to unnecessary energy consumption.

Whereas, the proposed solution allows the system to tune

the MAC-frame payload into three different ranges and it is

evident from this figure that the decision depends on several

factors including the Criticality Index. Figure 5(b) compares

the total amount of payload used by sensors in the proposed

solution with the existing system. We vary the number of

physiological sensors from 5 to 40 and consider different

distributions of operational modes for each case. We plot the

average payload usage in each turn and through comparison

we show that it is much less than the average payload usage

in case of existing system.

We also compare the energy dissipation amount (per frame

transmission per sensor) of the existing system and the pro-

posed solution. Figure 5(c) depicts this comparison where α,

β, and γ are the ratio of sensors that selects payload scheme

1, 2, and 3 respectively at a time instant. It is evident from

this figure that the proposed solution of priority-based MAC-

frame payload tuning is also energy efficient with respect to

the existing system. Through analysis we conclude that it

consumes almost 25% less energy than the existing system.

VI. CONCLUSION

In this paper, we presented an efficient approach for MAC-

frame payload tuning among the physiological sensors asso-

ciated with a WBAN-based healthcare system. The proposed

solution confronts two major problem in WBAN related study

such as formulation of Criticality Index of each sensor to

prioritize them and a proper decision making approach for

payload tuning based on the prioritization. We compared with

existing system and verified that energy efficiency is a con-

siderable achievement of this proposed solution. In the future,

we plan to propose a QoS aware approach where sensors that

constantly suffer from low QoS due to low priority, can be

awarded adaptive rewards through some trade-off mechanism

to ensure the benefit of whole network.
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