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Abstract—In this paper, we study the problem of throughput
and delay-optimal dynamic big-data broadcast in fat-tree Data
Center Networks (DCNs) in the presence of mobile Internet-
of-Things (IoT) devices, where one of the IoT devices acts as
a source node. In existing literature, researchers studied that
balanced traffic distribution in DCN is an NP-hard problem.
With the integration of heterogeneous IoT devices in DCN,
the difficulty in achieving balanced traffic distribution increases
significantly. Hence, there is a need to design a throughput and
delay-optimal big-data broadcast scheme in DCNs in the presence
of IoT devices. In this work, we propose a Dynamic Big-Data
Broadcasting scheme, named D2B, using single-leader-multiple-
follower Stackelberg game for solving the aforementioned prob-
lem. Here, each switch acts as the leader, and the IoT devices act
as the followers. We consider that the source node broadcasts the
generated data in real-time. We represent bandwidth distribution
as a pseudo-Cournot competition, where each follower decides the
optimal downloading bandwidth. The existence of generalized
Nash-Stackelberg equilibrium for D2B is evaluated theoretically.
We observe that using D2B, the network throughput increases
by 55.32%, while ensuring at least 33% increase in the average
bandwidth allocation per IoT device, and the overall delay in
broadcasting is reduced.

Index Terms—Data Broadcasting, Big Data, Mobile IoT De-
vices, Switches, Data Center Networks, Stackelberg Game.

I. INTRODUCTION

In the last two decades, the data generated by different
applications and Internet-of-Things (IoT) devices increased
significantly in terms of Variety, Velocity, and Volume, i.e.,
3Vs, and named as ‘big-data’ [1]–[3]. Traditionally, big-data
is processed in Data Center Networks (DCNs) formed by inter-
connecting multiple data centers. Hence, in order to design the
backbone of big-data networks, i.e., the network infrastructure
to handle big-data, there is a need to integrate the IoT devices
into the DCN architecture. In existing literature, researchers
focused on designing schemes for traffic distribution in DCNs.
On the other hand, several existing works also focused on
big-data analytics [4] and big-data computing performances
[5] in the presence of IoT devices. Additionally, few works,
viz. [6], [7], considered data broadcasting among IoT devices.
However, there is a need for designing big-data broadcast
schemes for DCNs in the presence of mobile IoT devices,
while ensuring optimal throughput and delay among the IoT
devices. In order to bisect the bandwidth and ensure high data-
rate with path-multiplicity, DCNs follow fat-tree architecture,
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which is a multi-rooted tree structure and failure resilient and
ensures a reduction in blocking probability [8]. Hence, in this
work, we consider the fat-tree based DCN architecture while
designing the big-data broadcast scheme.

In existing literature, most researchers consider the fat-tree
architecture for DCNs, in order to ensure multiple paths having
equal-cost between any pair of hosts [9] and high bandwidth
inter-connectivity. However, unbalanced traffic distribution is
one of the important problems in fat-tree DCNs. Uneven traffic
load causes inefficient data parallelization, inferior network
performance, and degradation of performance quality of the
devices [10]. Therefore, there is a need for proper bandwidth
distribution scheme for fat-tree DCN with mobile IoT devices.
In existing literature, researchers proposed different scheduling
techniques for data unicasting [11], [12] and multicasting
[8] in fat-tree DCNs. However, there exists no scheme for
throughput-optimal broadcasting in fat-tree DCNs. Addition-
ally, in the presence of IoT devices [13], broadcasting big-
data in real-time is a challenge [6], [7], which needs to
be addressed in fat-tree DCNs. We consider that big-data
generated by an IoT device needs to be broadcasted to the
IoT devices and the servers at the edge-tier. Hence, considering
that the core network is capable of handling the broadcasted
data, proper bandwidth distribution and data parallelization for
edge network are required for fat-tree DCN in the presence
of mobile IoT devices. In this work, we consider that the
control plane of each switch helps to improve the network
performance while maximizing the network throughput and
minimizing the network-delay.

In this paper, we introduce a game-theory-based scheme,
named D2B, for broadcasting big-data in fat-tree DCNs with
mobile IoT devices. The traffic distribution in the fat-tree
DCNs follows a hierarchical architecture. The switches at the
aggregation-tier are controlled by the routers at the core-tier,
and the devices at the edge-tier are controlled by the switches
at the aggregation-tier. Thereby, for the broadcasting of big-
data, the bandwidth distribution among the devices at the edge-
tier of the fat-tree DCN follows a leader-follower structure.
Hence, we use a single-leader-multiple-follower Stackelberg
game for designing the D2B scheme. In the fat-tree DCN,
each switch broadcasts big-data among the IoT devices and
the servers at the edge-tier, while ensuring data parallelization.
In D2B, we focus on the bandwidth distribution at the edge-
tier for achieving optimal throughput with optimal delay. Prior
to deciding the amount of bandwidth to be allocated to each
device, each switch makes the list of connected devices and
the maximum link-capacity of the devices. Based on this
information, each switch decides the amount of bandwidth
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to be allocated to each connected IoT device for ensuring
balanced load-distribution in the fat-tree DCN. Consequently,
optimal throughput and delay of the fat-tree DCN networks
in big-data broadcasting are ensured. In summary, the specific
contributions of this paper are as follows:

a) We present the D2B scheme for dynamic bandwidth
allocation in real-time in fat-tree DCNs with mobile IoT
devices at the edge-tier.

b) The single-leader-multiple-follower Stackelberg game
theoretic approach is used to decide the optimum strategies
of the switches for allocating bandwidth to the devices at
the edge-tier, where optimal bandwidth allocation problem is
visualized as a pseudo-Cournot competition.

c) We present three different algorithms. The first algorithm
is used to register the devices with one of the available
switches. Using the second algorithm, each device decides the
optimal data-rate to download broadcasted big-data. Finally,
using the third algorithm, each switch decides an optimal
pseudo price coefficient in order to maximize the quality of
service of the network.

II. RELATED WORK

In recent years, a number of research works studied big-data
processing and data broadcasting problems in DCNs. Some
of the existing literature are discussed in this section. Chen
et al. [14] surveyed the challenges in generation, acquisition,
storage, and processing of data. They also mentioned the appli-
cations involving big-data such as — enterprise management,
IoT, and social networks, while including different medical
applications and smart grid. Muntean et al. [15] proposed
a quality-oriented adaptation scheme for ensuring delivery
of high bit-rate multimedia streams to the users using IP
network efficiently. Liu et al. [6] proposed a neighbor-based
probabilistic broadcast scheme for data distribution among the
mobile IoT devices. The authors determine the re-broadcast
probability while considering the neighborhood nodes and
the adaptive connectivity factor. Lau et al. [16] proposed an
Audience-Driven Live TV Scheduling (ADTVS) framework
using 4G LTE broadcast in order to improve the traditional
live television broadcasting system. Zarb and Debono [17]
proposed a scalable free-viewpoint television broadcast archi-
tecture for long-term evolution cellular networks. Lakhlef et
al. [7] proposed agent-based broadcast protocols for mobile
IoT devices, while considering parallel data broadcasting with
a limited channels. Based on the availability of communication
channels, the network is partitioned into several groups, where
each group has a group-leader, i.e., agent. Ahlgren et al.
[18] surveyed data transfer in the context of Information-
Centric Networking (ICN). Unlike DCN, in ICN, the data
files are accessed by the user by their name or identifier in
spite of the name of the host device. On the other hand, in
DCN, the user accesses the data file by the host identifier.
Hence, we argue that the schemes designed for ICN are not
applicable to data broadcasting in DCN. In another review
article, Jagadish et al. [1] cataloged different challenges for
understanding big-data while citing case study about cleaning,
analyzing, and interpretation of data or information. Trestian

et al. [19] studied a network selection scheme, named E-
PoFANS, for multimedia delivery in ad-hoc networks. Paul
et al. [20] studied the optimal server provisioning problem in
DCN and proposed two different schemes — for minimizing
operational cost and for minimizing capital and operational
cost, jointly, based on a discrete-time model. Wu et al.
[21] proposed a big-data broadcasting scheme for distributed
system. The authors considered that the source device has the
maximum bandwidth or capacity, and modeled the network as
a Lock-Step Broadcast Tree (LBST). Yu et al. [22] surveyed
different networking aspect of big-data such as distributed
and heterogeneous network. The authors also studied different
schemes on big-data representation.

Fig. 1: Schematic Diagram for Fat-Tree DCN with IoT Devices

On the other hand, a few research works studied in data
unicasting and multicasting in fat-tree based DCNs. Raiciu et
al. [23] proposed a Multipath Transmission Control Protocol
(MPTCP) in DCN for data unicasting. The authors observed
that using MPTCP, the workload is balanced properly in
fat-tree topology based DCNs. Chiu and Lau [24] proposed
a scheme for efficient multicast broadcast services using
transmitter-side channel state information. Al-Fares et al. [25]
proposed a Dynamic Flow Scheduling (HEDERA) scheme
for data multicasting, while aggregating network resources.
In another work, Curtis et al. [26] studied the multicasting
traffic pattern in DCNs. Guo and Yang [8] studied multicasting
in DCNs with fat-tree topology. The authors claimed that
their work is one of the pioneering work while exploring
multicasting in fat-tree based DCNs. However, these works
do not consider big-data broadcasting in fat-tree DCNs.

Synthesis: Thus, we infer that there exist a few works on
big-data processing and data broadcast in DCN. Additionally,
there are few works on data unicasting and multicasting in fat-
tree DCN. Though there are few works on data broadcasting in
mobile IoT devices, there is a need to design a data broadcast
scheme for fat-tree DCN in the presence of mobile IoT de-
vices. Additionally, using the general broadcasting approaches,
optimal throughput with an optimal delay in the network
cannot be ensured due to the presence of heterogeneous IoT
devices. Moreover, there is a need for designing broadcasting
scheme for proper utilization of available bandwidth in fat-tree
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DCN, while maximizing network throughput and minimizing
the network delay.

III. SYSTEM ARCHITECTURE

We consider a DCN with fat-tree topology [8] in the
presence of mobile IoT devices. A fat-tree topology is a
three-tier network architecture having three tiers — core,
aggregation, and edge. In DCNs, fat-tree topology reduces
blocking probability and is resilient to single-point failure due
to the presence of multiple paths among any pair of nodes at
the edge tier [8]. We consider that the mobile IoT devices are
connected with switches at aggregation tier through Access
Points (APs), as shown in Figure 1. In addition to the data-
servers, each IoT device n ∈ Ns ⊆ N , where N and Ns
denote the set of IoT devices available at the edge-tier and the
set of IoT devices connected with switch s, respectively, at
the edge-tier gets associated with a single switch s ∈ S at the
aggregation-tier, where S represents the set of switches. We
consider that the IoT devices are owned by the end-users. On
the other hand, the servers at the edge-tier are deployed by
the network operators. The servers are used as storage devices
only. We consider that these switches are static in nature and
connected to specific routers at the core-tier. Additionally, we
consider that the routers and the switches are deployed in a
grid fashion over the terrain. Moreover, we consider that the
complete coverage of IoT devices is ensured by the APs and
the switches in the fat-tree DCN.

Hence, to ensure throughput and delay-optimal big-data
broadcast in the network from the source IoT device at the
edge-tier, we need to allocate an optimal bandwidth to the
IoT devices for downloading. Each IoT device n ∈ Ns is
connected with switch s at time instant t ∈ T , where T is
the set of time slots in a day. Each device device n needs to
decide the optimal data-rate rn(t) (in Kbps), while satisfying
the following constraints:

rminn ≤ rn(t) ≤ rmaxn and rn(t) ≤ Cs −
∑

r−n (1)

where rmaxn and rminn denote the maximum and min-
imum data-rate requirement of device n; Cs defines
the capacity of switch s (in Kbps), and r−n ∈
{r1, · · · , rn−1, rn+1, · · · , r|Ns|}.

On the other hand, each switch s tries to ensure the use of its
bandwidth Cs for optimal throughput, and allocates bandwidth
to the connected devices Ns, while satisfying the constraints
in Equation (1). Thus, the main challenges faced to develop
the D2B scheme are as follows:

(i) Modeling the D2B scheme, while considering the inter-
action between the IoT devices and the switches.

(ii) Developing algorithm for each device to decide the
optimum downloading data-rate (in Kbps), while satisfying
the constraints given in Equation (1).

(iii) Developing another algorithm for each switch s to
decide the number of devices to serve at a time, while
satisfying the constraint mentioned as — lim

x→0+
x < ε and

lim
x→0−

x = 0, where 0 < ε << Cs, and x = [Cs −
∑
n∈Ns rn].

Hence, if switches s1 and s2 have the unused capacity xs1

and xs2 , respectively, xs1 < xs2 signifies that sfs1 ≺ sfs2 ,
where sfs1 and sfs2 signify the satisfaction factor of switches
s1 and s2, respectively. We define the satisfaction factor of
each switch s in Definition 1.

Definition 1. We define the satisfaction factor sfs of switch s
as ratio of the optimal availed throughput and the maximum
capacity of switch s. Mathematically,

sfs(t) = [
∑
n∈Ns

rn(t)]/Cs (2)

Conjecture 1. Based on Equation (1), we argue that sfs of
each switch s follows constraint — sfs ≤ 1.

IV. PROPOSED D2B BROADCAST SCHEME

To study the interaction between the switches and the IoT
devices, we use a single-leader-multiple-follower Stackelberg
game. This is a non-cooperative game, where each follower
decides his/her/its strategy, non-cooperatively while satisfying
the constraints imposed by the leader. In this paper, we divide
the entire network into multiple blocks. In each block, an
individual switch acts as the leader, and the devices, which
are connected to the switch, act as followers. The proposed
D2B scheme is formulated as a pseudo-Cournot competition,
where each IoT device and the switch choose strategies,
non-cooperatively and distributively. On the other hand, each
switch distributes the available capacity among the connected
IoT devices in order to achieve high performance with optimal
throughput and delay for big-data broadcast in fat-tree DCN.
The components of the proposed scheme, D2B, are as follows:

(i) Each switch s, which acts as the leader, distributes the
available bandwidth or capacity among the connected IoT
devices, distributively.

(ii) Each IoT device n, which acts as a follower, decides its
downloading data-rate rn, while satisfying Equation (1).

(iii) Each switch s tries to maximize its satisfaction factor,
while utilizing the bandwidth capacity Cs.

(iv) There are M chunks of data to be broadcasted by the
source IoT device, where size of each chunk is m kb.

(v) Each IoT device n and each switch s tries to max-
imize the payoffs of the utility functions Un(·) and Ps(·),
respectively, in order to achieve throughput and delay-optimal
broadcast in fat-tree DCN.

Definition 2. Pseudo cost coefficient ps(t) of switch s at time
instant t is defined as follows:

ps(t) = σsfs(t) (3)

where σ is a constant. σ acts as a scaling factor and defines
the variance of throughput of the switches in fat-tree DCN.

A. Single-Leader-Multiple-Follower Stackelberg Game: The
Justification

The fat-tree DCN follows a hierarchical architecture. In the
fat-tree DCN, the routers at the core tier and the switches at
the edge tier are connected with wired links and the capacity
of the links are fixed. On the other hand, the switches at
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the aggregation-tier take lead over the IoT devices and the
servers at the edge-tier. Hence, we consider that the fat-tree
DCN follows a leader-follower architecture. Therefore, the
IoT devices at the edge-tier behave non-cooperatively, and the
fat-tree DCN architecture follows the pseudo-Cournot com-
petition. Additionally, each leader, i.e., each switch, decides
its optimum strategy, distributively. Thereby, the throughput
and delay-optimal big-data broadcasting in fat-tree DCN in
the presence of IoT devices is visualized as ‘oligopolistic
market’. Hence, single-leader-multiple-follower Stackelberg
game-theoretic approach is the most suitable approach for
dynamic big-data broadcast in the presence of mobile IoT
devices in fat-tree DCNs, where the IoT devices at the edge-
tier act non-cooperatively.

B. Utility Function of Each IoT Device

Using the utility function Un(·), each IoT device n ∈ N
finalizes the optimal data-rate r∗n(t) at time instant t. The data-
rate rn(t) decided by each IoT device n depends on the data-
rates r−n(t) of the other IoT devices, indirectly. Thereby, each
IoT device n decides data-rate rn(t), non-cooperatively. The
utility function Un(·) of each IoT device n needs to ensure
the following properties:

(i) Each IoT device n tries to download data with the
maximum achievable data-rate. The utility function Un(·) is
considered to be non-decreasing function.

(ii) The utility function Un(·) has a marginal value, which
depends on rn(t). We represent the marginal condition of
Un(·) as follows:

∂2Un(·)
∂[rn(t)]2

< 0 (4)

(iii) The pseudo cost coefficient ps(t) has a negative influ-
ence on utility function Un(·). On the other hand, satisfaction
factor sfs(t) of each switch s varies proportionally with ps(t).

Therefore, we design the utility function Un(·) as a concave
function, which is represented as follows:

Un(·) = β tan−1
(
e−

rn(t)−rn(t−δ)
rn(t−δ)

)
− ps(t)rn(t) (5)

where β is a constant and δ defines the time difference
between two consecutive iterations. Each IoT device n tries to
maximize its payoff value by deciding an optimal downloading
data-rate, while satisfying constraints given in Equation (1).
Hence, the objective of each device n is as follows:

maximize Un(·) (6)

C. Utility Function of Each Switch

For each switch s ∈ S , we formulate the utility function
Ps(·) for deciding the optimal throughput of the switch and
minimize the network delay. Each switch s tries to maximize
its satisfaction factor sfs(t), while utilizing the total capacity
Cs. The pseudo price coefficient ps(t) depends on sfs(t),
as shown in Equation (3). Therefore, each switch s tries to
maximize its payoff, while maximizing its utility function
Ps(·). Hence, the objective of each switch s is as follows:

maximize Ps(·) (7)

We define the utility function Ps(·) of each switch s as
multiplication of ps(t) and sfs(t), where ps(t) and sfs(t) are
defined in Equations (2) and (3). Mathematically,

Ps(·) = ps(t)sfs(t) (8)

where ps(t) and sfs(t) are defined in Equations (3) and (2),
respectively. Hence, we observe that the utility function Ps(·)
of each switch s follows a concave hyperbolic curve.

D. Existence of Equilibrium
We define the generalized Stackelberg-Nash equilibrium of

the proposed scheme, D2B, as follows:

Definition 3. The tuple < r∗n(t), sf∗s (t) > is considered as the
generalized Stackelberg-Nash equilibrium solution of switch s,
if it satisfies the following inequalities:

Un(r∗n(t), ·, p∗s(t)) ≥ Un(rn(t), ·, p∗s(t)) (9)
Ps(r∗n(t), r∗−n(t), p∗s(t), Cs) ≥ Ps(r∗n(t), r∗−n(t), ps(t), Cs)

where r∗n(t) and sf∗s (t) are the optimum data-rate decided
by each IoT device n and the optimum satisfaction factor of
switch s, respectively.

We ensure the existence of generalized Stackelberg-Nash
equilibrium by using Variational Inequality (VI), as shown in
Theorem 1. Moreover, in Section IV-E, we get the optimum
concave solution under constraints given in Equation (1).

Theorem 1. Given a fixed price coefficient ps(t), there exists
a generalized Stackelberg-Nash equilibrium, as there exists a
VI for the utility function Un(·) of each IoT device n.

Proof. In D2B, each IoT device n ∈ Ns(t) tries to maximize
its payoff at time instant t. Therefore, for the Ns(t) set of IoT
devices connected with the switch s, we define the overall
utility function as follows:

Us(·) =
∑

n∈Ns(t)

Un(t) (10)

where Us(·) must satisfy the constraints given in Equation
(1). We evaluate Jacobian of matrix D, where D = ∇Us(·),
as follows:

D =


...

− β[
2+( rn(t)

rn(t−δ) )
2
]
rn(t−δ)

− 2rn(t)
Cs −

∑
r−n(t)
Cs

...

 (11)

Thereafter, by neglecting [ rn(t)
rn(t−δ) ]

2 as [ rn(t)
rn(t−δ) ]

2 << 1,
we get Hessian matrix ∇D as follows:

∇D =

 −
2
Cs · · · 0
...

. . .
...

0 · · · − 2
Cs

 (12)
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Here, we observe that ∇D is a diagonal matrix, where each
diagonal element is negative. Therefore, we conclude that the
proposed scheme, D2B, ensures the existence of Stackelberg-
Nash equilibrium.

E. Solution of Proposed D2B

For each IoT device n, by applying the KKT condition on
utility function Un(·) individually, we equate:

− β

rn(t− δ)
[
e

∆rn(t)
rn(t−δ)

] − 2rn(t) +
∑

r−n(t)

Cs
= 0 (13)

where ∆rn(t) = [rn(t)− rn(t− δ)]. Hence, we get:

[βCs−
∑

r−n(t)]rn(t−δ)+2r2n(t−δ)
∑

r−n(t)+rn(t)[
6r2n(t− δ) +

∑
r−n(t)

]
− 4rn(t− δ)r2n(t) + 2r3n(t) = 0

(14)

Thereafter, using Cardano’s method [27], we get:

r∗n(t) =
3

√
−B

2
+

√
B2

2
+
A3

27
−

3

√
B

2
+

√
B2

2
+
A3

27
(15)

where A = ( ca −
b2

3a2 ) and B = d
a + 2b3

27a3 − bc
3a2 ; a = 2,

b = −4rn(t−δ), c = 6r2n(t−δ)+
∑

r−n(t), and d = [βCs−∑
r−n(t)]rn(t− δ) + 2r2n(t− δ)

∑
r−n(t).

For simplicity, we consider that the IoT devices are ho-
mogeneous in nature, i.e., the maximum data-rate that can
be supported by the IoT devices is fixed. Hence, we get
a = (|N | + 1), b = −4rn(t − δ), c = 2(|N | + 2)r2n(t −
δ)− (|N | − 1)rn(t− δ), and d = βCsrn(t− δ).

V. PROPOSED ALGORITHMS FOR D2B

In order to reach the equilibrium in D2B, each IoT device
and each switch decide their respective strategies for through-
put and delay optimal big-data broadcast in fat-tree DCN.
Initially, each IoT device needs to be connected to a switch
through an AP using Algorithm 1. Using Algorithm 1, each
node selects the nearest switch and registers with that switch.
This registration process needs to be repeated when that
node comes to another region covered by a different switch.
Thereafter, each IoT device decides and informs the optimum
data-rate requirement to the concerned-switch using Algorithm
2 for downloading the broadcasted big-data. Using Algorithm
2, each IoT device initializes the downloading data rate to
be minimum, and by maximizing its own utility function
Un(·), IoT device n chooses an optimal downloading data-
rate r∗n(t). On the other hand, using Algorithm 3, each switch
decides an optimal pseudo price coefficient for maximizing
the network throughput and minimizing the network delay.
Based on the decided price coefficient, each IoT device tries
to optimize the downloading data-rate, which indicates the
throughput of the network. Moreover, the price coefficient
depends proportionally on the number of IoT devices. Thereby,
we argue that if less number of IoT devices are associated with

a switch, the delay at the switch reduces and the throughput
also decreases. On the other hand, if the number of IoT devices
connected to a switch increases, the throughput increases,
and the delay also increases. Hence, using Algorithms 2 and
3 sequentially, D2B tries to ensure a trade-off between the
optimal network throughput and delay.

Algorithm 1 IoT Device Registration

INPUT: dns, ∀n ∈ N ,∀s ∈ S . Euclidean distance
OUTPUT: {< n, s >, n ∈ N}
PROCEDURE:

1: for each s ∈ S do
2: Form a tuple of < n, s, dns >;
3: end for
4: Select the tuple having minimum dns value;
5: return {< n, s >, n ∈ N};

Algorithm 2 Optimal Throughput for Each IoT Device n

INPUTS:
1: rn(t− δ), rn(0) = 0, p∗s(t), β
2: γ . Data-rate increment factor in an iteration

OUTPUT: r∗n(t)
PROCEDURE:

1: rn(t) = rminn

2: while Un(r∗n(t), ·, p∗s(t)) ≥ Un(rn(t), ·, p∗s(t)) do
3: rn(t) = r∗n(t);
4: Evaluate the modified data-rate rmodn using Eq. (14)§;
5: r∗n(t) = rmodn ;
6: Call Algorithm 3;
7: end while
8: return r∗n(t);

Algorithm 3 Optimal ps(·) for Each Switch s

INPUTS:
1: {r∗n(t)|∀n ∈ Ns}, Cs(t)

OUTPUT: p∗s(t)
PROCEDURE:

1: sfs(t) =
Ns∑
n=1

r∗n(t);

2: Calculate p∗s(t) using Eq. (5)§;
3: return p∗s(t);

Complexity Analysis

In D2B, each IoT device registers with a switch using
Algorithm 1. The computational complexity of Algorithm 1
is O(|S|). Thereafter, each IoT device n selects an optimal
downloading data-rate using Algorithm 2. Considering that
Algorithm 2 iterates K times before reaching Stackelberg
equilibrium. Therefore, the computational complexity of Algo-
rithm 2 is O(K). For each iteration, Algorithm 3 having com-
putational complexity of O(1) is executed once. Therefore, the
overall computational complexity of D2B is O(|S|+K).
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VI. PERFORMANCE EVALUATION

A. Simulation Parameters

For the performance evaluation, we simulate using MAT-
LAB simulation platform and deployed the IoT devices ran-
domly over a terrain of 1000 × 1000 m2 [28]. However,
the switches and the routers are deployed in a grid fashion,
while ensuring full coverage. We consider that the source
IoT device generates 1000 number of data chunks, and the
size of each data chunk is 800 Mb, as shown in Table I.
Motivated by the device distribution of the Internet [21], [31],
we consider that the distribution of IoT device capacities
follows the distribution mentioned in Table II.

TABLE I: Simulation Parameters

Parameter Value
Simulation Area 1000 m× 1000 m [28]
Number of Nodes 100− 50000

Number of Switches 4
Number of Servers 3
Capacity of Nodes 128, 384, 1000, 5000 Kbps
Velocity of Source Node 5 m/s
Capacity of Switches 10 Gbps
Data chunks generated 1000
Size of each data chunk 800 Mb

Mobility model (MM) Random Gauss-Markov [29]
Random waypoint [30]

TABLE II: Node Capacity Distribution [31]

Capacity (Kbps) Nodes (%)
128 20
384 40
1000 25
5000 15
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Fig. 3: Total Bandwidth Utilization

B. Benchmarks

The performance of the proposed scheme, D2B, is evalu-
ated while comparing with two existing schemes for DCNs
— the Lock-Step Broadcast Tree based big-data broadcasting
(LSBT) [21] and the Multicast Fat-Tree Data Center Networks
(DCN INFOCOM) [8] schemes.

In LSBT, Wu et al. [21] proposed a big-data broadcasting
scheme, while forming a Lock Step Broadcast Tree which is
considered as basic unit of upload bandwidth. The authors also
considered that the source device, which has the maximum
capacity in the network, is at the root of the tree. On the
other hand, in DCN INFOCOM, Guo and Yang [8] proposed
a fat-tree based DCN. In DCN INFOCOM, the authors tried
to minimize the number of core switches needed to overcome
the problem of over subscriptions. Additionally, the authors
overlooked the problem of balanced bandwidth distribution.
Moreover, these works do not consider the presence of the
mobile IoT devices in fat-tree DCN. In the presence of IoT
devices in fat-tree DCN, we improve the network performance
for big-data broadcast, while ensuring optimal throughput and
delay of the network using D2B. Moreover, we simulated D2B
with two mobility models — random Gauss-Markov [29] and
random waypoint mobility [30], and named the schemes as
D2B-GM and D2B-RWP, respectively.

C. Performance Metrics

We have evaluated the performance of the proposed scheme,
D2B, using the following metrics:

Bandwidth Utilization: We consider that the IoT devices
are heterogeneous in nature. Additionally, these devices are
connected with the switches having limited bandwidth. Hence,
we calculate the bandwidth utilization factor of each IoT
device as a ratio of bandwidth usage for big-data broadcast
and the maximum capacity of the IoT device.

Network Delay: We define network delay as the total time
required to complete the big-data broadcast in the fat-tree
DCN. Hence, the network delay is defined as the time duration
needed for completion of data reception by all the IoT devices
in the fat-tree DCN.
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Fig. 4: Average Delay of the Network
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Successful Nodes: We consider an IoT device as a successful
node if that IoT device receives all the broadcasted data
packets sent by the source IoT device, successfully.
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Fig. 6: Successful Nodes in Broadcasting

D. Results and Discussions

Figures 2 and 3 show that the bandwidth utilization in-
creases using D2B than using LSBT and DCN INFOCOM.
We observe that D2B yields 33-55% increase in the average
amount of bandwidth allocated per IoT device. In LSBT,
big-data is broadcasted from the main server having higher
network capacity. In DCN INFOCOM, the allocation of band-
width is done sequentially. On the other hand, using D2B, the
bandwidth is allocated per IoT device, distributively. Hence,
using D2B, bandwidth utilization per IoT device is higher
than using other schemes — LSBT and DCN INFOCOM.
Additionally, from Figure 3, we observe that the overall
network bandwidth utilization increases by at least 55.32%
using D2B than using LSBT and DCN INFOCOM.

From Figure 4, we observe that using D2B, aver-
age delay decreases 25.83-62.4% than using LSBT and
DCN INFOCOM. In D2B, due to an increase in the average
bandwidth allocated per IoT device, the overall network delay
decreases. Moreover, from Figure 5, we observe that using
D2B, with the increase in the number of devices, the total
delay in data broadcasting increases linearly, whereas using
LSBT and DCN INFOCOM, the total time required to com-
plete the process increases exponentially. From Figure 6, we
observe that the number of IoT devices, which received broad-
casted data packets successfully, is comparable using D2B
and DCN INFOCOM. However, using LSBT, the source IoT
device is considered to be at the root of the tree. Hence, using
LSBT, the IoT devices having a lesser capacity than the source
IoT device form the subtree, which includes the successful
nodes. Thereby, using LSBT, the number of IoT devices, which
are successful in receiving the broadcasted packets, is lesser
than using D2B and DCN INFOCOM. Moreover, we argue
that the bandwidth distribution using the proposed scheme,
D2B, is temporal. Hence, we observe that in Figures 2-6,
the results for D2B-GM and D2B-RWP are almost similar.
Thereby, we conclude that D2B ensures efficient distribution of
available bandwidth among the connected IoT devices. Hence,
we conclude that D2B ensures dynamic big-data broadcast
in fat-tree DCN in the presence of mobile IoT devices with
optimal throughput and network delay.

VII. CONCLUSION

In this paper, we formulated a single-leader-multiple-
follower Stackelberg game theory-based D2B scheme to en-
sure proper bandwidth utilization of the network for the
dynamic big-data broadcast in fat-tree DCN in the presence
of heterogeneous mobile IoT devices. We observe that the
proposed scheme, D2B, ensures the reduction in network delay
in the presence of the mobile IoT devices at the edge-tier of
the fat-tree DCN. Moreover, from simulation, we observe that
D2B outperforms the other existing schemes — LSBT and
DCN INFOCOM.

Future extension of this work includes an understanding of
network bandwidth distribution in the presence of multiple
source IoT devices at the edge-tier of fat-tree DCN. This work
also can be extended to understand the optimal bandwidth dis-
tribution in the core and backhaul network. Additionally, this
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work can be extended to understand how network bandwidth
is to be distributed while reducing the energy consumption of
the network.
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