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Blind Entity Identification for Agricultural IoT
Deployments

Anandarup Mukherjee, Sudip Misra, Narendra Singh Raghuwanshi, and Sushmita Mitra

Abstract—Integration of various technologies to an Internet of
Things (IoT) framework share the common goals of a consistent
and structured data format that can be applied to any device,
given the vast application scope of IoT. Additional goals include
minimizing channel traffic and system energy consumption. In
this work, we propose to dismiss the requirement of certain
seemingly crucial identifier fields from packets arriving through
various sensor nodes in an agricultural IoT deployment. The
proposed approach reduces packet size, thereby reducing channel
traffic and energy consumption, as well as retaining the capability
of identifying these originating nodes. We propose a method of a
blind agricultural IoT node and sensor identification, which can
be sourced and operated from a master node as well as a remote
server. Additionally, this scheme has the capability of detecting
the radio link quality between the master and slave nodes in a
rudimentary form, as well as identifying the sensor nodes. We
successfully trained and tested various multi-layer perceptron
(MLP)-based models for blind identification, in real-time, using
our implemented agricultural IoT implementation. The effect
of changes in learning rate and momentum of the optimizer
on the accuracy of classification is also studied. The projected
cumulative energy savings across the network architecture, of
our scheme, in conjunction with TCP/IP header compression
techniques, are substantial. For a 100 node deployment using
a combination of the proposed blind identification reduced
sampling strategies over regular IPv4-based TCP/IP connection,
an estimated annual saving of ≈ 99% is projected.

Keywords— Agricultural IoT, Green Computing, Multi-
layer Perceptron, Payload Compression.

I. INTRODUCTION

The use of IoT has gradually permeated all walks of life
such as monitoring various macro-aspects of human habita-
tions – cities, pollution mapping and monitoring, agriculture,
irrigation management, health-care, power supply manage-
ment, transportation, education and security – as well as
the micro-aspects such as – smart home automation, child
and elderly care, fire detection and vehicle monitors. The
evolution of simple wireless sensor networks (WSNs) to IoT
has significantly reduced end-to-end human intervention in
routine tasks, such as agriculture, home automation, industrial
monitoring, and environmental monitoring. The use of low-
cost wireless sensors and robust addressing strategies are
helping in the reuse and redeployment of sensors in various
IoT applications and scenarios [1]. Starting from narrowly
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focused and homogeneous primitive sensor-based local pro-
cessing and actuation methods, present-day networked systems
have evolved into widely dispersed, heterogeneous sensor and
actuator systems with remote or distributed processing. These
systems are becoming popular due to their scalability, ease of
integration, and reduced cost of implementation. Additionally,
domains such as big-data processing and cloud computing
[2], integrated with IoT platform and addressing schemes are
enabling large-scale fusion and automated analysis of data [3].

A. Implementation Overview

In this work, as outlined in the architecture in Fig. 1, we
use an ensemble of MLP [4] models on a master node as
well as a remote server to automatically detect link errors,
identify sensor nodes, and then, identify each sensor from the
packets received from various field sensor nodes. MLP has
proved to be a powerful tool for pattern differentiation tasks
[5]. The solar-powered, field-deployed sensor nodes (slave
nodes) transmit their data to a nearby master node by means of
short-range wireless communication radios, which in our case
are Zigbee S1 radio modules. The aggregated data from the
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Figure 1: Architecture of the implemented agricultural IoT-
based field monitoring system.
master node is then transmitted to a remote server through the
Internet by making use of long-range wireless radios from a
gateway device, which in our deployment is a cellular network
supporting GSM module. The remote server acts as a data
storage unit as well as an analytical engine prepped with
the trained MLP models. Subscribers/users of this system can
access the raw data as well as visualize the data arriving at the
server via the Internet. In the field, we focus on our system
deployed for monitoring various agricultural field parameters
– soil moisture (Sm), soil temperature (Sst), humidity (Sh),
rainfall (Sr), solar-radiation (Ssr), ambient temperature (Sat),
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battery voltage of each node (Svb), and solar voltage generated
at the solar panel of each node (Ssv) – the architecture of
which is shown in Fig. 1. Practices such as precision agricul-
ture, irrigation management, and agricultural management are
rapidly shifting their focus on Information and Communication
Technologies (ICTs). These modern methods rely on the use
of customized sensors for weather, soil, water and plant
monitoring for enabling the use of agricultural IoT [6]. The
vast domains and agricultural expanses over which a multitude
of sensors are deployed generate huge amount of data D such
that for n sensor nodes, each generating data d per unit time,
the overall data traffic generated in the network per unit time is
represented in the form of a tuple as D = {d1, d2, d3, · · · dn}.
The data from slave nodes Ni,∀i ∈ (1, n) can be either from
a soil parameter monitoring node or a weather monitoring
station. Therefore, di,∀i ∈ (1, n) can be either from a soil
sensor node or a weather station in our implementation.
Further, each of these constituent data from individual sen-
sor nodes d can be again represented as a tuple such that
dsoil = {Shead,Sm1,Sm2,Sm3,Sm4,Sst,Sbv,Ssv,Sfoot}
and dweather = {Shead,Sh,Sr,Ssr,Sat,Sbv,Ssv,Sfoot}.
Shead, Sfoot, dsoil and dweather represent the packet header,
footer, data from soil parameter sensor node, and data from
weather monitoring station, respectively. Data of this mag-
nitude cannot be locally processed and analyzed, albeit at
the cost of making these implementations costly. The use
of low-cost sensors with reconfigurable radios, and an easily
accommodating architecture can only be sustained and made
cheaper if the processing is performed remotely at a master
node as well as a remote server, and not on the field-deployed
sensor nodes themselves. To further enhance the usefulness of
this approach, reduction in operating costs and channel traffic
are required for seamless operation of this architecture.

Assumption 1. The slave nodes N , which are placed at the
boundary of the master node’s radio range, fail to transmit
data due to link loss only.

Assumption 2. The consolidated readings from each node
(N1,N2, · · · ), which consist of soil moisture, soil temperature,
battery voltage and solar voltage sensors, have very minute
variations. These are due to variations in depth of the soil
moisture sensor, terrain type, temperature conditions and soil
moisture heterogeneity [7], [8].
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Figure 2: Format of packets sent from slave to master nodes.
Fig. 1 shows the characteristics of links between the master

and slave nodes of our deployed system. The nodes are
assumed to be fixed and well optimized, due to the use of

low power solutions such as Zigbee or 6LoWPAN. Without
changes in the existing radio standards, modifications in the
radio links are not an option without increasing the cost
of deployment. Two approaches are undertaken to reduce
the network data-load as outlined in Fig. 1 – master-node
data compression and header compression over the TCP/IP
network. Energy conservation within the domain of a master-
node make use of schemes, such as compressive sensing,
sink placement, and cluster-based routing [9], whereas energy
conservation follows techniques such as header compression
[10], edge computing [11], fog computing and other paradigms
[12] when the data is in the realm of TCP/IP.

Within the domain of the master node, to reduce D,
the sampling instants of the sensor nodes themselves are
changed to achieve reduced network data load Dopt. For an
original sensor sampling frequency of ωoriginal, a reduced
sensor sampling frequency ωreduced, and a scaling factor
k, Dopt(ωreduced) < D(ωoriginal), such that ωreduced =
1
kωoriginal,∀k > 1. This is possible only for applications
such as agriculture, as they deal with data which is not of
temporal criticality and can be deemed as non-critical data.
Delays in transmission of agricultural field data do not affect
the purpose of deployment — monitoring changes in field and
weather parameters, which tend to change slowly over time
— as compared to time-critical systems such as fire monitors
and health monitoring systems. The additional improvement
is proposed in the communication link between the master
node and the remote server. Prior to transmission to the remote
server, the master node packetizes data in the correct order so
that data from the individual nodes as well as sensors can be
identified. A sample packet of the data from the master node
to the server is shown in Fig. 2(a). Here, we propose a blind
identification method using pre-trained multilayer perceptrons
(MLP), where the master node periodically uploads data to
the server with just the sensor data, data index, and date
fields, as shown in Fig. 2(b). The learning algorithms in the
remote server are responsible for identifying link errors, node
identifiers, as well as sensor identifiers, from the incoming
optimized data packets. The blind identification approach is
evaluated at the remote server as well as the master node to
reduce the unnecessary network transmission latency between
the master node and the remote server.

Within the purview of each master node, we intentionally
implement sensor nodes with low-computational capability,
in order to allow for an economical large-scale sensor-node
implementation. Any approach which increases the compu-
tational complexity of the slave nodes, such as compressive
sensing, and intelligent routing, automatically increases the
overall cost of the field implementation. Hence, our proposed
scheme implements slave nodes, which simply collect data
from various locations in a field and forward it to a master
node, which inturn removes the local packet identifiers and
tags, prior to forwarding it over the Internet. Once the sensed
data leaves the master node, header compression is applied on
it to further reduce the network data-load of the implementa-
tion on the Internet. Robust Header Compression (ROHC) is
one of the most popular techniques dealing with packet header
compression over the Internet [10]. In lieu of our implementa-
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tion, ROHC accentuated 3G/LTE telecommunication uplinks
connecting the master node to the remote server is considered
in addition to our proposed scheme, for compression of the
packets gathered from the master nodes.

This work is organised as follows. Section 2 explores the
state of the art in this domain. Section 3 provides the system
overview and describes the dataset, followed by the details of
the experimental set-up in Section 4. Section 5 provides the
performance analysis of our proposed scheme, followed by the
conclusion of this work in Section 6.

II. RELATED WORK

The involvement of IoT with various ancillary technologies
such as cloud, machine learning, big data and others has
resulted in rapid development of societally beneficial and
impactful solutions boasting of a multitude of features –
intelligence, scalability, automation, virtualization, and others.
IoT platforms integrated with cloud-based infrastructure for
load provisioning and execution of applications provide the
additional advantages of virtualization of infrastructure as
demonstrated by Truong et al. [13]. Similar works on IoT-
Cloud framework for cooperation between cloud and smart
devices was demonstrated by Kum et al. [2], whereas Nas-
tic et al. [14] demonstrated the use of IoT-based software-
defined units for controlling cloud systems. The use of re-
configurable smart sensors for IoT in industrial environments
was demonstrated by Chi et al. [15]; whereas, Mihai et al.
[16] demonstrated the use of IoT and WSN in long-term
environmental monitoring. Offloading data to a more powerful
remote computing facility allows for processing intensive tasks
such as automated analytics, learning, and automation, which
is yet another important aspect of IoT [17].

Agriculture is a domain which is actively transitioning
towards the use of IoT and machine learning for monitoring,
analysis, prediction, and automation in tasks, which was
previously manual and intuition-based. Transcending from tra-
ditional implementations of IoT, Kaloxylos et al. [6] described
the implementation of an IoT-cloud-based precision farming
system, achieving an Agri-IoT-Cloud based framework. More
recently, IoT-based agricultural solution pilots are deployed
across multiple countries in order to usher in food-security,
reduce wastage of food, and scientifically optimize agricultural
practices [18]. Similarly, IoT platforms are developed for
precision agriculture as well as ecological monitoring [19].

The surging plethora of data types, architectures, and ap-
plications associated with IoT face the bottleneck of net-
work bandwidth, which for most cases is established using
legacy technologies, such as IPv4 over TCP or UDP. Various
approaches for optimizing network bandwidth usage of in-
place network infrastructure are proposed over the years.
Approaches ranging from reduction of transmitted packet size
[10] and judicious use of edge devices [20] to edge mining
[11] have reported various degrees of successes in network
bandwidth optimization. Header compression solutions such
as ROHC [10], ROHCv2 [21], and others [12] build upon the
fact that headers are static/constant in an IP stream.

Synthesis: Solutions addressing the problem of payload
minimization of the gathered data from the local networks

connected to an IoT infrastructure is lacking, especially in
agricultural scenarios. As, the bulk of the nodes and sen-
sors deployed in these scenarios are resource and energy
constrained, strategies must be devised to minimize their
energy consumption in the long run. Additionally, these nodes
are expected to house multiple heterogeneous sensors, which
increases the payload size generated from each of these
nodes. The payload, being uploaded to the cloud through the
Internet reaches gargantuan proportions, in cases of large IoT
deployment with frequent data sampling.

III. SYSTEM OVERVIEW

The architecture of our implemented agricultural IoT is
divided into four parts – Slave nodes, Master node, IoT frame-
work and the RSL (Remote Stochastic Learning) module. The
architecture of this implementation is shown in Fig. 1. Each
slave node Ni hosts a ATmega328P processor with a process-
ing speed of 16MHz, and is equipped with four soil moisture
sensors Sm1 to Sm4, placed at depths of 15cm, 30cm, 45cm
and 60cm. Additionally, the slave nodes are equipped with a
soil temperature sensor, battery voltage detector, solar voltage
detector circuitry which is connected to the battery and a solar
panel. The radio used is a Zigbee module, which is configured
to work in a mesh network. The customized mini-processor in
the slave node also control relays, which may be connected
to pumps for automatic irrigation by triggering them from
the remote server. Some of the deployed slave nodes in our
implementation are shown in Fig. 3.

Figure 3: Our implemented agricultural IoT slave nodes. (A)
Weather station, (B) Soil sensor node, (C) Weather station.

The master node communicates to the slave nodes via
Zigbee radio links. The master node hosts a quad-core ARM
Cortex A53 (ARMv8), with a processing speed of 1.2GHz.
It also acts as the local gateway for its networked slave nodes,
providing them with locally identifiable addresses within its
operational domain. The communications from and to the
remote server to the slave nodes are redirected through this
gateway, which also happens to be the master node for this IoT
framework. Multiple such gateways can be easily incorporated
into the IoT framework to send their data to the remote server
via the Internet. Our implemented server runs a Windows 8
operating system with an Intel i3 processor, and clock speed
of 3.72GHz. The RSL module is hosted on the remote server.
The data from all nodes Dopt in the field are continually
uploaded to the remote server by means of web-sockets
through the gateway. The pre-trained models (Algorithm 1)
in the server are used for classifying the incoming data. The
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data, after being sorted by the RSL module are analyzed for
determining the field stress conditions and water requirements
of crops. The actuators controlling the irrigation pumps can
be accordingly activated from the server based on the soil
parameter threshold conditions programmed in the server
module. The whole field-side, slave node placement is divided
into two parts based on the radio range R of the slave nodes
from the master node – Normal range and Boundary range.
The nodes in the boundary range tend to lose connection to
the master node occasionally due to bad weather conditions
and other unavoidable circumstances.

A. Data

The data obtained from various sensors affixed to a slave
node di is sent to the master node, from where it is uploaded
to a remote server via the Internet using the IoT platform.
Initially, the packets are uploaded in the format given in Fig.
2(a). Each slave sends di = 14 bytes of data per second.
The data logging interval ω can be increased or decreased
on-demand by means of text messages from its registered
users/ owners, which changes the values of the scaling factor k
accordingly. We, additionally, reduce some of the fields from
the data packets, and henceforth, refer to it as the optimized
packet (Fig. 2(b)). The reduction of 4 bytes of data per slave,
per second, is a significant reduction in data volume, in case
of long-term monitoring using large-scale sensor networks.

Specific to our implementation, Nodes 1 and 3 are placed
in the boundary zone, as depicted in Fig. 1. They have a high
probability of link errors (Assumption 1). Nodes 2 and 4 are in
the normal range of the master node and suffer from relatively,
minuscule errors due to link failure. Subsequently, even after
reducing the packet size, we can further reduce the data load
to the server by reducing the data polling interval to twice per
hour. As the sensors, in this case, are used for non-critical data
measurement and the soil parameters tend to change slowly
over time, this drastic reduction in data sampling does not
significantly affect the overall decision-making process. This
strategy would have been unthinkable in case of critical data,
such as those obtained from health-care, traffic [22] or disaster
management implementations of IoT. However, we find that
the packet size reduction works fine with all applications of
this framework.

Assumption 3. The individual sensors in a sensor node have
negligible fingerprints, even if they are of the same type. This
may be due to insufficient hardware calibration [23] or even
due to atomic level irregularities induced at the time of device
fabrication.

Assumption 4. The soil moisture sensors depend on the
variation in dielectric constants between air, soil, and water
to measure soil moisture content. This varies slightly due to
varying electromagnetic interference (EMI) at various loca-
tions.

Proof. The changes in dielectric properties of a substance, due
to the introduction of an electromagnetic field, depends on
the polarization effect of molecules. For a relative dielectric

permittivity of E , the variation of E with frequency ω as
described by Romano et al. [24] is given as:

E(ω) = E ′(ω)− j[E ′′(ω) +
σDC
ωE0

] (1)

where,
E ′(ω) → real component and signifies the energy stored in
the system due to alignment of dipoles and electromagnetic
interference (EMI).
E ′′(ω)→ imaginary component and accounts for the dissipa-
tion of energy.
σDC → signifies DC electrical conductivity and depends on
actual transport of charge carriers.
ω → angular frequency of the imposed electromagnetic field.
Changes in E ′(ω) due to unnecessary EM interference or soil
properties give rise to variations in sensor readings from the
same type of soil moisture sensors. However, these changes
are very small [24], and are neglected from consideration in
this study.

IV. EXPERIMENTAL SET-UP

This section discusses the experimental set-up used in the
study. This covers the methodology used, remote server-
based learning, and the computation of the carbon footprint
for the implementation. Four assumptions are taken into
account while applying the methodologies on the discussed
architecture and learning modules in the server, as given by
Assumptions 1 to 4.

A. Overview of the Experiments

As discussed in Section 3, the placement of nodes is mainly
divided into two groups – Normal range and Boundary range.
We classify the unlabeled data arriving at the server and
fit against the models generated using historical data from
both normal and boundary range slave nodes. The method
of classifying the data is outlined in Algorithm 1. On the
training data-set, we first choose the ideal learning rate and
momentum values (described in the next sub-section) of the
Multi-layer Perceptron (MLP)-based classifier. Upon finally
arriving at an optimum value, which can be used for the three
cases – Link error detection, Node identification and Sensor
identification – we demonstrate the accuracy of detection
and loss minimization by a Mean Squared Loss Estimator
(MSE), for our method. As a typical master node is resource
constrained in terms of computation power, we modify the
MLP architecture at the remote server to make its execution
feasible on the master node. We term the original MLP model
at the remote server as the Heavy model and the modified one
on the master node as the Light model. Finally, we calculate
the carbon footprint of our approach against the previous
unoptimized approach.

The carbon footprint of a system is calculated in terms
of emission of CO2 released in the atmosphere in order to
generate the power consumed by the system. The emission
factor for an electric system is 6.89551× 10−4 metric tons of
CO2/kWh, as per e-GRID of the United States Environment
Protection Agency, from the year 2010 data. In other words,
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consumption of 1kWh of electricity releases 0.16kg of CO2

in the atmosphere. This quantity may seem insignificant, but it
tends to build up in cases of large sensor network deployments,
running over prolonged periods of time.

Figure 4: The dataflow representation of the server-side packet
restructuring module or the RSL module.

B. Methodology

The data from Normal range nodes are grouped in a class
and the Boundary range nodes are grouped into another
class for training the MLP-based classifier. Our approach of
dropping node and sensor identifiers from the packets makes
it necessary to have an identification process in place which
will categorize the uploaded data accordingly. Algorithm 1
identifies link errors as well as categorizes the incoming data
into the various node and sensor classes according to their
fingerprints. Although the sensors may be the same in all
nodes, they do have minute variations of their own due to
insufficient sensor and hardware calibration, a mismatch in
placement depth [23], varying land topology and heterogeneity
in soil moisture profiles [8], [7]. Similarly, the individual
sensors are also differentiated from each other due to the
inherent presence of minute calibration mismatch, fabrication
irregularities and non-linearity; this irregularity proves benefi-
cial for our individual sensor identification. Fig. 4 shows the
overall collective scheme of using the three trained models –
Model Q, Model N, and Model S – in detecting link errors,
identifying sensor nodes and then identifying the individual
sensors in each node.

C. Remote Learning

The following three modules – Model Q, Model N, and
Model S – comprise the RSL algorithm in the server. The
working of these modules is shown in Fig. 4. These models
are trained based on previously collected data. New data from
the sensor nodes coming into the server are classified based on
these pre-trained models. The ensemble of these three models
is used for blind identification of packets and its features
from a re-structured and reduced packet, arriving at the remote
server.

1) Optimizer Selection: The optimizer selection ensures
precise and speedy decision making for any machine learning-
based algorithm. A Stochastic Gradient Descent (SGD) [25]
approach over back-propagation is chosen due to its high
variance, low running cost, low-memory requirements and
ability to handle large data sizes over the entire training set.

Algorithm 1 RSL – Remote Stochastic Learning
1: Inputs:
2: Dm×10 = [d1, d2, .., d10], δm×10 = [d1, d2, .., d10]
3: . % δ is the live incoming data from the field deployed nodes

to the server %
4: . % D is the stored data from the field deployed nodes, used

for training the models in the server %
5:
6: Output: P (Qk), P (Nk), P (Sk)
7: . % probability of occurrence of a class. Qk, Nk, Sk denote

the error in link quality, node ID and sensor ID, respectively. %
8: Initialize Parameters:
9: . % Divide D in various classes for training %

10: [Nnear, Nfar] ∈ Dm×10

11: [N1, N2, N3, N4] ∈ Dm×10

12: [S1, S2, S3, S4, S5, S6] ∈ Dm×10

13: Initialize:
14: while (δ) do
15: for (i = 0; i < 2; i++) do
16: Qk[i]← Predict(Model Q, δm×10)
17: for (i = 0; i < 4; i++) do
18: Nk[i]← Predict(Model N, δm×10)
19: for (i = 0; i < 6; i++) do
20: Sk[i]← Predict(Model S, δm×10)
21: Return P (Qk]) ← max(Qk), P (Nk) ← max(Nk),

P (Sk)← max(Sk)

procedure CREATE MODEL Q
. % Link Quality Learner %

Inputs: Nnear[1, 2, ..n], Nfar[1, 2, ..n], f(Activation),
αlearn → learning rate, ∆p → momentum, Optimizer,
Layerhidden, f(loss)

Output: Model Q

SGD operates by updating an objective J(θ), where θ is one
of its parameters, as

θ := θ − α∇θE[J(θ)] (2)

where, E[J(θ)] is the expectation of the objective and is
calculated over the entire training set. However, in an SGD
update, the expectation term is eliminated and is represented
as θ := θ − α∇θJ(θ;x(i), y(i)). The values of (x(i), y(i)) are
obtained from the ith iteration of the training set. The objective
updates are calculated based on small training data.

procedure CREATE MODEL N
. % Node ID Learner %

Inputs: N1[1, 2, ..n], N2[1, 2, ..n], N3[1, 2, ..n],
N4[1, 2, ..n], f(Activation), αlearn → learning rate,
∆p→ momentum, Optimizer, Layerhidden, f(loss)

Output: Model N

procedure CREATE MODEL S
. % Sensor ID Learner %

Inputs: S1[1, 2, ..n], S2[1, 2, ..n], S3[1, 2, ..n],
S4[1, 2, ..n], S5[1, 2, ..n], S6[1, 2, ..n], S7[1, 2, ..n],
f(Activation), αlearn → learning rate, ∆p→ momentum,
Optimizer, Layerhidden, f(loss)

Output: Model S
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Figure 5: Effect of γ and α variations on the accuracy of
classification for the RSL algorithms for the heavy model at
the remote server.

2) Activation Function Selection: A proper activation func-
tion selection is critical to our operation as it defines the
distribution of the data to pass. For our approach, a Reg-
ularized Linear Unit (ReLU) [26] is used as the activation
function, instead of the traditional Sigmoid function, as the
output of the Sigmoid function lies in the range [0, 1] and tends
to saturate beyond this. The ReLU, on the other hand has a
range of [0,∞] and can be used for modeling real numbers,
instead of just probability (as is done by Sigmoid functions).
A Sigmoid function is represented as σ(x) = (1 + e−x)−1.
In contrast to the Sigmoid function, the ReLU function is
denoted as f(x) = Σ∞i=1σ(x − i + 0.5). f(x) is similar to
f(x) = log(1 + ex), which is also referred to as a Softplus
function and is approximated as:

f(x) = log(1 + ex) ≈ max(0, x+N(0, 1)) (3)

This is often referred to as Rectified Linear function (ReL).
The gradient of the ReL function does not vanish, unlike the
Sigmoid-based activation functions.

3) Learning: The data is generally shuffled prior to training
in order to avoid biasing due to unforeseen, repetitive patterns
in the data-set. Another function, the momentum (γ), is used
to speed up the convergence of the objective. The update of
momentum is given by:

v = γv + α∇θJ(θ;x(i), y(i)), ∀size(v) = size(θ) (4)

θ = θ − v (5)

where, v is the current velocity and γ ∈ (0, 1]. Section 5 shows
the learning rate (α) and momentum value (γ) selection for
the given agricultural sensor data-set. It also demonstrates the
superiority of the ReLU-based activation over Sigmoid-based
functions in SGD implementation of our system.

D. Calculating the Carbon Footprint

The carbon footprint of the architecture and our proposed
improvement is calculated as:

SS−M = Spayload−14 + Szigbee−API bytes (6)

SS−M = Spayload−14 + 24 bytes (7)

where, SS−M is the size of data received at the master node
from the slave, Spayload−14 is the data collected from the sen-
sors and other parameters of the slave node using the original
packet format (' 14 bytes, in this case), as shown in Fig.
2(a). Szigbee−API is the Zigbee API’s frame format, which is
fixed at 24 bytes [27]. Again, it takes P1−bit = 184.9µW/bit
to transmit 1 bit of data; Zigbee takes 1 second to transmit
24 bytes of data [27]. As we focus only on reducing the
payload of the Zigbee data, from the slave to the master node.
Henceforth, we shall consider only the payload part for our
carbon footprint computation. Moreover, the slave and master
nodes run on solar power and can be safely considered as
zero-carbon footprint devices.

The part of the architecture, starting from the gateway to
the remote server (as shown in Fig. 1) have high energy
requirements and rely on traditional and mostly non-renewable
energy sources. However, the use of approaches such as
ROHC-based header compression significantly reduces the
energy consumption of this part of the network architecture.
The remaining part of the architecture consisting of sensor
nodes is dependent on solar energy for regular operation and
does not generate a carbon-footprint. Hence, only the path
from gateway to the remote server is considered for carbon
footprint computation of our approach. Since the master node
discards the Zigbee-API frames, we represent the effective
packet size sent to the remote server as SU = Spayload−14,
where SU is the unoptimized packet size. Furthermore, SO
and SOR are assigned to indicate optimized packet size and
optimized packet size with reduced sampling, respectively.
For Spayload−10 and Spayload−10−r denoting the reduced
payload and the reduced payload with reduced data sampling,
we assign, SO = Spayload−10 and SOR = Spayload−10−r.
Subsequently, for P(kWh) signifying the power consumed (in
kW ) for transmitting Spayload bytes of data per hour, and CP
denoting the carbon footprint in kg−CO2 released into the at-
mosphere, we denote P(kWh) = 185.9×10−6×Spayload×3.6
and calculate CP = P(kWh)× 0.16 Kg − CO2.

V. PERFORMANCE ANALYSIS

This section discusses the output obtained from the ex-
perimental setup. The MLP is trained over the data-set, for
both Sigmoid and ReLU activations. The learning rate (α)
and momentum (γ) are varied to check the accuracy of
classification for all three RSL modules – ModelQ, ModelN
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and ModelS – for determining the optimum MLP parameters.
To sum-up the MLP results,
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Figure 6: The overall classification accuracy and loss of the
trained models for Node identification, Sensor identification
and Link quality detection for the heavy model at the remote
server.

1) Figs.5(a) and 5(d) show the performance of the Sigmoid
and ReLU-based activation functions in determining
link errors. The ReLU-based parameters, with α =
[0.01, 0.001] and 0.7 ≥ γ ≤ 0.9, consistently perform
better than all other cases.

2) Figs. 5(b) and 5(e) show that ReLU with with α =
[0.1, 0.01] and 0.8 ≥ γ ≤ 0.9, show superior perfor-
mance over Sigmoid activation for classifying various
nodes, from the incoming data-set.

3) Figs. 5(c) and 5(f) show performance of the MLP in
classifying the various sensors in a node. Here, ReLU
activation for α = 0.1 and 0.7 ≥ γ ≤ 0.9 give the best
performance, for classifying individual sensors, from the
incoming data.

The optimum hyper-parameters, determined for the training
of the three heavy RSL modules at the remote server –
ModelQ, ModelN and ModelS – are evaluated using a
RELU activation, SGD optimizer, MSE loss function with
α = 0.01 and γ = 0.9 for the Decay, Epoch, and Batch-size of
the MLP set to 1× 10−6, 50, and 16, respectively. The model
specific MLP parameters for the three models are, 2 inputs,
2 outputs and 2 hidden layers with 64, 128 neurons each for
ModelQ, 7 inputs, 4 outputs and 2 hidden layers with 128, 128
neurons each for ModelN , and 4 inputs, 5 outputs and 64, 128
neurons in 2 hidden layers for ModelS, respectively. The
corresponding accuracy of classification, achieved by using
these parameters are 96% for ModelQ, 92.5% for ModelN
and 95.6% for ModelS units of the RSL module at the remote
server. Figs. 6(a) and 6(b) show the changes in accuracy and
the minimization of loss (using MSE) for the RSL modules
during training of the data-set. The data-set was trained over
50 epochs, as beyond this the learning curve saturates and no
further improvement in learning is achieved.

Fig. 7(a) shows the carbon footprint of the agricultural
deployment for 5 selected approaches, viz. – (G1) unoptimized
packet over TCP/IP, (G2) optimized packet over TCP/IP,
(G3) optimized packet with reduced sampling (sampled every
alternate second) over TCP/IP , (G4) optimized packet with
reduced sampling (sampled every fourth second) over TCP/IP,
(G5) unoptimized packet over ROHC TCP/IP – calculated
with respect to varying nodes for a year. For a 100 node

deployment, it is estimated that, as compared to the proposed
scheme, the use of ROHC instead of compressionless TCP/IP
achieves an overall reduction in carbon footprint by 50%
for the same datasize as shown in Fig. 7(a) G1 and G5).
Additionally, comparison between approaches G1 with G2,
G3, and G4 shows that our proposed scheme achieves savings
of over 99% CO2 generated annually over regular IPv4 TCP/IP
transmission. Again, comparing G1 with G5 (ROHC with
comparable dataload), we observe that ROHC manages to at-
tain further savings of 50% of the CO2 generated annually for
the same datasizes. It is to be noted that header compression
schemes such as ROHC do not affect the payload size of
the transmitted data. Additionally, as both uncompressed IPv4
packets over TCP/IP and ROHC work beyond the purview
of the master node, massive savings in generated data within
the master node’s domain affects the carbon footprint beyond
its operational boundaries by dictating the payload size. Our
proposed scheme manages to massively reduce the payload
size of the data to be transmitted over the network to the
remote server. The additional use of compression methods
such as ROHC, which is primarily a header compression
scheme, further helps in the reduction of carbon footprint
(as shown in the inset plot in Fig. 7(a)) in domains such as
agriculture, where the need for real-time data is not necessary.

It is to be noted that having the learning models integrated
directly with the master node would reduce the network
load, and the latency caused thereof. However, we found
that the latencies produced due to the operation of MLP
models hosted at master node (as shown in Fig. 7(b)), were
much higher than the 1 minute mark, rendering them useless
for operation in a real-time manner. These models and their
parameters are similar in all respects to the ones hosted at the
remote server, which we label as Heavy Model in Fig. 7(b).
Upon modifying the MLP model architectures to make them
extremely lightweight for faster service at the master nodes
(Light Model in Fig. 7(b), which has 2 hidden layers each
with 5, 5 neurons), albeit at the cost of detection accuracies,
we found that the latencies were almost double of the ones
incurred at the server. Additionally, it is worthwhile to mention
that the detection accuracies of the three trained models fell
below 70% in case of ModelN and ModelS, whereas it fell
below 30% for ModelQ. In summary, Fig. 7(b) highlights
the importance and need of remote learning at the server in
comparison to learning at the master nodes for the same MLP
architectures.

VI. CONCLUSION

This work proposes an optimized method for detecting
simple link failures between slave and master nodes. Addi-
tionally, the method for identifying slave nodes from data
packets, even in the absence of node identifiers in the payload
packet and identifying individual sensors in a node, in the
absence of sensor identifier in the payload packet has also
been designed and tested. This approach is tested on a remote
server as well as a constrained master node, much nearer to
the implementation site. Outsourcing the error detection and
other identification tasks, which are computation intensive, to
a remote server, allows the use of low-cost, low-specification



8

(a) Carbon footprint for 100 nodes over
a year.

(b) Metrics for learning at the mas-
ter node vs. at the remote server.

Figure 7: The carbon footprint of the agricultural deployment
with 100 nodes, projected for all the 5 approaches for a year,
and comparison between master-node and remote server-based
learning approaches within the same implementation.

and low-energy processors for IoT deployment. This method of
minimizing packet size of traffic between slave to master node
and to the remote server, via the internet results in substantial
reduction of network traffic, reduction of data and conservation
of node energy. The choice of hosting the proposed scheme at
a master node severely hampers the performance of the scheme
by increasing the on-node execution time. Even implementing
lighter MLP models incur higher execution time at a master
node. We conclude that the benefits of hosting these MLP
models at the remote server far outweigh the benefits of minor
savings in network bandwidth offered by hosting these models
at the master node.

In the future, we plan to implement unsupervised learning
methods and other online learning methods to accommodate
for heterogeneous data from sensor networks of similar or
different types.
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