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Abstract

This work addresses the challenges of a decentralized and heterogeneous Unmanned Aerial Vehicle
(UAV) swarm deployment – some fitted with multimedia sensors, while others armed with scalar
sensors – in resource-constrained and challenging environments, typically associated with farming.
Subsequently, we also address the resulting problem of sensing and processing resource-intensive data
aerially within the Edge swarm in the fastest and most efficient manner possible. The heterogeneous
nature of the Edge swarm results in under-utilization of the available computation resources due
to unequal data generation within its members. To address this, we propose a Nash bargaining-
based weighted intra-Edge processing offload scheme to mitigate the problem of heavy processing in
some of the swarm members. We do this by distributing the data to be processed to all the swarm
members. Real-life hardware tuned simulation of a large UAV swarm shows that by increasing the
number of UAVs in the swarm, our scheme achieves better scalability and reduced processing delays
for intensive processing tasks. Additionally, in comparison to regular star and mesh topologies, our
scheme achieves an increase in collective available network processing speeds by 100% for only 25%
of the number of UAVs in a star topology.

Keywords: UAV swarm, collaborative processing, aerial mesh network, heterogeneous swarm,
Edge computing, smart farming.

1. Introduction1

Internet of Things (IoT) is in the process of revolutionizing agriculture through smart farming.2

The involvement of IoT in farming applications such as precision agriculture, livestock management,3

inventory management, and others has increased the productivity, yield, and raised economic benefits4

to farmers through connected sensors, actuators, and networked systems. UAVs – one of the prime5

examples of such networked system – has become quite popular in smart farming applications,6
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with applications ranging from monitoring of crop health, farmland demarcation and mapping, to7

spraying fertilizers and pesticides periodically and autonomously.8

Networked UAVs [1] are in extensive use for a range of solutions with far-reaching implications9

in the domains of agriculture, remote sensing, surveillance, security, law enforcement, disaster man-10

agement [2], and others. Most of these domains deal with UAV-based multimedia data for various11

tasks such as target tracking, information gathering, and path planning [3]. The real-time processing12

of multimedia data in constrained environments is an inherent problem, which is often encountered13

by UAVs in precision agriculture tasks. The data gathered from the farmlands, as well as the ones14

generated within the UAVs for its flight controls and navigation, are quite massive. Commonly, the15

data is stored within the UAVs and retrieved later for processing and analysis. However, this results16

in a loss of real-timeliness, which also prevents the implementation of complete UAV automation17

for agricultural practices. The biggest challenge faced during the implementation of a real-time18

UAV-based sensing solution by making use of multimedia data is the low computational power and19

limited energy resources of these UAVs.20

Various solutions are proposed to address the problems of low computation capability of such21

UAVs. Solutions such as cloud-based data processing offloading from single UAVs [4], processing22

offloading from a UAV to a ground server [5], and others [6] offer limited respite from the challenges23

at hand as these are heavily dependent on network connectivity, bandwidth, and quality of service24

for reliable and timely operation. Additionally, the areas of implementation of such multi-UAV net-25

worked solutions may not always promise the availability of network connectivity, network quality, or26

bandwidth, especially in applications involving operations in remote and infrastructure-constrained27

applications such as agriculture and disaster management.28

UAV deployment strategies for farming applications such as crop monitoring, field surveys, and29

others range from a single standalone powerful UAV to swarm of smaller, less powerful UAVs working30

in tandem. However, the use of multiple smaller UAVs has proved to be more efficient than a single31

large one regarding scalability, survivability, speed, cost, and bandwidth requirements [5]. Star and32

mesh network configurations are the commonly used topologies used for multi-UAV networks. In33

a star topology formation, each UAV connects to a central UAV, which, however, restricts direct34

communication between the UAVs in the network. Whereas, multi-UAV networks following a mesh35

topology allow direct or hop-based intra-member UAV to UAV communication within the network,36

however, at the cost of increased network load and traffic [5].37

(a) Sensing and communication range (b) A swarm of autonomous
UAVs in flight

(c) Aerial imagery of agricultural
plots

Figure 1: Edge UAV swarm-based operations and its possible applications in smart farming.

In this work, we propose a two-pronged approach to address the need for time-critical observation38

and tracking of ground-based tasks such as crop health and stress monitoring, farmland mapping39

(refer to Fig. 1(c)), and others by a heterogeneous collaborative sensing approach, which uses both40
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multimedia and scalar sensor armed UAVs in the swarm (refer to Fig. 1(b)). We additionally devise41

a scheme to mitigate the processing overheads of each swarm member, essentially an Edge computing42

platform, using distributed collaborative processing within the Edge UAV swarm itself.43

Assumption 1. A single Edge UAV in the swarm is equipped with a camera, whereas the other44

swarm members are equipped only with scalar sensors.45

Assumption 2. A UAV with a camera sensor (which can be an RGB, thermal, or a multispectral46

camera) has a sensing range of a× b, which is much larger than that of a UAV with a scalar sensor47

with a sensing range of only a/2×b/2. We consider the scalar sensing range as a single grid location48

in this work. Li represents the ith grid location covered by a UAV.49

Fig. 1(a) shows the sensing and communication range of multiple UAVs in the swarm. In the50

aerial plane, the central UAV – node 0 – consists of a camera sensor, whereas the other UAVs (nodes51

1-10) consist of scalar sensors only. A much broader search area can be covered by either scaling-up52

the Edge-based swarm or by using multiple such Edge-based swarms. Additionally, we consider that53

a UAV with the camera can visually search 4 grids at the same time the other scalar sensor armed54

UAVs take to search a single grid each. For rsi denoting the sensing range of the ith UAV in the55

swarm at any instant of time, the camera-armed UAV’s sensing range rs0 = a×b, whereas the scalar56

sensor fitted UAV’s sensing range rs1−7 = a/2 × b/2. The communication range between a source57

(S) and destination (D) UAV node rcSD of each UAV is limited to one hop within its immediate58

neighborhood, beyond which, the UAV has to communicate via an intermediate UAV in a multi-hop59

manner.60

Assumption 3. In a k UAV system, the UAVs never search the same grid twice, nor do other UAVs61

sense the grid locations already covered by a UAV such that
⋂
k

{⋂n2

i=1 Li
}

= ∅, ∀0 < k ≤ n262

Assumption 4. Each UAV in the network is assumed to have two wireless access points – one for63

receiving the data and the other for sending the data. Once the image is processed in the assigned64

UAV, it returns the coordinates of the detected object to the central UAV of the swarm.65

Definition 1. We consider the swarm of Edge UAVs in this work to be heterogeneous due to the66

presence of a unique sensor type on each UAV. Additionally, the sensors can be scalar, as well as67

multimedia ones.68

1.1. Heterogeneous Collaborative Sensing69

We consider a n× n observation area consisting of equally divided grids. If a single UAV-based70

visual coverage/observation/remote sensing of an area takes x units of time in a single grid, the71

time taken to cover the whole observation area by a UAV becomes n2x units of time, which results72

in worst-case time complexity of T (n) = O(n2). In contrast, having as many UAVs as the number73

of search grids incurs a time complexity of O(1). However, this approach is infeasible for large74

deployments. Along similar lines, the use of UAVs fitted with scalar sensors for remote sensing tasks75

ushers in worst-case time complexity of T (n) ' O(n3) as it needs to sense in a 3-dimensional space76

due to the insufficient sensing range of these sensors. Despite the low data volume generated from77

these sensors, the search time of this approach is infeasible for use in time-critical tasks, except in78

vast numbers, which again makes the proposed approach infeasible.79

We, therefore, propose the use of a heterogeneous swarm of UAVs for accomplishing the search80

task in a relatively time-efficient manner by making use of the benefits of both UAV-based multi-81

media, as well as scalar sensing. We attribute the heterogeneous nature of each Edge swarm to the82

presence of different sensors on each swarm member – either multimedia or scalar. Each of these83
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individual members of the swarm performs individual sensing tasks to achieve the more massive84

collective task of a time-efficient observation of an area or in a collaborative manner. Additionally,85

the use of multiple UAVs in farmland sensing provides resilience against individual UAV failures.86

However, this heterogeneity creates some unique issues such as the problem of the ratio of UAVs87

with multimedia sensors and UAVs with scalar sensors. Additionally, this heterogeneity also results88

in the problem of unequal data-rate and data-volume from each swarm member, resulting in various89

degrees of processing under-utilization and over-utilization within the Edge swarm. Considering ∆l90

is the data generated from the UAV camera per second for a frame rate of facc, and a frame size of91

δl, the data load per second from this UAV can be expressed as ∆l = δl × facc. We summarize the92

whole problem as processing ∆l in the least time possible within the UAV swarm.93

1.2. Distributed Collaborative Processing94

To address our problem statement, we propose an intra-swarm distributed processing scheme for95

mitigating the processing load from the multimedia Edge UAV node. The UAV with camera sensors96

offloads the majority of its processing onto other swarm members, which as per our implementation97

scenario, have a relatively lesser processing load on them due to the integration of scalar sensors98

only. Previously, the distributed processing of computationally intensive tasks has been performed99

with multicore parallelism and coprocessing on GPUs [7], and division of datasets for simultaneous100

processing on multicore processor architectures [8] with very promising reports of computation speed-101

ups and energy conservation. However, these approaches do not consider a highly mobile and102

resource-constrained environment such as the one in our case, in which processing and even data-103

offloading become significant factors in deciding the offload targets.104

In this work, we distribute the captured video frames to other swarm members for processing.
Each of these swarm members has similar processor specifications. As the member UAVs do not
have a camera sensor to process their data, each of the member UAVs processes the data offloaded to
them for processing, besides their regular and comparatively low-scale processing and scalar sensing
tasks. If tUAV is the amount of time required to process ∆l, then for a k UAV swarm,

tUAV (k) =
∆l

k
+

k∑
i=1

Ci +

k−1∑
i=1

τi (1)

In equation 1, Ci is a constant representing the internal processing time of the ith UAV, and τi105

is the delay incurred during the transfer of one frame from one UAV to another in a single hop.106

To maximize processing throughput from each UAV processor by minimizing
∑k
i=1 Ci we estimate107

the average processing wait times for the images at each UAV node from their respective queue108

properties.109

Additionally, based on the distribution of the traffic flow in the deployed network, and the110

resources available at each UAV node, we formulate a joint utility function for the UAV nodes in the111

swarm. A Nash bargaining solution is applied to the utility function to strategize the distribution112

of acquired video frames from the multimedia UAV with the camera to the other UAV nodes in113

the swarm before deployment. This approach allows the setting of an optimum frame rate of video114

capture, the swarm size, and even the communication architecture of the swarm. Finally, we compare115

the results obtained to various star and mesh topologies. Our approach shows positive results116

regarding processing speed-ups, as well as scalability of deployment.117

1.3. Contributions118

In this work, we establish a viable means of time-critical remote sensing of ground plots and119

crops in smart farming. We propose the use of heterogeneous Edge UAVs in a swarm formation120
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to remotely sense a given zone – some using camera sensors, while the others using scalar sensors.121

The unequal data-load generated and subsequently the processing load on the UAVs in the swarm,122

due to the heterogeneous nature of this swarm, is mitigated by a Nash bargaining game to achieve123

significant processing speed-ups and enhance the scalability of the system. The main contributions124

of this work are:125

1. A proposition for the use of heterogeneous UAV swarm consisting of mixed UAVs armed with126

either scalar or multimedia sensors, jointly performing remote sensing over farmlands, is put127

forward.128

2. A distributed multimedia data processing approach for mitigating the processing load of a few129

swarm members to the whole swarm is proposed to contain the processing within the Edge130

itself.131

3. A Nash bargaining based game is proposed to decide the intra-swarm offload architecture such132

that for a given number of UAVs, the optimized offload architecture formed aims to minimize133

processing lag, reduce the offload delay times, and allocates maximum processing resources to134

the multimedia data offloaded.135

4. An evaluation hardware consisting of four UAVs in a swarm is setup. The communication,136

time, and energy metrics measured from the hardware is used for emulating the behavior of137

our proposed approach for a large Edge swarm.138

2. Related Works139

The use of UAVs and UAV swarms has been explored for a multitude of tasks such as tracking140

[9], path planning, and other communication aspects within [10], and outside the swarm [11]. Con-141

cerning the objectives being pursued in this work, we divide the related works into three groups – 1)142

Heterogeneous Collaborative Sensing, 2) UAV swarms in sensing and tracking, and 3) Distributed143

processing in highly mobile environments.144

2.1. Heterogeneous Collaborative Sensing145

Heterogeneous collaborative sensing, although challenging, has been used for achieving resource-146

efficient results as compared to traditional approaches. Typically, collaborative sensing has been147

used for spectrum sensing and robotic swarms. Collaborative spectrum sensing has been used for148

tasks such as radio resource allocation [12], estimating the global spectrum states [13], and others.149

Further, approaches such as EasiSee [14], which is a WSN-based real-time vehicle identification150

system, report achieving a reduction in overall energy consumption through collaborative sensing151

using heterogeneous sensors. Collaborative sensing, especially using heterogeneous sensors, are also152

commonly encountered in the domain of robotics and multi-robot sensor networks. Platforms such as153

SENORA [15] and other middlewares [16] enable peer-to-peer networking and collaboration amongst154

mobile robotic entities.155

2.2. UAV Swarms in Sensing and Tracking156

Works on UAV swarm-based tracking of targets on the ground, especially moving targets, present157

solution approaches to a very challenging problem of target localization, which has huge implications158

in real-life scenarios such as farming, surveillance, and disaster management. UAV swarm-based159

searching involves cooperative search and tracking for targets, which may be RF-based sources [9],160

vehicles, or even humans. These tasks involve precision in path planning and flawless coordination161

amongst swarm members. Works by Nigam et al. [17] and Pitre et al. [18] successfully address some162

of the challenges related to control and path planning for search and track missions respectively.163
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Nigam et al. [17] propose high-level aircraft control strategies, control policies for compensating164

dynamic aircraft constraints, and health-and-endurance monitoring policies for control of multiple165

UAVs during persistent surveillance. In contrast, Pitre et al. [18] take an information value approach166

for path planning in UAV-based joint search and track missions. Their work relies on a modified167

particle swarm optimization approach for optimizing the trajectory of the UAV to maximize the168

targets searched. Additional tasks directly associated with multiple UAV-based searching involves169

increasing spatial coverage distribution of sensing [19] as well as addressing connectivity management170

issues in UAV networks [11].171

2.3. Distributed Processing in Highly Mobile Environments172

Processing offloading from low-power devices to more powerful ones is one of the widely ad-173

dressed topics in the domain of distributed computing and processing. However, specific persistent174

issues arise while addressing the task of processing offloading [20] in mobile environments such as175

scalability [21] [22], bandwidth management [23], and resource allocation. Various approaches ad-176

dressing scalability issues of distributed processing in mobile environments include those by Gedik177

and Liu [21], where they propose a distributed architecture in conjunction with their optimization178

techniques to address scalable processing challenges of continuously moving location queries. Their179

approach reports significant server load and messaging cost savings in comparison to traditional180

central processing approaches.181

Similarly, Wu et al. [22] propose the use of ADDSEN, a middleware developed by them for182

urban sensing using adaptive data processing and dissemination in UAV swarms. An online learning183

approach periodically adjusts the broadcast rate and knowledge loss rate, whereas a strategy function184

guides the state transitions of link status changes. Other approaches addressing various challenges185

in distributed processing for highly mobile environments include the use of Markov chain-based186

pattern prediction, and subsequent passive bandwidth management in QoS optimization for vehicular187

networks, and maximizing Markovian network utility functions of multi-server systems and networks188

in which each user may be granted resources by different servers [24].189

2.4. Synthesis190

Various works in the realm of UAV-based aerial sensing tasks rely mainly on homogenous sensing191

platforms, which either incur massive delays in sensing (e.g., scalar sensors) or massive delays due to192

processing (e.g., multimedia sensors), even when they are used in swarms. Typically, heterogeneous193

and collaborative sensing rely on a central controller or server for coordinating the sensing and col-194

laboration. A huge majority of these approaches do not consider the network or real-time processing195

requirements of the collaborating members. Additionally, the offload of processing requirements to196

other members in a swarm or more powerful processors is also biased regarding network bandwidth197

considerations. A considerable majority of the works related to processing offloading do not even198

consider the resource-constrained nature of the network or the swarm itself, where it may not always199

be possible to offload data to remote locations over high-speed networks or have multiple high-speed200

mobile processors. Our proposed approach of a heterogeneous collaborative Edge UAV swarm-based201

tasks, aimed mainly at smart farming, makes use of the benefits of both scalar and multimedia202

sensing. Our approach speeds up the time taken to sense large swathes of farmlands, and the Nash203

bargaining based distributed processing within the swarm takes care of the high data and processing204

load generated due to the multimedia sensors in the swarm.205

3. System Architecture206

A one-hop UAV data-offload architecture consists of a central UAV to whichm UAVs can connect.
The UAVs can communicate with each other in a star or mesh configuration for achieving distributed
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Figure 2: A representation of the multi-hop offload connection.

aerial swarm-based processing. As the connection between the UAVs is established wirelessly, each
UAV connected to a central node puts a certain amount of strain on its resources. This connection-
based strain on the UAV’s resources is attributed to the resources consumed for maintaining the
radio connection. If Ra is considered to be the total available resources at the central UAV node
(node-0), then initially at t0|t=0 when no UAVs are connected to the central UAV node, we have
t0 ∝ R−1a ⇒ t0 = K

Ra
such that K is the constant of proportionality. For a k UAV system, let

each UAV connection to the central UAV put a constraint on the central UAV node’s resources by a
factor of γk such that over a period, the resources consumed at the central UAV node Rc is denoted
as Rc = γ1 + γ2 + · · ·+ γk−1 =

∑k−1
i=1 γi. Similarly, at tk|t>0, for k− 1 UAVs connected to a central

UAV node, we represent tk as:

tk =
Ra

Ra −Rc
t0 (2)

Assumption 5. The m − 1 UAVs connecting to a central UAV node in a m UAV system puts207

identical constraints on the central node’s resources such that γ1 = γ2 = · · · = γm−1 =
∑
k γ.208

In a one-hop star connected network, n nodes connect to a central node, each contributing a lag209

∆/n to the overall lag ∆ of the system. The only difference between the star and mesh connected210

networks during distributed data processing offload is that in a star connection only the central UAV211

exhausts its resources with an increasing number of connections to it over a period, while in a mesh212

connection all nodes run out of resources at a point of time. In continuation, each UAV in a hop in213

a multihop UAV network approach may be connected to a few other UAVs in the next hop, however214

within a unit-hop distance of each other, as shown in Fig. 2. It is pertinent to mention that Fig. 2 is215

architecturally similar to the concept of distributed processing denoted in Fig. 1(a). Similar to the216

one-hop network architecture, every connection to a UAV in the multihop configuration induces a217

lag in that UAV’s processing resources as a result of the operations required to maintain the wireless218

connection to the connecting UAV.219
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(a) Logarithmic distribution on
UAV Node 0

(b) Logarithmic distribution on
UAV Node 1

(c) Logarithmic distribution on
UAV Node 2

(d) Poisson distribution on UAV
Node 0

(e) Poisson distribution on UAV
Node 1

(f) Poisson distribution on UAV
Node 2

Figure 3: Fitting Poisson and Logarithmic distributions to inter-arrival times at various UAV nodes in the network
and their corresponding Chi-squared parameter.

4. UAV Swarm Network Traffic Analysis220

A multi-hop network architecture with randomized connections between the UAVs in the network
is simulated, which is subject to the constraint of one-hop communication between the immediately
communicating nodes. Video frames captured from the origin UAV node are allotted for processing
to each immediately one-hop neighboring UAV based on the number of UAVs it is one-hop connected
to and the number of the video frames already waiting to be processed by that UAV. The inter-
arrival time IA for video frames arriving at every UAV in this network is calculated. The data traffic
being discrete and multi-valued (not binary) is fit using Poisson and Logarithmic distributions to
estimate the nature of the traffic in this network. For an event rate of λ in a network following
Poisson distribution, the probability mass function (PMF) is given by:

f(λ, x) =
λxe−λ

x!

∣∣∣
x=0,1,2,···

∀ λ > 0 (3)

Similarly, the PMF of a logarithmic distribution is evaluated as:

f(p, x) =
−1

ln(1− p)
(
px

x
)
∣∣∣
x≥1

∀ 0 < p < 1 (4)

Fig. 3 shows the result of fitting Logarithmic and Poisson distributions on the IA at various UAV
nodes. Three goodness of fit (GoF) metrics – Chi-squared GoF, Akaike Information Criteria (AIC),
and Pearson correlation coefficient – are calculated to determine the most appropriate distribution
for the traffic in our network. The IA data is divided into x bins to calculate the Chi-square GoF,
and is represented as:

χ2 =

x∑
i=1

(Oi − Ei)2

Ei
, (5)

where, Oi is the observed frequency in the bin, and Ei is the expected frequency of IA in the
bin. Again, the likelihood L, which denotes the probability of the data given a model, and F free
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parameters in the distribution, the AIC is calculated as,

AIC = −2(log(L)) + 2F (6)

Finally, for N number of IA samples with expected value x, observed value y, and mean of x and y
denoted by x̄ and ȳ, respectively, the Pearson correlation coefficient is represented as:

pearson =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
(7)

From the above metrics, calculated on the inter-arrival times at every node, and the corresponding221

results tabulated in Table 1, it is inferred that the inter-arrival times at each node in the proposed222

multi-hop UAV network follows a Logarithmic distribution.223

Definition 2. Effective UAV Bandwidth: For m UAVs, each occupying a bandwidth of b, which224

is connected to a UAV with a total bandwidth of B, then
∑m
i=1 bi = mb ≤ B and m ≤ B/b. We term225

B as the Effective UAV Bandwidth, which is responsible for limiting the number of UAVs connecting226

to a single UAV.227

Definition 3. Swarm Node Depth: It is the maximum depth (i.e., the maximum number of hops228

to be undertaken by an image frame) before processing. The depth of the node is limited by the229

Swarm Node Depth DM such that d ≤ DM .230

Definition 4. Inter Arrival Time: It is the time elapsed between the reception of two consecutive231

image frames by a UAV node. For time taken to transfer the ith image frame f(i) between UAVs232

denoted by tf(i), the Inter Arrival time is denoted as IA = tf(i)−f(i−1), ∀i > 1. Additionally, with233

respect to equation 1, it can be stated that IA ' τi.234

Definition 5. Service Time: It is the time for which the ith image frame f(i) resides in a UAV235

node, and is denoted by ST . With respect to equation 1 it can be inferred that ST{f(i)} ∝ Ci.236

Node
Chi-square AIC Pearson-coefficient

Poisson Log Poisson Log Poisson Log
0 0.016 0.018 20.402 20.404 0.925 0.996
1 0.006 0.001 20.388 20.381 0.737 0.994
2 0.004 0.002 20.385 20.381 0.856 0.982
3 0.009 0.001 20.391 20.380 0.547 0.962
4 0.005 0.002 20.387 20.382 0.810 0.997

Table 1: Node wise Chi-squared GoF, Pearson correlation coefficient and AIC values for Poisson and Logrithmic
distribution on IA of the network.

5. UAV Node Traffic Modeling237

The IA, in our architecture, follows a Logarithmic distribution. We calculate the average waiting238

list of image frames at every UAV node using Queuing theory. We group the various UAV nodes in239

our architecture into three categories – 1) central node, 2) leaf node, and 3) intermediate node.240
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The central UAV node does not process any frames and is responsible only for video capture and241

frame generation, which is subsequently offloaded for processing to its immediate one-hop neighbors.242

Each swarm has a single central UAV node. In contrast, a UAV in the swarm with no further UAVs243

to offload their data to (i.e., no further children nodes present) is considered a leaf node. A leaf244

UAV node has to process whatever image frames get offloaded to it. Finally, any other UAV node245

in the network besides the central and leaf UAV nodes has two options – either process the frame246

by itself or assign the frame to one of its children. The data offload to other UAVs is decided from247

a Nash bargaining strategy-based pre-allocation of weights according to the swarm communication248

architecture.249

In our work, we consider that the central UAV node is responsible for video capture in a swarm,
whereas the other swarm members are responsible for sensing using only scalar sensors. This ar-
rangement implies that the central UAV node is responsible for highly processing-intensive tasks,
whereas the other member UAVs in the swarm have under-utilized processing resources. In our pro-
posed multi-hop data offload scheme, considering that the tasks performed by all the UAV nodes,
except the central UAV node, are not processing-intensive, the average service time ST for the
processing of image frames for a fixed frame size is constant. A node’s ST is only affected by the
number of wireless connections to other UAV nodes maintained by it. An increase in the number
of connections to a UAV node results in increased resource consumption at that node, which slows
down the processing of that node leading to an increase in the time taken to process an image frame.
Considering % to be the percentage increase in ST for every wireless connection the UAV node is
maintaining such that % ∝ γ, the expected ST of the node with m connections to it is formulated
as:

E[ST ] = ST o(1 + %)
m

(8)

As each connection to a UAV node increases, it slows down the concerned UAV’s processing by γ,
increasing the original service time of that STo by 1+%. For m connections to a UAV, STo increases
by (1 + %)m. We denote the mean IA rate and the mean ST by βa and βs, respectively. βa and βs
can be represented as βa = E[IA]−1, βs = E[ST ]−1 such that E[.] represents the expectation of
a random variable. The data offload mechanism in our proposed approach is similar to a G/G/m
queue such that the queue has m servers (UAV nodes) in which both service and the inter-arrival
time have any given distribution. The IA, in our case, is distributed logarithmically (as established
in Section 4), whereas the ST follows a polynomial distribution (from equation 8). For a single image
frame fi and a single processing UAV node, we formulate the utility of the UAV node as Us = βaβ

−1
s .

Along the same lines, for fi with the choice of selecting any processing node from m UAV processing
nodes, the utility of each UAV node is formulated as Us = βa(mβs)

−1. Subsequently, the Us is
normalized to the maximum Us of the system. For the sake of simplicity in calculations, we start
the queue analysis of a M/M/m queue, and eventually approximate it to a G/G/m queue [25] when
required. A M/M/m queue is one in which there are m UAV nodes, and both the inter-arrival
time and service time are exponentially distributed. The balance equations for a M/M/m queue
are formulated as:

βaP (fi − 1) =

{
fiβsP (fi), fi 6 m

mβsP (fi), otherwise
(9)

Using equation 9, the probability that there are fi frames in a queue is calculated as:

P (fi) =

{
P (0) (mUs)

fi

fi!
, fi 6 m

P (0)m
mUs

fi

m! , otherwise
, Us 6 1 (10)

From equation 10 and the fact that
∑∞
fi=0 P (fi) = 1, we calculate the probability of zero frames in
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a node’s queue P (0) as:

P (0) =

[m−1∑
fi=0

(mUs)
f
i

fi!
+

(mUs)
m

m! (1− Us)

]−1
(11)

Subsequently, the average number of frames in the queue of a M/M/m UAV node is calculated as:

NQ =

∞∑
fi=0

fiP (fi +m) = PQ(
Us

1− Us
), s.t. PQ =

∞∑
fi=m

P (fi) (12)

From Little’s theorem [26], the average waiting time WM of a frame in a given UAV node for a

M/M/m queue is calculated as WM =
NQ

βa
. The waiting time WG of a frame for a G/G/m queue

at a UAV node can be approximated [27] as:

WG 'WM

(c2a + c2s
2

)
(13)

where, ca and cs represent the coefficient of variation of IA and ST , respectively, and are calculated

as ca =
√
variance(IA)β−2a and cs =

√
variance(ST )β−2s . Similarly, the total time spent by a

frame in a UAV node TM for a M/M/m queue is calculated as the sum of waiting time WM and
processing (servicing) time β−1s , and is represented as:

TM = WM +
1

βs
=
NQ
βa

+
1

βs
(14)

whereas, for a G/G/m queue, the total time spent by a frame in a UAV node TG is formulated with
respect to the relation in equation 13 as:

TG =
((c2a + c2s

2

)
WM

)
+

1

βs
(15)

Further, applying Little’s theorem, the average number of frames N at a UAV node is given by
N = βaT , which for a M/M/m queue is calculated by incorporating equation 14 as:

N =
βa
βs

+NQ (16)

In case of our implementation, as we have previously established our system to be a G/G/m one,
equation 16 is rewritten by replacing NQ with LQ, which is the average number of image frames in
the queue of a G/G/m UAV node, and is approximated by Kingman [25] as:

LQ =
PQ0Us

m! (1− Us)2
βa
βs

(17)

such that

PQ0 =

(
m−1∑
k=0

(mUs)
k

k!
+

(mUs)
k

k! (1− Us)

)−1
(18)

Equation 17 is used for calculating the queue at every UAV node in the UAV swarm network.250
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6. Strategizing a Nash Bargaining Game251

Two cases which are encountered during processing offload from a UAV to its 1-hop neighbors
are – 1) the offloading UAV node has more than one neighbor/child node and are mainly found in
the intermediate levels of the offload architecture, and 2) the offloading UAV node has a single child
node, which is a leaf node. Considering the case of an intermediate node, the queue at any node i is
denoted by qi. The 0th node has the choice to either process the image frames itself or distribute it
among its m children. The reduction of processor load at the 0th node is made by distributing the
processing of individual frames amongst the m+ 1 UAV nodes such that the node and its children
share the frame-wise processing to mitigate the load on the 0th node itself. We assign a penalty
Qi to a UAV node for offloading its processing to other UAV nodes. The penalty for assigning a
frame to a child node is taken to be the frame transfer time tld between these nodes, whereas the
penalty of processing the frame within the UAV node is tlc, which is attributed to the increase in
processing time of the node as a result of the connections maintained by the 0th node. Another
metric – strength of a node Si – is considered for use in the penalty function Qi such that for a UAV
node i, its corresponding si denotes the number of child nodes under it such that 1 < si ≤ m. To
embed these penalties Qi is defined such that,

Qi =

{
(qisi)/tlc, i = 0

(qisi)/tld, otherwise
(19)

The minimum probability with which a frame is assigned to a UAV node for processing is formulated
as:

P imin =
Qi∑m
j=0Qj

(20)

Additionally, another parameter – rank Ri – is assigned to P imin for each UAV node. Ri for the
ith UAV node is formulated based on its depth di in the network with respect to the total depth
of the network Di, and is represented as Ri = 1/(Di − di) such that Di ≥ 1 and di ≥ (Di − 1).
Subsequently, the minimum probability of assigning a frame to the ith UAV node for processing with
respect to equation 20 and Ri is reformulated as:

P imin =
QiRi∑m
j=0Qj

∀ 0 6 i 6 m (21)

The utility of the ith UAV node for processing offloading is formulated in terms of P imin, the proba-
bility of assigning an image frame to node i denoted by Pi, and child nodes under the ith UAV node
denoted by ci is given by:

Ui(Pi) =
Pi − P imin
ci + 1

(22)

Pi for each UAV node, for a given UAV swarm architecture, is calculated prior to operation of the
swarm using Nash bargaining (discussed later in this section), subject to the constraints Pi ≥ P imin
and

∑m
i=0 Pi = 1. A set S denoting the joint utility function of all UAV nodes in the swarm is

defined for this work such that

S = {U0(P0), U1(P1), U2(P2), · · · , Um(Pm)} (23)
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Equation 22 with respect to its constraints can be rewritten and represented for all the UAV nodes
in the swarm as:

m∑
i=0

Pi =

m∑
i=0

P imin +

m∑
i=0

Ui(Pi)(ci + 1) = 1

⇒
m∑
i=0

Ui(Pi)(ci + 1) ≤ 1−
m∑
i=0

P imin

(24)

From equations 23 and 24, the joint utility function S of the UAV swarm is generalized to

S =

{
Ui(Pi)

∣∣∣∣∣
m∑
i=0

Ui(Pi)(ci + 1) ≤ 1−
m∑
i=0

P imin

}
(25)

To establish the existance of the formulated utility function Ui(Pi), the joint utility function S of252

the UAV nodes within the domain of the network proposed i ∈ [0,m] has to be convex.253

Theorem 1. The joint utility function S of all the UAV nodes in the swarm is convex such that254

f : Ui(Pi) |
∑m
i=0 Ui(Pi)(ci + 1) ≤ 1−

∑m
i=0 P

i
min, ∀0 ≤ i ≤ m.255

For a function F : (P, Pmin) → R+(m+1) ∀ 0 ≤ m representing the solution for the weight
allocation to the UAV nodes using the proposed Nash bargaining strategy, we consider the case of
only one child UAV node connected to an offloading UAV. The optimization function is formulated
as F (P, Pmin) = arg maxP1,P2

U1(P1)U2(P2), which is rewritten as –

F (P, Pmin) = arg max
P1,P2

(P1 − P 1
min)(P2 − P 2

min)

(c1 + 1)(c2 + 1)
(26)

A Nash bargaining strategy can hold iff F (P, Pmin) satisfies the criteria of Pareto efficiency, sym-256

metry, invariance to linear transformation, and is independent of irrelevant alternatives. These257

four conditions validate the consideration of a utility function in a bargaining problem such that it258

provides a proportionally fair solution.259

Lemma 1. The proposed solution for the allocation of weights to the UAV nodes F (P, Pmin) is260

Pareto-optimal, symmetric, invariant to linear transform, and independent of irrelevant alternatives.261

Theorem 2. There exists a unique solution for the weight allocation among the UAV nodes, which
satisfy the four Nash axioms, and this solution to the optimization problem is the pair (P1, P2) ∈ P
such that (P1, P2) ≥ (P 1

min, P
2
min) that solves F (P, Pmin) = arg maxP1,P2

U1(P1)U2(P2), which
can also be rewritten as:

F (P, Pmin) = arg max
P1,P2

(P1 − P 1
min)(P2 − P 2

min)

(c1 + 1)(c2 + 1)
(27)

Here, (P1 − P 1
min)(P2 − P 2

min) is termed as the Nash product.262

6.1. Solution to the Nash Bargaining Problem263

The optimization function, which allocates weights to the various UAV nodes for a weighted
distributed processing offloading within the m UAV nodes in the aerial swarm follows the four
conditions or Nash axioms. A unique solution to the optimization function F (Pi, P

i
min) is derived
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Algorithm 1 Swarm Frame Distribution Algorithm

1: Inputs:(CameraID, Camerafps)
2: Outputs:(Trackedcoordinates)
3: Initialize:
4: Add CameraID to Network
5: Network = Discover nodes(CameraID,Network)
6: Queue = cal queue(Network,Camerafps)
7: Weights = cal weights(Network,Queue)
8: flag,frame = capture(CameraID)
9: while flag do

10: Target = get Optimal node(Network,Weights)
11: Trackedcoordinates = Process(frame,Target)
12: end while

using the Lagrange Multiplier method. Now considering the weight allocation among the UAV
nodes in the swarm, the optimization function subject to

∑m
i=0 Pi = 1, Pi ≥ P imin is F (P, Pmin) =

arg maxP
∏m
i=0 Ui(Pi), and is simplified as:

F (P, Pmin) = arg max
P

m∑
i=0

log

(
Pi − P imin
ci + 1

)
(28)

We solve equation 28 using Lagrange Multiplier λ, the function of which is formulated as:

L =

m∑
i=0

log
(Pi − P imin

ci + 1

)
− λ
( m∑
i=0

Pi − 1
)

(29)

We arrive at the solution the optimization function in equation 28 considering ∂L
∂Pi

= 0 and
∂L
∂λ = 0. This also ensures that the solution maximizes the optimization problem. A total of
(m+ 1) + 1 equations are obtained, the solutions to which can be generalized to obtain the weight
assigned to ith node as:

Pi = P imin +
(1−

∑m
i=0 P

i
min)

m+ 2
(30)

6.2. Weight Allocation to UAV Nodes in the Swarm264

All the UAV nodes other than central and leaf UAV nodes have two probabilities – one with265

which its parent UAV node assigns it a frame, and the other with which it processes the frame by266

itself without passing it to its child node. The central UAV node does not process any image frames267

and acts as a client in a client-server communication analogy. Post-assignment of an image frame268

for processing, a leaf UAV node does not have the option of offloading their processing to other269

UAV nodes and act only as servers. The intermediate nodes act as both clients as well as servers.270

Algorithm 1 outlines the image frame distribution scheme for processing mitigation to member UAV271

nodes in a heterogenous UAV swarm. Algorithm 1 is responsible for the distribution of the generated272

image frames within the swarm members, depending on the network traffic and available processing.273

Initially, given the ID of the central UAV node with the attached camera sensor, and information274

of the camera’s capture rate in frames per second (fps), a network is formed by the central UAV275

node by polling for UAVs in its vicinity and within its swarm using Algorithm 2.276
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Algorithm 2 on a UAV node first checks whether the node is a child node or not. IF at first277

pass, the node does not find any parent nodes, it becomes the parent node (root node). Further, if278

it is a child node, it establishes a connection with the parent node upon satisfying the bandwidth279

requirements for data offloading. Similarly, the node checks for the presence of child nodes under it,280

the detection of which results in running Algorithm 2 in these child nodes. This process keeps on281

repeating until there are no child nodes left to discover (all the current nodes are leaf nodes).282

Algorithm 2 UAV Node Discovery Algorithm

1: Inputs:(Node, Network)
2: Outputs:(Network)
3: Initialize (Discover nodes):
4: child = check(Parent)
5: for each Node in child do
6: Establish connection between Parent and node in Network if the Bandwidth constraint is

satisfied
7: child child = check(Node)
8: for each Node in child child do
9: Network = Discover nodes(Node,Network)

10: end for
11: end for

Once the network is formed, the average queue length at every UAV node is calculated using283

equation 16. The information of the estimated queue lengths at each UAV node enables the as-284

signment of weights to each of these nodes. The image frames captured at the central UAV node285

are assigned to available UAV nodes for processing using Algorithm 3. This algorithm first checks286

whether the current node is the root node and whether it has children nodes (child ). If the cur-287

rent onde has only one level of children nodes (which will be leaf nodes of the generated graph), it288

randomly selects any one of the children nodes for acting as servers during the distributed process-289

ing. Otherwise, the child node can act as a data generator (consumer) as well as a data processor290

(server). This is repeated until the leaf nodes are reached. Algorithm 3 thus decides its target nodes.291

The list of these selected nodes is returned to Algorithm 1. The selected nodes process the offloaded292

images using a pre-trained visual tracking algorithm and return the coordinates (Trackedcoordinates)293

of tracked humans to the central UAV node.294

7. Performance Evaluation295

This section is divided into two parts – 1) Evaluation hardware setup and 2) Simulation. The UAV296

network architectures used for comparison are recreated using four real-life UAVs with externally297

mounted Raspberry Pi processors to obtain network metrics from these implemented UAVs, as298

shown in Fig. 4. Large-scale simulation of the network is performed based on the real-life network299

metrics obtained and tuned into our custom-made simulator developed in Python. The network300

traffic and performance metrics from the real-life, small-scale UAV network is used for realistically301

guiding the behavior of the large-scale network of UAVs formed, which holds even for different302

network configurations using the same radio protocol (in our case, WiFi).303

7.1. Evaluation Hardware Setup304

A pilot-scale implementation of an aerial swarm using 4 UAVs is implemented, as shown in Fig.305

4. Every member of the swarm is armed with unique sensors – scalar, as well as multimedia. For306
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Algorithm 3 Optimal Node Selection Algorithm

1: Inputs:(Network,Weights)
2: Outputs:(Target)
3: Initialize:
4: count = 1
5: Node = Network → root
6: while True and (Node != NULL) do
7: child = Node → child
8: if count = 1 then
9: Target = randomly select a Node among the child with the probabilities of them being

servers.
10: else
11: Target = randomly select a Node among the child and the Node itself with the proba-

bilities of them being servers and consumer respectively.
12: end if
13: if Target == Node then
14: return(Target)
15: else
16: Node = Target
17: end if
18: end while

(a) Circular formation (b) Linear formation

Figure 4: A pilot-scale UAV swarm implementation.

our work, we use a single camera-armed UAV. The other three UAVs in the network are armed with307

just scalar sensors. Initially, we use a standard video to test a Faster RCNN-based approach [28]308

for tracking ground targets (in our case, humans) in successive video frames. This model can be309

easily trained for use with UAV-based aerial videos of humans on the ground. However, as a part of310

this work addresses UAV-based visual tracking of human targets on the ground, the Faster RCNN311

module has been implemented on the low-power processors on the UAV. This implementation results312

in massive delays in computation and video frame-wise tracking. Additionally, the substantial power313
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requirements of GPUs acts as a deterrent for its use on the small-scale UAVs, especially quadrotors.314

Typically in our case, a GPU takes 0.2 seconds, a CPU server takes 7 seconds, and the processor315

on the UAV (a Raspberry Pi module) takes 90 seconds to process a single video frame. A single316

UAV tasked with executing the tracking task on its own would severely deteriorate the efficiency317

of the said UAV’s processing system and would be too slow to be of any use in real-time tracking318

of humans/targets on the ground. Further, ST 0 is calculated by allowing a single UAV with no319

connections to implement the Transfer-learning (Faster RCNN) based visual object detection on a320

single video frame. Similarly, τ is estimated according to the time taken to process the single frame321

by the UAV with a subsequently increasing number of connections to it. Finally, the transfer time of322

an image frame between UAVs is calculated by transmitting and receiving an image frame between323

two UAVs over a Wi-Fi link between the UAVs. The actual values of ST 0, τ , and Tf obtained from324

one of our UAVs in real-time are 90 seconds, 5%, and 0.005 seconds, respectively for a video frame325

size of 1KB. Fig. 5 shows the results of the large-scale implementation of our proposed approach,326

and its comparison against the benchmark architectures for an incoming video frame rate of 25fps327

from the origin UAV.328

Figure 5: Comparison of the average processing time in the network taken for a frame-rate of 25fps among various
architectures. Both x and y axes are on the log-scale. Only the y axis of the inset plot is on the log-scale.

7.2. Simulation329

Simulation is performed to emulate UAV swarm networks of varying architectures, given the330

number of UAVs, processing time of single image frame on a UAV node with zero connections331

(ST 0), percentage increase in the processing time for every maintained UAV connection (τ ∝ γ), and332

wireless transfer time of data between two UAVs (Tf ). Three broad classes of network connections are333

considered during our simulation – 1) the proposed multi-hop network architecture, 2) star connected334

network architecture, and 3) mesh connected network architecture. The simulation for the multi-hop335

architecture, which is the solution provided in our work, is based on Algorithm 1. This algorithm336

estimates the length of the queue at each UAV node from the inter-arrival times and then assigns337
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appropriate weights to those UAV nodes, which helps in uniform processing resource utilization338

across the whole network, without unduly burdening a select few UAV nodes. In contrast, in the339

architectures based on one-hop communication, e.g., a connected star network, the image frames340

are equally distributed among the UAVs as all of them are equidistant from the central UAV and341

process similar resources. Finally, in the mesh connected network architecture, the current waiting342

list of image frames at each UAV node is considered before assigning that UAV node with an image343

frame to process.344

(a) Lag at central UAV for 100 UAVs (b) Lag at central UAV for 2000 UAVs

(c) Lag at Origin UAV (d) Lag at Penultimate UAV

Figure 6: Calculated metrics (lag) for UAV network connection – one-hop star and DAP – architectures.

The performance of the proposed distributed aerial processing (DAP) is compared against the345

following regular UAV network architectures – 1) Star, 2) Star with a ground server, 3) Mesh, and346

4) Hierarchical mesh. The UAVs in a star network communicate through a central UAV, which347

is connected through a one-hop link only. The number of UAVs that can simultaneously connect348

to the central UAV is limited due to γ of the central UAV, which results in limited scalability of349

the network. It is similar to the architecture explored in [29] [30]. In continuation, the UAVs in a350

star with a ground server network communicate through a central server on the ground, which is351

connected to the UAVs through a one-hop link only. The number of UAVs that can simultaneously352

connect to the central UAV is limited due to γ of the central UAV, which results in limited scalability353

of the network. It is similar to the architecture explored in [31].354

The UAVs in a mesh network can all communicate with each other employing multiple hops via355

intermediate UAVs and is similar to the architecture in [32]. However, during processing offloading,356
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the processing distribution on all UAVs is not symmetrical, resulting in UAVs with unequal load357

distribution in addition to the extra time taken to offload the data within the network nodes. Further,358

the hierarchical mesh network of UAVs is divided into two halves [33]. In each of the halves, all the359

UAVs are connected in a mesh. The communication between the meshes is through a ground server,360

which results in bottlenecks during processing and data offload.361

(a) Star Connection (b) Star connected to Server

(c) Mesh Connection (d) Hierarchical Mesh connection

(e) Distributed Aerial Processing (f) Distributed Aerial Processing and Decision Return

Figure 7: Comparison of the average processing time to increasing UAV swarm size and changes in the incoming video
frame-rate fps for all benchmark architectures. The y axes of all the inset plots from (a) to (f) are on log-scale.
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8. Results362

This section is divided into four sub-sections to analyze the real-life, hardware metric tuned simu-363

lation of large-scale UAV network topologies – 1) inter-topology performance, 2) network scalability,364

3) inter-topology processing time performance, and 4) collective network processing speed.365

8.1. Inter Topology Performance366

Fig.5 shows the average time taken to process video frames at 25fps for various architectures. It is367

seen that the overall processing time taken for the mesh and hierarchical mesh architectures increase368

with the increase in the number of UAV nodes in the network. The average time taken to process369

frames gradually reduces till a saturation point for each configuration is reached. For each of these370

saturation points, the corresponding network topology can no longer support collaborative processing371

and offload, which manifests itself in the form of an exponential increase in the average processing372

times. This is attributed mostly to the transfer time incurred during data offloading between the373

UAV nodes. The mesh configurations are the first ones to saturate as this topology itself involves374

data duplication between the network links to ensure network transfer reliability. In contrast, the375

star topologies ensure better data accommodation through the network links owing to the central376

controller. Further, the average processing time taken for the star architectures are comparatively377

lesser, which is attributed to the one-hop-only data offload restrictions. It is additionally seen that378

DAP initially behaves similar to a mesh network (performs better than mesh but poorer than star379

topologies), but gradually, for 200 UAV nodes, DAP surpasses the performance of start topology380

with a ground server (refer Fig. 5). As DAP maintains symmetrical distribution processing time381

among all the UAV nodes in the network, a more balanced and enhanced performance is projected382

for an increasing number of UAV nodes in the network.383

8.2. Network Scalability384

Fig. 6 shows the comparative performance of the star topology and our proposed DAP, regarding385

the scalability of the architecture. In Figs. 6(a) and 6(b), it is seen that for increasing γ, and386

increasing UAVs in the network, the data processing lag ∆ increases and eventually saturates for387

larger number of UAVs (Fig. 6(b)). In contrast, the multihop topology followed by DAP results in388

constant lag for an increasing number of UAVs, as seen in Figs. 6(c) and 6(d). Unlike star topology,389

the processing load in DAP is evenly distributed across the network members. It is seen in Fig. 6(c)390

that ∆ at the root or origin node is comparable to the one at the intermediate nodes (as shown in391

Fig. 6(d)). Summarizing the scalability, we see that star configuration has limited scalability and392

saturates beyond a point, which manifests itself in the form of an unrealistic increase in processing393

time (as shown in Fig. 6(b)). In contrast, the proposed DAP approach takes a balanced approach394

of uniform scalability and proportional distribution processing time among all the UAV nodes in the395

network.396

8.3. Inter Topology Processing Times397

Fig. 7 shows the average time taken to distribute and process video frames for various architec-398

tures with varying video frame rates (in fps). The star (Fig. 7(a)) and the server connected star399

(Fig. 7(b)) networks show a drop in average processing time with an increase in the number of UAV400

nodes. Additionally, as the frame rate of the video being offloaded increases, the processing time401

goes up. In contrast, for the mesh (Fig. 7(c)) and hierarchical mesh (Fig. 7(d)) UAV networks, the402

average processing time increases with an increase in the number of UAV nodes. In mesh networks,403

it is seen that using the constraints outlined in the previous section, the average processing time for404

all frame rates converges, which is attributed to the processing overloading of the UAV nodes in that405
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(a) Star Connection (b) Star connected to Server

(c) Mesh Connection (d) Hierarchical Mesh connection

(e) Distributed Aerial Processing (f) Distributed Aerial Processing and Decision Return

Figure 8: Comparison of the average collective network processing speed available with respect to increasing UAV
swarm size and changes in the incoming video frame-rate fps for all benchmark architectures. The y axes of all the
inset plots from (a) to (f) are on log-scale.
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network. For hierarchical mesh, this convergence occurs much later on. Finally, in the proposed406

DAP scheme in Figs. 7(e) and 7(f), the initial average processing time is much lower than that407

of the other configurations, and starts decreasing with an increasing number of UAV nodes. The408

sudden peaks obtained in the plots are attributed to the random arrangement of the UAV nodes in409

the architecture, wherein some nodes may not always have a child node to offload its processing.410

Fig. 7(f) depicts the total time taken to process the image frames and return the detected object’s411

coordinates to the origin UAV. As the detected coordinates of the bounding box incur very low data412

load, this return operation takes negligible time.413

8.4. Collective Network Processing Speed414

Fig. 8 shows the available collective processing speed of the network in kHz. In Figs. 8(a) and415

8(b), it is seen that as the network size goes up, the collective processing speed of the network for416

various values of γ increases. However, for the available real-life hardware metrics, it is observed that417

for approximately 200 UAVs in the star and its associated network, the collective network processing418

speed reaches 3 kHz, saturates, and eventually drops to 1 kHz. This sudden drop is attributed to419

the exhaustion of all processing resources at the offloading central UAV of the star topology. In420

contrast, for the mesh and hierarchical mesh topologies (as shown in Figs. 8(c) and 8(d)), reduction421

in the available processing speed of the topology starts at approximately 15 UAVs for regular mesh422

and 20 UAVs for the hierarchical mesh. The maximum collective network speed achieved is in the423

range of 0.3 kHz, which is much lesser than that of the star topology. The poor performance of mesh424

topology is attributed to the resources spent in establishing peer connections in the network, which425

leaves very little for the processing of image frames. Eventually, it is seen that DAP outperforms426

all the topologies regarding the collective network processing speed. In Figs. 8(e) and 8(f), we see427

that although some UAVs show a fall in their individual available processing speeds, the collective428

processing speed of the network increases with increase in the number of UAVs in the network. For429

the available hardware metrics, DAP achieves a collective network speed of approximately 6 kHz,430

which is double that of star topology for a fraction of UAVs.431

9. Conclusion432

This work proposes an intra-UAV swarm processing offloading scheme to mitigate the prob-433

lem of increased processing delays due to processing-intensive tasks such as visual identification of434

farmlands, crop health monitoring, and crop growth tracking. Our proposed weighted offloading is435

governed by the use of a Nash bargaining game between the probability of a node processing the436

data itself or offloading it to a child node by a queueing theory-based analysis of the network traffic437

in the said swarm. Real-life hardware metrics calculated from our actual 4 UAV system are used438

for tuning simulations of a large number of UAVs following various network topologies. The results439

show that unlike star networks, our proposed DAP scheme is highly scalable, and for a larger number440

of UAVs, performs faster than star networks, as shown in Fig. 5. DAP always outperforms the mesh441

topology regarding average processing times. Interestingly, our approach outperforms both the star442

and mesh topologies regarding collective network processing speeds available such that even for a443

fraction of the UAVs in star and mesh topologies, DAP achieves double the collective speeds up of a444

star topology. The average processing times, although very high for our tuned hardware metrics due445

to restrictions of the hardware used (Raspberry Pi), establishes the immense usability and benefits446

of our approach in comparison to other topologies.447

In the future, we plan to study our DAP approach by incorporating resource-constrained and448

low-footprint visual identification and tracking algorithms.449
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