
Theoretical Computer Science 661 (2017) 56–64
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Parameterized complexity of Strip Packing and

Minimum Volume Packing

Pradeesha Ashok a, Sudeshna Kolay a, S.M. Meesum a,∗, Saket Saurabh a,b,1

a Institute of Mathematical Sciences, India
b University of Bergen, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 August 2016
Accepted 28 November 2016
Available online 8 December 2016
Communicated by F.V. Fomin

Keywords:
Strip Packing
Volume minimization
Greedy packing

We study the parameterized complexity of Minimum Volume Packing and Strip Packing.
In the two dimensional version the input consists of a set of rectangles S with integer
side lengths. In the Minimum Volume Packing problem, given a set of rectangles S and a
number k, the goal is to decide if the rectangles can be packed in a bounding box of volume
at most k. In the Strip Packing problem we are given a set of rectangles S , numbers W
and k; the objective is to find if all the rectangles can be packed in a box of dimensions
W × k. We prove that the 2-dimensional Volume Packing is in FPT by giving an algorithm
that runs in (2 · √2)k · kO(1) time. We also show that Strip Packing is W[1]-hard even in
two dimensions and give an FPT algorithm for a special case of Strip Packing. Some of our
results hold for the problems defined in higher dimensions as well.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The problem of packing objects optimally inside a bin/box is studied in various forms. Two prominent examples are
the Bin Packing problem and the Knapsack problem. We study generalizations of these problems in a geometric setting.
A natural generalization of the Knapsack problem to two dimensions is the Cutting Stock problem [3]. More specifically,
we study the problem of packing axis-parallel rectangles inside a rectangular box when only translations are allowed. This
restriction of not allowing rotations does not make the problem artificial as it still finds practical application [15]. These
problems also find applications in VLSI design [16], scheduling [17], packing television commercial into station breaks [4]
etc.

We consider two versions of this problem. In the Strip Packing problem, given a set of n axis-parallel rectangles and a
rectangular box (strip) of width W , the goal is to pack all rectangles into this strip so that the height used is minimized.
In the Minimum Volume Packing problem, given a set of n axis-parallel rectangles, goal is to pack these rectangles in a
rectangular container so that the volume of the container is minimized. We also study these problems in higher dimensions.
Now we formally define the problems:

* Corresponding author.
E-mail addresses: pradeesha@imsc.res.in (P. Ashok), skolay@imsc.res.in (S. Kolay), meesum@imsc.res.in (S.M. Meesum), saket@imsc.res.in (S. Saurabh).

1 The research leading to these results has received funding from the European Research Council (ERC) via grant PARAPPROX, reference 306992.
http://dx.doi.org/10.1016/j.tcs.2016.11.034
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.11.034
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:pradeesha@imsc.res.in
mailto:skolay@imsc.res.in
mailto:meesum@imsc.res.in
mailto:saket@imsc.res.in
http://dx.doi.org/10.1016/j.tcs.2016.11.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.11.034&domain=pdf

P. Ashok et al. / Theoretical Computer Science 661 (2017) 56–64 57
d-Strip Packing

Input: A list of boxes {bi ∈ N
d | 1 ≤ i ≤ n} and a vector of positive integers W ∈ N

d−1.
Output: The minimum integer k such that all the boxes can be packed under translation into a strip with dimension
vector W × k, k being the height of the strip.

Volume packing in two-dimensions is an active area of research due to its immense practical importance [11].

d-Volume Packing

Input: A list of n boxes {bi ∈ N
d | 1 ≤ i ≤ n}.

Output: The minimum volume rectangular container into which the input boxes can be packed under translation.

The decision versions of both these problems are proved to be NP-Complete and are well studied in the context of
approximation algorithms. Two-dimensional Strip Packing admits an AFPTAS [14]. Since Bin Packing, which is a special
case of Strip Packing, cannot have a PTAS [2], the same holds for Strip Packing. For recent approximation algorithms and
results on Minimum Volume Packing see [1]. The online version of these problems are also studied [10,18,12]. For a survey
of these problems we refer the reader to [15,5].

In this paper we study Strip Packing and Minimum Volume Packing from the perspective of parameterized complexity
with the hope that it would lead to a better understanding of these problems. An instance of the parameterized version
of a problem comes with a parameter k. A problem with an input instance of the form (I, k) is said to be fixed parameter
tractable (FPT) if there is an algorithm that solves the problem in f (k)|I|O(1) time where |I| is the input size and f is a
computable function that depends only on k. Similar to classical complexity, there is a notion of hardness in parameterized
complexity and tools and techniques for reductions. There is a set of problems called as W -hard problems which are not
believed to have an FPT algorithm.

We consider the standard parameterized version of these problems, namely the case when the parameter is the size
of the solution. To the best of our knowledge, this is the first study on the parameterized version of these problems. For
the Strip Packing problem, we prove that the parameterized version is W -hard for the general case. However, the problem
becomes FPT for a special case where the dimensions of the boxes and therefore the number of types of boxes is bounded
by a constant, this special case is also inspired by a variant of the Bin Packing problem with similar constraints [9]. We also
consider several special kind of input box dimensions where PTAS and even polynomial time algorithms exist.

Our results:

1. We prove that 2-Minimum Volume Packing is in FPT by giving an algorithm with running time (2 · √
2)k · kO (1) . This

algorithm can be generalized to d-dimensions.
2. We prove that Strip Packing is W-hard even in two dimensions.
3. We consider a special case of Strip Packing where every dimension of the input boxes is bounded by a constant. For

this case, we show that Strip Packing problem admits an FPT algorithm.
4. We consider some special cases of Strip Packing where the input rectangles are squares whose dimensions come from

a special set and show that they are solvable in polynomial time.

Section 2 gives some notations and definitions that will be used in subsequent sections. In Section 3, we discuss the
FPT algorithm for Minimum Volume Packing problem. Section 4 gives algorithmic and hardness results for Minimum Strip
Packing. Section 5 gives polynomial time algorithms for special cases.

2. Preliminaries

The symbols R and N denote the set of real number and positive integers respectively. For a positive integer n, we use
the notation [n] to denote the set {1, . . . , n}.

Parameterized complexity: A parameterized problem � is a subset of �∗ × N. Given a parameterized decision problem
with input x ∈ �∗ of size n, and an integer parameter k, the goal in parameterized complexity is to design a deterministic
algorithm which decides the membership of the instance (x, k) in � in time f (k)nO(1) , where f is a function of k alone.
Problems which admit such algorithms are said to be fixed parameter tractable (FPT).

It is believed that there is a hierarchy of problems in the W-class, such that the class W[i] ⊂ W[i + 1], for all i ≥ 1. It is
also believed that a W-hard problem does not have an FPT algorithm. To establish these classes, a notion of FPT-reductions
is defined. Given two parameterized problems �, �, an FPT-reduction from � to � is an FPT algorithm that takes in an
instance I of � and outputs an instance I ′ of � such that I is a YES instance of � if and only if I ′ is a YES instance of �. To
determine the hardness of a parameterized problem, it is enough to give an FPT-reduction from a known W-hard problem
to our required problem. For the context of this paper, it is enough to know that Bin Packing, in unary representation and
parameterized by the number k of bins allowed, is W[1]-hard [13]. To show W[1]-hardness of a given problem, it is enough

58 P. Ashok et al. / Theoretical Computer Science 661 (2017) 56–64
to give an FPT-reduction from Bin Packing, in unary representation and parameterized by k, to the given problem. For more
information about these concepts, tools and techniques we refer the reader to monographs such as [8,7,6].

Packing: In this paper, we only consider axis parallel boxes and containers with dimensions that are positive integer values.
When the boxes are in N2 they are referred to as either integral rectangles or rectangles. The faces of rectangles are also
referred to as edges. The dimensions of a box in Nd is denoted by a vector of length d, where the ith index indicates the
length of the projection of the axis-parallel box onto the ith axis in Rd . Similarly, we can define a dimension vector for a
container. For a dimension d, given a set of positive integers �1, . . . , �d ∈ N, a container C in d-dimensions with dimension
vector (�1, . . . , �d) is formally defined to be the set of points R = {(x1, . . . , xd) ∈ R

d|xi ∈ [0, �i], ∀i ∈ [d]}. An ith lower face
of R is the set R ∩ {xi = 0}. Similarly an ith upper face of R is the set R ∩ {xi = �i}. Each rectangle in d dimensions has
2 · d faces in total. A corner of a rectangle is defined as the point of intersection of d non-parallel faces. The corner of a
rectangle which is at closest distance (L2-norm) to the origin shall be referred to as a min-corner point. A dimension vector,
where each index stores a positive integer, is also referred to as an integral dimension vector. Given a dimension vector
(�1, . . . , �d), the volume corresponding to the dimension vector is

∏d
i=1 �i . Two boxes with the same dimension vector will

be referred to as the same type. In this paper, we allow the boxes to be packed in such a way that they are axis-parallel
and only translations are allowed.

For ease of presentation, in the case of R2, we refer to directions like up, left, down, right. In 2-dimension, the lower left
corner of the container is assumed to be at the origin.

Given a container and input boxes, such that all dimension vectors are integral, we call an arrangement of rectangles
inside a container a packing if the rectangles are completely contained inside the container and do not overlap (except at
the faces). A packing is said to be integral if the input rectangles are packed in such a way that each corner point of every
rectangle is placed on a point with integer coordinates. A packing is called as a perfect packing if for each box b and each
axis i, the minimum value taken by the ith coordinate, over all points belonging to a face of b, cannot be decreased, while
keeping the coordinates of all other boxes fixed and maintaining a packing of all input boxes. Given a fixed container C and
a collection of boxes R, a packing of R in C is said to be a tiling if every point inside C is contained inside some box in R.
For this to happen the sum of volume of boxes must be equal to the volume of the container.

Parameterized packing problems: In this paper, we look at the following parameterized variants of d-Strip Packing and
d-Volume Packing.

d-p-Strip Packing Parameter: k

Input: A list of boxes {bi ∈ N
d | 1 ≤ i ≤ n}, W ∈N

d−1 and k ∈ N.
Question: Is there a container with dimensions W ×k such that all the boxes can be packed into it under axis-parallel
translation?

d-p-Strip Packing with bounded dimensions Parameter: k

Input: A list of boxes {bi ∈ N
d | 1 ≤ i ≤ n}, where each side length of a box is at most � ∈ N, a vector of positive

integers W ∈N
d−1 and k ∈ N.

Question: Is there a container with dimensions W × k such that all the boxes can be packed under axis-parallel
translation into it?

d-p-Volume Packing Parameter: k

Input: A list of boxes {bi ∈ N
d | 1 ≤ i ≤ n} and a positive integer k.

Question: Is there a container with volume at most k such that all the rectangles can be packed under translation into
the container?

3. Volume Packing

In this section, we show that d-p-Volume Packing is FPT. In order to prove this, we first derive a few relations between
optimal packings and integral packings. These relations will be useful in later sections as well.

Lemma 1. Keeping the dimension vector of the container same, any packing of boxes can be changed into a perfect packing. Moreover,
every perfect packing of boxes with integral dimension vectors is also an integral packing.

Proof. We apply a sweeping line algorithm to rearrange the rectangles in 2-dimensions. In higher dimensions, it may be
looked upon as a sweeping hyperplane algorithm. We call a hyperplane perpendicular to the ith axis in d dimensions as an
i-plane. For each i ∈ [d], we take an i-plane and sweep it towards the positive direction of the ith axis starting from the

P. Ashok et al. / Theoretical Computer Science 661 (2017) 56–64 59
zero value of the ith axis. The moment when the face of a box gets completely contained inside an i-plane is referred to as
an event. At every event t , we keep a list Li

t of boxes where a face, which is perpendicular to the ith axis, is contained in
it completely. As the packing is axis parallel there are only two faces for every box which will result in an event and they
can be unambiguously identified as an upper face or a lower face depending on the value of their ith coordinate. Divide
Li

t into two disjoint sets depending on which face of the box is completely contained in it; Li
tu

denotes the boxes where
the upper face lies on the sweeping hyperplane at t , and Li

tl
denotes the boxes with the lower face lying on the sweeping

hyperplane at t . Let F i
t ⊆ Li

tl
be the set of boxes whose lower face does not intersect with the upper face of any box in Li

tu
.

Observe that the boxes in F i
t can be “slid down” parallel to the ith axis until either they hit a face of a rectangle below

or hit a face of the container. More formally, it is possible to change the position of a box in F i
t , without changing the

volume of the bounding container, such that the value at the ith coordinate of each point in the box is strictly less than
the current value. For each box in F i

t , we change the packing, such that all points in the boxes of F i
t have the minimum

possible value at the ith coordinate, without changing the position of boxes not in F i
t . This operation can be thought of as

“moving down” of boxes in F i
t . After all the boxes in F i

t have been moved down, any box in Li
tl

\ F i
t intersects with some

rectangle face in Li
tu

. The invariant maintained is that the boxes whose lower face has been processed by an event have
their lower face intersecting with the upper face of some rectangle whose upper face has been processed by an event. As
the boxes have integral dimension vectors, inductively it gives us the result that, when the i-plane has swept through the
lower face of every box in the packing, the faces perpendicular to the ith axis have integral co-ordinates. We keep repeating
this procedure for every i ∈ [d] until none of the i-plane sweep results in the set F i

t being non-empty. It is possible that
multiple sweeps have to be made for each i-axis. At the end of the procedure the corner points of each box get integral
co-ordinates as they are the intersection points of the faces of the boxes.

To see why this procedure terminates, consider the sum Sb of the coordinates of the min-corner point of each box b in
the packing, let S = ∑b

i=1 Sb be the sum of Sbs. After each i-plane has been swept once, by the invariant proved above,
each corner point has integral coordinates. As the container is in the positive quadrant, S is an integer greater than or equal
to zero, now if any i-sweep results in F i

t being non-empty, the value of S drops by at least one after the sweep. Since S is
bounded from below by zero and is a finite number at the start of the algorithm, the algorithm has to terminate.

With this proof, we have also proved that an arbitrary packing can be converted into an integral packing for boxes with
integral dimension vectors. Thus, given any packing, we can constructively convert it into an integral perfect packing without
using extra volume. For the purpose of our proofs it is enough to know that an integral perfect packing exists that is also
optimal. �

As an easy consequence of the above we have the following Lemma.

Lemma 2. There is an integral perfect packing for the input boxes, such that the volume of the container in which this packing is done
is minimized.

Now we are ready to design an FPT algorithm for d-p-Volume Packing. To illustrate the idea, we first show that
2-p-Volume Packing is FPT.

Theorem 1. 2-p-Volume Packing is FPT with running time (2 · √2)k · kO(1) .

Proof. Let the input set of rectangles be represented using the set B = {bi = (wi, hi)|i ∈ [n]}, with integers wi and hi being
the width and height of the rectangle bi respectively. Each rectangle contributes an area of at least one. Therefore, if k is
less than the number of rectangles we can safely output NO. Thus, in the rest of the proof, we assume that n ≤ k.

Fixing a container: First, we enumerate the dimensions of a rectangle having area k. For each choice, say k1 × k2, of the
dimensions of a potential container C , we do the following. We assume that C is kept on the co-ordinate plane with
lower-left corner at the origin, each point having integral co-ordinates inside C is referred to as a grid point. We will
construct a set of tilings of the container C using rectangles. For each tiling, we try to fit each rectangle of B inside some
rectangle of the tiling. The key observation is that any integral perfect packing of C using B can be extended into a tiling
by introducing some extra 1 × 1 rectangles in B used to fill in the unoccupied area in a packing. By Lemma 1 we can
assume that there is an optimal packing that is integral and perfect. also, Lemma 2 implies that a container with optimal
area will be such that k1 and k2 are integers. Thus, there are at most k choices of containers, for which we enumerate a set
of integral tilings and try to derive an optimal integral perfect packing from at least one of the tilings.

Grid points in a tiling: A grid point is referred to as an interior point if it is not contained on any edge of C . For any tiling
of a rectangular container, there are a total of eight ways in which the edges of the participating rectangles, or tiles, may
pass through an interior grid point of a container in a tiling. We refer to each configuration of edges at a grid point as
a meeting. Fig. 1 illustrates the meetings for an interior grid point. The meeting 1(a) corresponds to a corner point of four
tiling rectangles. The meeting 1(b) corresponds to a grid point contained on the edges of two adjacent rectangular tiles. The

60 P. Ashok et al. / Theoretical Computer Science 661 (2017) 56–64
Fig. 1. The 8 possible meetings of a two-dimensional interior grid point g: (a) all solid lines, (b) there is one other meeting obtained by rotation through
180◦ , (c) there are three other meetings obtained by rotation through multiples of 90◦ and (d) all dotted lines.

Fig. 2. An RC grid and its m-grid, the lower left point is the origin. The solid lines are grid lines. The dashed lines represent the m-grid lines. The large
black vertices represent the internal grid points of each m-cell.

meeting 1(c) corresponds to a grid point which is the corner point of two tiles and contained on the edge of another tiling
rectangle. The meeting 1(d) corresponds to a grid point contained inside a tiling rectangle. The meeting corresponding to a
corner point of a container consists of two unit length solid lines intersecting at 90◦ . There are exactly two meetings which
correspond to a non-corner edge point of a container. The part of a meeting on the container edge must be solid, while the
unit segment perpendicular to it at the center can be either dotted or solid.

For any meeting M , the grid point will be denoted as Mp and will be called a meeting point. There are exactly four line
segments incident to a meeting point. The lines incident on Mp are of two types, dotted or solid. The solid line segments
correspond to the edges of the tiles that have Mp as a corner point. The dotted line segments denotes tiles where Mp is
not a corner point. There can be at most 4 tiling rectangles that can intersect at Mp .

Generating a Configuration: We denote the dimensions of the container by k1 × k2 for a rectangular grid RC having an
area of k units. The grid RC is assumed to be contained in the co-ordinate plane with lower left corner at the origin. Each
point in it is in natural correspondence with the grid points of the actual container. For any two points u and v in RC at
a distance of one unit from each other, the axis-parallel line segment uv of unit length is referred to an edge. We say that
two points u, v in RC are adjacent if they are connected by an edge. Note that the line segment uv does not contain any
other grid point. A cell in RC is defined as a minimal square containing exactly four grid points at its corners. By minimality,
there is no grid point contained inside a cell of RC . Two cells in RC are said to be adjacent if they share an edge.

A configuration of RC is obtained by associating a solid or a dotted line with each edge contained in it. Consider the
set of at most (2 · √2)k configurations constructed as follows. Firstly, we construct a new grid, referred to as an m-grid on
top of the old grid points in RC as follows. Draw a line passing through the point (1, 0) at 45◦ to the x-axis in the first
quadrant and draw lines parallel to it spaced regularly at a distance of

√
2 from each other. We call the family of lines as L.

Similarly, draw a line passing through the point (1, 0), but now at 135◦ to the x-axis. Then draw lines parallel to it spaced
regularly at a distance of

√
2 from each other. We call this family of lines L⊥ . The m-grid consists of the lines of L and L⊥

restricted to the grid RC . The intersection points of L and L⊥ define the grid points of m-grid. We analogously refer to a
cell in the m-grid as an m-cell, it has an area of 2 units. For clarity it is depicted in Fig. 2. Associate a meeting with each
of the internal grid point in RC not contained on the m-grid i.e. with the m-cells contained completely inside RC . Observe
that this associates a solid or a dotted line with each of the edges in RC , except some edges contained in half-m-cells, with
centers lying on the boundary of RC . In a tiling configuration, the boundary of RC is always selected i.e. it is solid. So we
only need to make a choice for one line in each half-m-cell, with its center at the boundary. Take two half-m-cells and
observe that there are at most 4 choices for the undetermined edges in them. Finally, the quarter-m-cells can occur only at
the corner of RC and both their edges are determined (solid). The number of m-cells in RC is � k

2 �, thus the total number of
configurations is at most 8

k
2 which is (2 · √2)k .

P. Ashok et al. / Theoretical Computer Science 661 (2017) 56–64 61
Obtaining a tiling: Let RC be a configuration. We call two adjacent cells in RC connected if they both share a dotted edge.
We construct an undirected graph GC with the cells in RC being its vertex set. For any two vertices u, v ∈ V (GC), (u, v) is
an edge in GC if the cells corresponding to u and v are connected. For each connected component in GC , we check if the
cells corresponding to the connected component in GC form a rectangle in RC . This can be done in polynomial time. If all
the connected components in GC correspond to a rectangle in RC then we have generated a tiling of C . For a tiling RC , the
connected components C1, C2, . . . , Cm of GC correspond to the set of tiles T = {t1, t2, . . . , tm}. Note that ti and t j may have
the same dimensions for i �= j.

Obtaining a packing: We say a rectangle a is compatible with b if the dimension vector of a and b are the same. Informally,
it means that the rectangle a can be translated to exactly cover b. Next, for a tiling RC , we define an undirected bipartite
graph MC as follows. The graph MC consists of vertex sets B � T , where B corresponding to the input collection of rectangles
and T corresponds to the set of tiles in RC . For b ∈ B and t ∈ T there is an edge in MC if b is compatible with t . Finally, a
tiling T of RC contains a packing of B if and only if there exists a matching in MC which saturates B .

Proof of correctness: By Lemma 2, there is a container with optimal area and an integral dimension vector. If the rectangles
in B can be packed inside some container of area k, there is a container C∗ with dimensions c1 × c2, with c1, c2 ∈ N, and
c1 · c2 = k. This choice of dimensions will be generated by the first step of our algorithm. By Lemma 1, for a YES instance,
there is an integral packing in a container of minimum area. As we are enumerating all possible ways in which a rectangle
edge may pass through a grid point, we effectively enumerate all tilings of a fixed container such that the tiling is an
integral packing of the participating tiles. If the given input instance is a YES instance, there is an optimal integral packing
P∗ can be extended to a tiling T ∗ , with T as the participating set of tiles and where the corners of each tile has integral
co-ordinates: this can be done by adding sufficiently many 1 × 1 tiles to cover the gaps. The bipartite graph on B and T
will have a matching saturating B , since P∗ is contained in T ∗ . On the other hand, if there is a container C∗ and a tiling
T ∗ such that there is a matching saturating B in the bipartite graph MT ∗ , then the matching gives us a packing of B in the
container C∗ . This shows that the given instance is a YES instance.

Running time: Except for the step of generating configurations, all other steps of the algorithm run in polynomial time
(recall that finding a matching in a bipartite graph is polynomial time solvable). The set of configurations that are generated
take (2 · √2)k · kO(1) time, for a fixed container. Therefore, the running time of the algorithm is (2 · √2)k · kO(1) . �

Theorem 1 can be generalized to higher dimensions. To get dimension vectors for a possible optimal container we try
all factorizations of k with d factors in it. To avoid any ambiguity, we redefine the analogues of structures defined in
Theorem 1. A cell in d-dimensions is a minimal d-dimensional hypercube with unit side length and containing 2d grid
points, all of which are corner points. A face of a cell is a d − 1 dimensional hyper-surface bounding it (corresponding to a
rectangle edge in 2-dimensions). To generate a configuration in d-dimensions for d ≥ 2 we assign each face to be either a
solid or a dotted face. The number of faces bounding a d-dimensional cell is 2d. For a tiling to be valid each boundary face
of container is assigned a solid face. To bound the number of internal faces, observe that there are k unit cells in a given
bounding box and each face is shared by two of the cells. Hence the number of faces is upper bounded by k · d, this gives
us a bound of at most 2k·d configurations.

Analogous to proof of Theorem 1, we can extract a tiling T from a configuration and check if it gives us a packing. We
get the following result.

Theorem 2. d-p-Volume-Packing for a set of rectangles in Nd is FPT parameterized by d and k. The running time of the algorithm is
2k·d · kO(d) .

Theorem 1 gives us the following structural property, which will be useful later.

Corollary 1. Given a d-dimensional container with volume k, there are at most 2k·d configurations, and therefore at most 2k·d tilings
such that for each tile the corner points have integral coordinates. These configurations and tilings can also be found in 2k·d · kO(d)

time. For d = 2, the number of such configurations and tilings is at most (2
√

2)k and can be found in time (2
√

2)k · kO(1) .

4. Strip Packing

In this section, we will study the parameterized complexity of Strip Packing problem. First we show that Strip Packing

in its general form is W[1]-hard, even when the input is represented in unary form.

Lemma 3. d-p-Strip Packing is W[1]-hard for d ≥ 2.

62 P. Ashok et al. / Theoretical Computer Science 661 (2017) 56–64
Proof. We prove the result by giving a reduction from Bin Packing problem to the d-p-Strip Packing problem.
An instance of the Bin Packing problem takes in as input a set of n objects a1,a2, . . . ,an , with each object ai weighing

wi , and positive integers W and k. The goal is to decide whether all the input objects can be fit into at most k bins, each
of capacity W . It was shown in [13] that Bin Packing is W[1]-hard, even when the input is represented in unary form.

Let ({a1, a2, . . . , an}, {w1, w2, . . . , wn}, W , k) be an instance of Bin Packing. We construct an instance of d-p-Strip Packing

as follows:

1. First we construct a vector W ′ ∈N
d−1. The vector has W in its first index and 1 at all other indices.

2. Next, we construct a set of n boxes. For each object ai , we create a box bi whose dimension vector in Nd has wi in the
first index, and 1 in all other indices.

This completes the construction of our reduced instance. We claim that the Bin Packing is a YES instance if and only if
the reduced instance of d-p-Strip Packing is a YES instance.

First, suppose the given instance of Bin Packing is a YES instance. This means that at most k bins of capacity W are
sufficient to pack all the input objects. In the d-p-Strip Packing instance, we construct the following arrangement for the
input boxes. For 1 ≤ j ≤ k, let {ai1 , ai2 , . . . , ai j } be the set of objects that are placed in the jth bin. Then, for each 1 ≤ � ≤ i j ,
we place the box b� such that the left-most bottom-most coordinate is at (�1≤�′<�w�′ , 1d−2, j − 1). By the construction,
for a bin j, all the boxes, corresponding to the objects in bin j, can be placed without overlap in such a way that their
right-most top-most coordinate is at (�1≤�′≤�w�′ , 1d−2, j). Also, when j1 �= j2, then a box corresponding to an object in
bin j1 does not overlap with a box corresponding to an object in bin j2. This means that all boxes can be packed within a
height of k of the given container, whose left-most bottom-most point is placed at the origin.

In the reverse direction, let the constructed d-p-Strip Packing instance be a YES instance. By Lemma 1, we know that
there is a witnessing packing such that all the input boxes are placed in integral coordinated in an arrangement that requires
the height of the box to be at most k. Since the height of each input box is 1, an integral arrangement would mean that the
last coordinate for the base and the top of each box is an integer. Thus, the container of dimension W ′ × k can be divided
into k smaller containers, each of dimension W ′ × 1. Let {bi1 , bi2 , . . . , bi j } be the boxes in the jth subcontainer. Then, we
place the objects {ai1 , ai2 , . . . , ai j } in the jth bin for the Bin Packing instance. By construction, in each bin, the sum of
weights of objects packed is at most W . Therefore, we require at most k bins to pack all given objects, thereby showing
that the given Bin Packing instance is a YES instance.

This completes the proof of W[1]-hardness of d-p-Strip Packing. �
Now we consider a special case where Strip Packing becomes FPT. This special case is motivated by the variant of the

Bin Packing problem, where the number of types of weights is bounded by a constant. Determining the complexity of this
problem was a long standing open problem. In [9], the problem was shown to be polynomial time solvable. We study the
case where the dimension of each rectangle is bounded by a constant �. This also implies that the types of rectangles are
bounded by �2.

Lemma 4. 2-Strip Packing is FPT when the dimensions of the input rectangles belong to a set S such that � = maxa∈S a is a constant.
The running time of the algorithm is 8k� · (nO(�2)W).

Proof. There are at most �2 shapes of boxes that have their dimensions in the set S . Assume that among the n input boxes,
ni boxes of shape i ≤ �2 are there. Let this be denoted by the vector (n1, n2, . . . , n�2).

Consider a packing of rectangles in a strip of width W and height k. Assume this is a perfect packing. We will consider
vertical layers of fixed width in this packing. The first layer consists of all rectangles whose right edge is at most � distance
away from the left boundary of the strip. The second layer consists of rectangles whose right edge is at a distance of at most
� from the rightmost point of the first layer and so on. Since this is a perfect packing, for each layer, there is a bounding
box of dimension 2� × k. Note that a bounding box can intersect with rectangles in the previous and next layers also. The
packing contains at most W such layers. Moreover, by the bound on the number of configurations given in Corollary 1,
the number of possibilities for the pattern for each layer is a 8k� . Let P be the set of all 8k� such patterns. We build a
directed graph, G as follows. Each vertex v in V (G) corresponds to a pattern P v and there exists a directed edge (u, v),
from u to v , if Pu can be immediately followed by P v i.e., for each rectangle r1 ∈ P v whose left edge intersects with the
left boundary of P v there is a rectangle r2 ∈ Pu whose the right boundary intersects with the right boundary of Pu and
the left boundary of r1. The weight of edge (u, v) is a vector ((tv

1 , tv
2 , . . . , tv

�2), distuv), where tv
i is the number of boxes of

type i in the pattern P v , and distuv is the distance (l1 norm in X axis) between the rightmost point on the right boundary
of Pu and the rightmost point on the right boundary of P v . Now, suppose there is a walk in the graph G of total weight
((N1, N2, . . . , N�2), W ′), such that for each i, Ni ≥ ni and W ′ ≤ W . Then this corresponds to an arrangement of boxes in a
container of dimension W × k. On the other hand, if there is an arrangement of boxes in a container of dimension W × k,
we can always construct a walk in G that has weight ((N1, N2, . . . , N�2), W ′), such that for each i, Ni ≥ ni and W ′ ≤ W .

What remains is to find such a walk if it exists, or correctly detect that the instance is a NO instance. For this, we design
a dynamic programming algorithm. For each vector (M1, M2, . . . M�2), where each Mi ≤ ni , for each W ′ ≤ W and for each

P. Ashok et al. / Theoretical Computer Science 661 (2017) 56–64 63
pattern P v , we want to determine whether there is a walk of weight ((M1, M2, . . . M�2), W ′) such that the last vertex in the
walk is v . In the base case, it is trivial to update entries of walks with weight 1. As an induction hypothesis, let us suppose
that for each vector (M1, M2, . . . M�2), where each Mi ≤ ni , for each W ′′ < W ′ and for each pattern P v , we have determined
whether there is a walk of weight ((M1, M2, . . . M�2), W ′′) such that the last vertex in the walk is v . To determine whether
there is a walk of weight ((M1, M2, . . . M�2), W ′) such that the last vertex in the walk is v , it is enough to determine
whether there is a in-neighbor u of v such that there is a walk of weight ((M1 − tv

1 , M2 − tv
2 , . . . M�2 − tv

�2), W ′ − distuv)

such that the last vertex in the walk is u. By definition, W ′ − distuv < W ′ . Therefore, by induction hypothesis, if such a walk
ending at u exists then we have stored the answer correctly. If such a walk exists for an in-neighbor u of v , this also implies
that there is a walk of weight ((M1, M2, . . . M�2), W ′) such that the last vertex in the walk is v . Hence, in polynomial time,
we can update each entry of the table. In the end, we search over all vertices v ∈ V (G), and all weights W ′ ≤ W whether
there is a walk of weight ((M1, M2, . . . M�2), W ′) such that the last vertex in the walk is v , and for each i, Mi ≥ ni .

The size of the table is n�2 · W · 8k� . Each entry takes polynomial time to be updated. In the end, searching for a required
walk also needs polynomial time. Thus, we have given an algorithm with running time 8k� · (nO(�2)W), which is an FPT
algorithm parameterized by k, when � is a constant. �
5. Polynomial time packings

In this section, we look at some special cases, where square boxes of specific types are taken. Moreover, the dimension of
a smaller square divides that of a larger square. For these cases, we give combinatorial arguments to show that an optimal
packing can be found in polynomial time. First, we consider the case when 1 × 1 squares are given as input.

Lemma 5. Given a container whose width is a positive integer W , n1 boxes of width 1 and height 1, and n2 boxes of width l and
height l, we can determine in polynomial time the minimum height required such that all input boxes can be packed into the given
container.

Proof. We use a greedy approach where all the bigger rectangles are packed first and the remaining space is filled with
1 × 1 rectangles. n2 rectangles of dimension l × l are packed first as tightly as possible with each row (except the top most)
containing � W

l � rectangles. Next, we pack the 1 × 1 rectangles starting with any row that is not filled and continuing till
we pack all rectangles. We claim that this packing optimizes the height used.

Let k1 be the height to which l × l rectangles are packed and k2 be the height to which 1 × 1 rectangles are packed. If
k1 ≥ k2, then this is an optimum packing since packing only l × l rectangles needs a height of k1 in the strip. Otherwise,
there is no gap till height k2 −1. This implies that k2 is the optimum height since the combined area of the input rectangles,
A = n1 + n2l2, is such that W · (k2 − 1) < A ≤ W · k2. �

We can generalize Lemma 5 to the following.

Lemma 6. Given a container of width W , n1 boxes of width l and height l, and n2 boxes of width cl and height cl, where c is an integer,
we can determine in polynomial time the minimum height required such that all input boxes can be packed into the given container.

Proof. We use a greedy algorithm as before and pack all the bigger rectangles first and later fill up the gaps with the
smaller rectangles. Let k1 be the height to which l × l rectangles are packed and k2 be the height to which cl × cl rectangles
are packed. If in this packing, the rectangles are packed without leaving any gaps upto a height k′ , then the packing is
optimum by reasons given in the proof of Lemma 5. Otherwise, either all the small rectangles are packed in one layer in
which case this packing is optimum since k2 is a lower bound on the height needed for packing all big rectangles. Or the
rectangles are packed to a width W ′ > W − l. Consider an optimal packing of the boxes. We show that for any optimal
packing, at each integer row of the container, the total width covered by the rectangles intersecting with the row is at least
W − W ′ . This is because W − W ′ is the smallest remainder when dividing W by l. Therefore, for any packing of height k
in a container of width W , there exists a packing of height k in a container of width W ′ . By the arguments of Lemma 5,
the packing is optimum for width W ′ . This implies that the packing is optimum for width W . �

Finally, we can give a polynomial packing for the following case.

Lemma 7. We are given a container of width W , and integers a1 < a2.. . . . < at such that for each i ≤ t, ai is a divisor for all a j, j > i.
Let there be ni boxes of width ai and height ai . We can determine in polynomial time the minimum height required such that all the
input boxes can be packed into the given container.

Proof. We give a packing for these squares as follows: We start with the largest available square and place it as low and
left as possible. We continue this process till all squares have been packed. We claim that this is an optimal packing for the
given set of squares.

64 P. Ashok et al. / Theoretical Computer Science 661 (2017) 56–64
We prove the optimality of this packing by induction on t . The base case, when t = 2, is true due to Lemma 6. Suppose
the algorithm finds an optimal packing when the container has width W , the dimension vectors of the input squares are
{b1 × b1, b2 × b2, . . .bt−1 × bt−1}, and for each i ≤ t − 1, bi is a divisor for all b j, j > i. Now, we try to give a packing for the
input set of squares, having dimensions a j × a j , j ≥ 1. First, by induction hypothesis, we use our algorithm to pack the set
of squares with dimension vectors ai ×ai , i > 1. There are t −1 distinct dimension vectors. Therefore, our algorithm gives an
optimal packing of these squares. Since this is an optimal packing of these squares, the height k1 required for this packing
is a lower bound for any optimal packing of the original set of squares. Now we try to add the squares of dimension a1 ×a1
according to the algorithm. Suppose the height taken after packing the a1 × a1 squares is k1 then we know that this is an
optimal packing. Otherwise, let the height required be k > k1. Except for the top row (which contains only squares of size
a1 × a1), all other rows incur a gap which is strictly less that a1. As argued in Lemma 6, for any packing of the input boxes,
all rows except the top row incur at least as much gap as our packing. Let the sum of all the gaps in all but the top row
be G . By arguments similar to Lemma 5, the total sum of the areas of the squares and G is strictly greater than W (k − 1).
Therefore, k is the optimum height. �
6. Conclusion

In this paper, we study Strip Packing and Volume Packing in the parameterized setting, when the inputs are boxes with
integral dimension vectors, and the containers are also boxes with integral dimension vectors. We show that d-p-Volume
Packing is FPT, but d-Strip Packing is W[1]-hard. Because of extensive applications of these problems, it is also interesting to
study special variants of these problems. We studied 2-Strip Packing with bounded dimensions. This problem is motivated
from the study of Bin Packing with bounded types. An open question is regarding the status of 2-Strip Packing with
bounded types. In other words, if the number of types of input boxes was a constant, then what is the complexity of the
problem. The same can be asked for d-Strip Packing with bounded types. Lastly, we saw some polynomial time optimal
packings for some special cases of Strip Packing where the input boxes are squares with dimension vectors satisfying
certain constraints. It would be interesting to study these packing problems when the input boxes are arbitrary squares.

References

[1] H. Alt, M. Berg, C. Knauer, Approximating minimum-area rectangular and convex containers for packing convex polygons, in: Algorithms – ESA 2015:
Proceedings of the 23rd Annual European Symposium, Patras, Greece, September 14–16, 2015, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015,
pp. 25–34.

[2] H. Alt, N. Scharf, Approximating smallest containers for packing three-dimensional convex objects, CoRR arXiv:1601.04585, 2016.
[3] J.E. Beasley, An exact two-dimensional non-guillotine cutting tree search procedure, Oper. Res. 33 (1) (1985) 49–64.
[4] A. Brown, Optimum Packing and Depletion: The Computer in Space – And Resource-Usage Problems, Computer Monographs, vol. 14, MacDonald, 1971.
[5] E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Approximation algorithms for bin packing: a survey, in: Approximation Algorithms for NP-Hard Problems,

PWS Publishing Co., Boston, MA, USA, 1997, pp. 46–93.
[6] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015.
[7] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer-Verlag, 1999, 530 pp.
[8] J. Flum, M. Grohe, Parameterized Complexity Theory, Texts in Theoretical Computer Science. An EATCS Series, Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2006.
[9] M.X. Goemans, T. Rothvoß, Polynomiality for bin packing with a constant number of item types, in: Proceedings of the Twenty-Fifth Annual ACM–SIAM

Symposium on Discrete Algorithms, SODA ’14, SIAM, 2014, pp. 830–839.
[10] R. Harren, W. Kern, Improved lower bound for online strip packing, Theory Comput. Syst. 56 (1) (2015) 41–72.
[11] E. Huang, R.E. Korf, Optimal rectangle packing: an absolute placement approach, J. Artificial Intelligence Res. 46 (1) (January 2013) 47–87.
[12] C. Imreh, Online strip packing with modifiable boxes, Oper. Res. Lett. 29 (2) (2001) 79–85.
[13] K. Jansen, S. Kratsch, D. Marx, I. Schlotter, Bin packing with fixed number of bins revisited, J. Comput. System Sci. 79 (1) (2013) 39–49.
[14] C. Kenyon, E. Rémila, A near-optimal solution to a two-dimensional cutting stock problem, Math. Oper. Res. 25 (4) (November 2000) 645–656.
[15] A. Lodi, S. Martello, M. Monaci, Two-dimensional packing problems: a survey, European J. Oper. Res. 141 (2) (2002) 241–252.
[16] H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, Vlsi module placement based on rectangle-packing by the sequence-pair, IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst. 15 (12) (December 1996) 1518–1524.
[17] Y. Xia, M. Chrzanowska-Jeske, B. Wang, M. Jeske, Using a distributed rectangle bin-packing approach for core-based soc test scheduling with power

constraints, in: International Conference on Computer Aided Design, ICCAD-2003, November 2003, pp. 100–105.
[18] D. Ye, X. Han, G. Zhang, A note on online strip packing, J. Comb. Optim. 17 (4) (2008) 417–423.

http://refhub.elsevier.com/S0304-3975(16)30702-2/bib416C7432303135s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib416C7432303135s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib416C7432303135s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib416C74533136s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib646F693A31302E313238372F6F7072652E33332E312E3439s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib62726F776E313937316F7074696D756Ds1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib436F66666D616E3936s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib436F66666D616E3936s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib506172616D426F6F6B3135s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib44463939s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib46473036s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib46473036s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib476F656D616E733134s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib476F656D616E733134s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib48617272656E4B3135s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib4875616E673133s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib496D7265683031s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib4A616E73656E3133s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib4B656E796F6E3030s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib4C6F64693032s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib4D75726174613936s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib4D75726174613936s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib5869613033s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib5869613033s1
http://refhub.elsevier.com/S0304-3975(16)30702-2/bib59653038s1

	Parameterized complexity of Strip Packing and Minimum Volume Packing
	1 Introduction
	2 Preliminaries
	3 Volume Packing
	4 Strip Packing
	5 Polynomial time packings
	6 Conclusion
	References

