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Abstract. The Exact Cover problem takes a universe U of n elements,
a family F of m subsets of U and a positive integer k, and decides whether
there exists a subfamily(set cover) F ′ of size at most k such that each
element is covered by exactly one set. The Unique Cover problem also
takes the same input and decides whether there is a subfamily F ′ ⊆ F
such that at least k of the elements F ′ covers are covered uniquely(by
exactly one set). Both these problems are known to be NP-complete. In
the parameterized setting, when parameterized by k, Exact Cover is
W[1]-hard. While Unique Cover is FPT under the same parameter, it
is known to not admit a polynomial kernel under standard complexity-
theoretic assumptions.

In this paper, we investigate these two problems under the assumption
that every set satisfies a given geometric property Π. Specifically, we
consider the universe to be a set of n points in a real space R

d, d being a
positive integer. When d = 2 we consider the problem when Π requires
all sets to be unit squares or lines. When d > 2, we consider the problem
where Π requires all sets to be hyperplanes in R

d. These special versions
of the problems are also known to be NP-complete. When parameterizing
by k, the Unique Cover problem has a polynomial size kernel for all
the above geometric versions. The Exact Cover problem turns out to
be W[1]-hard for squares, but FPT for lines and hyperplanes. Further,
we also consider the Unique Set Cover problem, which takes the same
input and decides whether there is a set cover which covers at least k
elements uniquely. To the best of our knowledge, this is a new problem,
and we show that it is NP-complete (even for the case of lines). In fact,
the problem turns out to be W[1]-hard in the abstract setting, when
parameterized by k. However, when we restrict ourselves to the lines and
hyperplanes versions, we obtain FPT algorithms.

1 Introduction

The classic Set Cover problem is the following: For a set system (U,F) where
U is a finite universe of n elements and F is a family of subsets of U , is there a
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sub family of at most k sets in F whose union is U . We say that an element x
in U is covered by a set S from F if the set S contains the element x.

For several applications, it turns out that we would like to not only cover ele-
ments of U using sets in F , but also cover them uniquely. A common motivation
involves problems where covering elements by more than one set leads to noise
(for example, wireless networks), so we would like to ensure that an element is
covered, but by only one of the sets. This desired refinement manifests itself in
the following three natural variations of the Set Cover problem.

– All elements must be covered uniquely by at most k sets. (Exact Cover)
– All elements must be covered, and at least k elements must be covered

uniquely. (Unique Set Cover)
– At least k elements are covered uniquely. (Unique Cover)

In the first two variants, we are looking for a set cover with additional prop-
erties. Note that in the last setting, a valid solution may not be a set cover.

The Exact Cover problem was one of the twenty-one problems shown
to be NP-complete by Karp [6]. The Unique Cover problem was introduced
by Demaine et al in [1], and it may be considered a natural “maximization”
variant of Set Cover, and also a generalization of the Max Cut problem. The
Unique Set Cover problem combines elements of both these variants, and is
NP-complete as well.

The Geometric Setting. Geometric settings are among the most promising con-
texts for developing improved algorithms when faced with hardness in a general
setting. The geometric nature of the problem opens up several algorithmic possi-
bilities, and this is amply evidenced in the context of approximation algorithms.
Many geometric problems are known to admit good approximation algorithms,
even PTASes. In particular, the classical set cover and hitting set problems have
been very well-explored in the context of geometric objects [5,12]. In this situa-
tion, the universe is a point set in d-dimensional Euclidean space, and the sets
are defined by intersection of geometric objects with the point set. An object
covers a point if it contains it. We study the unique coverage variants for several
geometric objects, including lines, hyperplanes, squares, and rectangles.

Our Approach. In this work, we focus on the parameterized complexity of these
problems, both in the general abstract setting and carefully considered spe-
cial cases. In parameterized complexity each problem instance comes with a
parameter k and a central notion in parameterized complexity is fixed parameter
tractability (FPT). This means, for a given instance (x, k), solvability in time
f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial in the
input size. The parameterized problem is said to admit a polynomial kernel if
there is a polynomial time algorithm (the degree of polynomial is independent
of k), called a kernelization algorithm, that reduces the input instance down to
an instance with size bounded by a polynomial p(k) in k, while preserving the
answer.
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Table 1. A summary of our results

Exact Cover Unique Cover Unique Set Cover

Parameter Size of solution Number of elements uniquely covered

Abstract Sets
W[1]-hard FPT W[1]-hard

Quadratic Element Kernel

Lines
FPT

V
C

-D
im

en
si

o
n FPT FPT

Quadratic Kernel Quadratic Kernel Poly Kernel

Hyperplanes R
d kO(d2)

kernel

kO(d) Instance Kernel
(Quadratic Element Kernel)

kO(d2)

kernel
Unit Squares W[1]-hard Poly Kernel Open

Studying the parameterized complexity of geometric problems has interesting
implications. On the one hand, a tractability result demonstrates the utility of
the geometric structure in contrast with the abstract setting. On the other, a
hardness result often has consequences for hardness of approximation; usually
it establishes evidence for the non-existence of the EPTAS. This has motivated
several studies of geometric problems from a parameterized perspective [8].

Our Results. In this work, we establish the following results, summarized also
in Table 1.

Exact Cover. We show that Exact Cover is W[1]-hard even in the restricted
setting where all the objects are unit squares (Lemma 1). On the positive
side, we show that Exact Cover is FPT for lines (Lemma 2). Further, if
the objects are hyperplanes in a d-dimensional Euclidean space, the Exact
Cover continues to be FPT parameterized by k and d (Lemma 3).

Unique Cover. For Unique Cover, a simple argument shows that the num-
ber of elements in the universe can be bounded by O(k2) (Lemma 4). This
shows that the problem is FPT. It turns out that this also implies a polyno-
mial kernel for various geometric objects (Corollary 2), using the fact that
these objects have bounded VC Dimension.

Unique Set Cover. We show that Unique Set Cover is W[1]-hard in the gen-
eral setting (Lemma 5) and NP-complete when restricted to lines (Lemma 6).
On the positive side, we show that the problem is FPT for families of bounded
intersection (Lemma 7) and hyperplanes in d dimensions (Lemma 8).

2 Preliminaries

Parameterized Complexity. A parameterized problem Π is a subset of Σ∗ ×
N. Given a parameterized decision problem with input x ∈ Σ∗ of size n, and
an integer parameter k, the goal in parameterized complexity is to design a
deterministic algorithm which decides the membership of the instance (x, k) in
Π in time f(k)nO(1), where f is a function of k alone. Problems which admit such
algorithms are said to be fixed parameter tractable (FPT). We call an algorithm,
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with a running time of f(k)nO(1), an FPT algorithm, and such a running time,
an FPT running time. The theory of parameterized complexity was developed
by Downey and Fellows [3]. For recent developments, see the book by Flum and
Grohe [4].

Definition 1. A parameterized problem Π FPT-many-one reduces to another
parameterized problem Γ , if there is a polynomial p, computable functions f, g :
N → N , and a Turing machine T such that, given any input instance (x, k), T
outputs an instance (x′, k′) within f(k)p(|x|) time, with (x, k) ∈ Π if and only
if (x′, k′) ∈ Γ , and k′ ≤ g(k).

There is a hierarchy of problems in parameterized complexity. For the pur-
pose of this paper we will define the class W [1] with respect to a hard problem
in this class. The class W [1] is the class of all parameterized problems that
FPT-many-one reduce to the k-Clique problem parameterized by k. A parame-
terized problem is W[1]-hard if there is a FPT-many-one reduction from k-Clique,
parameterized by k, to the given problem. It is widely believed that FPT ⊂ W[1].
For further understanding of the various parameterized classes, refer to Flum and
Grohe [4].

Kernelization. A kernelization algorithm for a parameterized problem Π is a
polynomial time procedure which takes as input an instance (x, k), where k is the
parameter, and returns an instance (x′, k′) such that (x, k) ∈ Π if and only if
(x′, k′) ∈ Π and |x′| ≤ g(k) and k′ ≤ h(k), for some computable functions g, h.
The returned instance (x′, k′) is said to be the kernel for the instance (x, k) of Π.

Problem Definitions. A set system is a pair (U,F), where U is a universe of
n elements and F is a family of m subsets of U . Given a set system (U,F), a set
S is said to cover an element p ∈ U if p ∈ S. An element p is said to be covered
uniquely by a subfamily F ′ ⊆ F if there is exactly one set in F ′ which contains
p. The Set Cover problem asks for a smallest collection of subsets whose union
covers every element in the universe. We are now ready to define some of the
variations of this problem that we consider in our work.

Exact Cover Parameter: k
Input: A set system (U,F) of n elements and m sets, and a positive integer
k.
Question: Is there a subfamily F ′ ⊆ F of size at most k that covers every
element of U such that each element is contained in exactly one set in F ′?

Unique Cover Parameter: k
Input: A set system (U,F) of n elements and m sets, and a positive integer
k.
Question: Is there a subfamily F ′ ⊆ F such that, among the set of elements
covered by F ′, there is a subset S ⊂ U , |S| ≥ k with each element of S being
contained in exactly one set in F ′?
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Unique Set Cover Parameter: k
Input: A set system (U,F) of n elements and m sets, and a positive integer
k.
Question: Is there a subfamily F ′ ⊆ F that covers every element of U such
that there is a subset S ⊆ U , |S| ≥ k where each element of S is contained
in exactly one set in F ′?

We consider some notions that will be useful in defining special set systems
that we will encounter during our study of these problems. A set system (U,F) is
said to have bounded intersection when there is a universal constant c such that
for any pair of sets F1, F2 ∈ F , |F1 ∩F2| ≤ c. A set system (U,F) is said to be a
set system of squares (lines) if U is a subset of n points in R

2 and each set F ∈ F
is the maximal set of points of U that are contained in a square(line) defined on
R

2. Similarly, a set system (U,F) is said to be a set system of hyperplanes if U
is a set of n points in R

d, for a fixed positive integer d, and each set F ∈ F is the
maximal set of points of U that are contained in a hyperplane defined on R

d.
Given a set system (U,F) of n elements and m sets, for every subset A ⊆ U

we define the family of sets FA = {S ∩ A|S ∈ F}.

Definition 2 (VC Dimension). Let (U,F) represent a set system. A subset
A ⊆ U is said to be shattered if for every B ⊆ A, there exists F ∈ F such that
F ∩ A = B. The Vapnik-Chervonenkis dimension(or VC dimension of (U,F) is
the supremum of the sizes of all shattered subsets of U .

Therefore, in general, the VC dimension of a set system could be infinite.
However, set systems of several geometric objects are known to have bounded
VC dimension. We refer the reader to [9] for further details on VC Dimension.
The following result is known from [13] about set systems of finite VC dimension.

Proposition 1. Let (U,F) be a set system with |U | = n and VC dimension d.
Then |F| ≤ (

n
0

)
+

(
n
1

)
+ · · · +

(
n
d

)

Hyperplanes An i-flat in R
d is the affine hull of i+1 affinely independent points.

The dimension of a (possibly infinite) set of points P , denoted as dim(P ), is the
minimum i such that the entire set P is contained in an i-flat of Rd [7].

Observation 1. [7] For a pair of i-flat H1 and j-flat H2 , 1 ≤ j, i ≤ d − 1, if
H1 	⊂ H2 and H1 	⊂ H2, then dim(H1 ∩ H2) < min{i, j}.

In this paper we refer to (d − 1)-flats of Rd as hyperplanes.

3 Exact Cover

In this section, we consider the Exact Cover problem, parameterized by the
number k of sets in a solution family. Since this problem is known to be W[1]-
hard, it is natural to introduce properties on the input set family and see whether
the added structure makes the problem easier in these special cases. Here, we



Unique Covering Problems with Geometric Sets 553

restrict ourselves to geometric versions, where the universe is a set of points in
a real space R

d, for an appropriate integer d, while the set family is such that
every set satisfies a particular geometric property.

The W[1]-hardness of Exact Cover was shown in [11]. We give an alter-
native proof for this W[1]-hardness. This proof, with a little bit of modification,
shows that Exact Cover on set systems of unit squares is also W[1]-hard.

Proposition 2 (�). Exact Cover is W[1]-hard.1

Lemma 1 (�). Exact Cover on set systems of unit squares is W[1]-hard.

Kernels for Exact Cover with Lines and Hyperplanes. In contrast with the
hardness results that we have seen so far, we now turn to some algorithmic
results. First, when we consider our input universe to be a set of n points in
R

2 and our sets to be maximal sets of collinear points, we obtain a quadratic
kernel using a “high degree” reduction rule. This version of Exact Cover is
also NP-complete, and the proof for NP-hardness is very similar to the proof of
Lemma 6 given in the Appendix.

Let (P,L) be the input set system. In our discussion, we use the terms sets
and lines interchangeably. The input family could contain sets containing single
points. Our first reduction rule is taken directly from [7]. We remove all lines
(but for one) that pass through exactly one point.

Reduction Rule 1. For any input point p, from the set Lp = {L|L ∈ L and L∩
P = {p}}, delete all lines but one (say Lp).

Proposition 3. Reduction Rule 1 is sound.

Reduction Rule 2. In an instance(P,L, k), if there is a line L that contains
at least k + 1 input points then delete L and all lines intersecting with points on
L and decrease k by one. All points contained in L are deleted from the universe
U . Formally, the reduced instance is (P \ L,L \ {T | L ∩ T 	= ∅}, k − 1).

A similar reduction was given in [7] to exhibit a polynomial kernel for Point
Line Cover. We show the correctness of this reduction in this case.

Claim. Reduction Rule 2 is sound.

Proof. Suppose there is a solution, L′, for (P,L, k) which does not contain L.
Since L′ is a set cover of size at most k that excludes L, it includes at least
(k + 1) other lines to cover the points on L, as two lines intersect at at most
one point. This contradicts that L′ is a solution of the instance (P,L, k). Note
that this argument shows that any valid solution of the instance (P,L, k) must
contain L. Now, consider the subfamily of L comprising of lines that contain
points belonging to L:

L′′ := {T ∈ L | T 	= L, T ∩ L 	= ∅}.

1 The proofs of results marked with a � are in the Appendix.
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Clearly, any solution that contains L does not contain any element of L′′, there-
fore, it is safe to remove these sets from the instance, establishing the correctness
of Reduction Rule 2. ��

The reduction is very robust, in the sense that a line as described above will
belong to any solution of the Exact Cover instance. On exhaustive application
of this reduction, a YES instance can have at most k2 remaining input points,
since k lines can only cover k2 points when each line has at most k points.

Therefore, if our reduced instance has more than k2 points, we correctly
return NO. Otherwise, due to Reduction Rule 1 and by the property of lines, we
can also bound the number of lines in the reduced instance to at most k4. Thus,
we have shown the following.

Lemma 2. Exact Cover on set systems of lines is FPT, with a polynomial
kernel.

A natural question is to consider input instances of Exact Cover which are
set systems of hyperplanes in R

d. We parameterize the Exact Cover problem
in this case by k+d. The following Lemma is obtained by extending the reduction
rules in [7]. In particular, it is shown in [7] that for any 1 ≤ i ≤ d − 1, if an
i-flat covers more than ki + 1 points, then these points can be replaced with
one representative. The crux of the argument is that all of these points are
covered “together” by a single hyperplane in any valid solution. In our argument,
we further this reduction rule by deleting all hyperplanes that contain a strict
subset of these points, because such hyperplanes are automatically forbidden
from being a part of any valid solution of Exact Cover. We refer the reader
to the Appendix and [7] for further details.

Lemma 3 (�). Exact Cover on set systems of hyperplanes in R
d is FPT

parameterized by k + d.

4 Unique Cover

The Unique Cover problem was studied in [11] and was found to be FPT. How-
ever, the problem does not have a polynomial kernel unless NP ⊆ coNP/poly,
as shown in [2]. In this section, we exhibit polynomial sized kernels for several
geometric versions, exploiting the geometric property satisfied by each set of the
input set system.

Recall that the Unique Cover problem is parameterized by the number of
elements that we desire to cover uniquely. To begin with, in the abstract setting,
we show that the number of elements in the universe can be bounded by k2. Note
that it is straightforward to bound the sizes of the individual sets in an instance
of Unique Cover, with the following observation.

Observation 2. If there exists Fi ∈ F such that |Fi| ≥ k, then the given
instance is a YES instance, with {Fi} serving as a valid solution.
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We now turn to an argument for bounding the size of the universe in an
instance of Unique Cover.

Lemma 4 (�). Unique Cover admits a quadratic element kernel.

The following result regarding sets of bounded VC Dimension are now implied
by Proposition 1 and Lemma 4.

Corollary 1. Unique Cover on set systems of VC Dimension bounded by a
constant d admits a polynomial kernel.

As an immediate consequence, we get the existence of polynomial kernels
in special geometric cases, since these geometric set families have constant VC
Dimension.

Corollary 2 (�). Unique Cover admits a polynomial kernel for set systems
of lines, hyperplanes, axis-parallel rectangles and disks.

5 Unique Set Cover

We show that Unique Set Cover is W[1]-hard. However, as with the other
problems, assuming geometric properties on the set family provides positive
algorithmic results.

Lemma 5 (�). Unique Set Cover is W[1]-hard.

The reduction also shows that Unique Set Cover is NP-hard. In fact, even
when we consider the special case when the universe U is a set of n points in R

2

and each set is a line, the Unique Set Cover problem turns out to be NP-hard,
as we show in our next lemma.

Lemma 6 (�). Unique Set Cover on set systems of lines is NP-complete.

This NP-hardness reduction is very similar to the NP-hardness reduction for
Point Line Cover [10]. Unlike [10], we reduce the problem from 1-IN-3-SAT,
instead of 3-SAT.

This implies that Unique Set Cover on set systems with bounded intersec-
tion and Unique Set Cover on set systems of hyperplanes are also NP-hard.
In the parameterized context, although the problem is W[1]-hard in the general
setting, we look at some special cases where this problem can be solved in FPT
time. First, we make a few observations.

Observation 3. Let F ′ be a solution for Unique Set Cover. Then any min-
imal set cover contained in F ′ is also a solution for Unique Set Cover.

Thus, it is enough to find a minimal set cover that covers at least k elements
uniquely.

Observation 4. Any minimal set cover of size at least k is a Unique Set
Cover solution for a given instance. In particular, if the minimum set cover of
the given instance is of size at least k then it is a YES instance for the Unique
Set Cover problem.

Now, we turn to algorithmic results for special cases of Unique Set Cover.
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Sets of Bounded Intersection. First, we consider set systems (U,F) where F has
the property that for any pair of sets F1, F2 ∈ F , |F1 ∩ F2| ≤ c.

Lemma 7. Unique Set Cover for sets of bounded intersection c is FPT when
parameterized by c + k.

Proof. Construct a minimal set cover S for the instance. If the size of S is at
least k, then it is a solution for Unique Set Cover, by Observation 4. Similarly,
if there is a set S ∈ S that contains at least k private elements, then too S is
a solution for Unique Set Cover. Suppose there are at most k − 1 sets in S
and each set has at most k − 1 private elements. By pigeonhole principle, there
must be a set S ∈ S which contains at least n/(k − 1) elements of U . The
number of elements in S that can belong to other sets of S is at most c(k − 2),
because of the bounded intersection property. If n

k−1 − c(k − 2) ≥ k then the
given instance is a YES instance. Otherwise, n

k−1 − c(k − 2) ≤ k − 1, which
implies that n ≤ (1 + c)(k − 1)2.

Since the sets have bounded pairwise intersection of at most c, any subset of
c + 1 elements can appear together in at most one set. Therefore, the number of
sets are bounded by nc+1 ≤ ((1+ c)(k −1)2)c+1. We can now guess the uniquely
covered elements, and the distribution of the uniquely covered elements in a
Unique Set Cover solution. Finally, we can check whether there are sets in
F to validate the guess in polynomial time. As the number of guesses is an FPT
function, the running time of this algorithm is FPT. ��

Hyperplanes in R
d. Next, we consider a geometric set system (U,F) where U is

a set of n points in R
d and sets in F are defined by hyperplanes in R

d. When
d = 2, these are lines and this is a special case of sets with bounded intersection.
For d > 2, hyperplanes do not have this property. Nonetheless, we obtain an
FPT algorithm for hyperplanes, by reducing the given instance to an instance
of Unique Set Cover for sets with bounded intersection.

Lemma 8. Unique Set Cover on set systems of hyperplanes in R
d is FPT.

Proof. Let U be the universe of n elements and F be the family of m hyperplanes
in R

d. The following Reduction Rule aims at reducing the number of points, while
maintaining the Unique Set Cover solution if there exists one.

Reduction Rule 3. for i from 1 to d − 1:
Suppose P ⊆ U is a set of at least ki points such that dim(P ) = i, and P is
contained in at least one hyperplane of F . Suppose FP ⊆ F is the set of all
hyperplanes that contain P . If F \ FP is a set cover for U , then we say YES
for our input instance and exit. Otherwise, we delete all but ki points of P from
the universe. If a hyperplane becomes empty, we delete that hyperplane from F .

We prove the correctness of this reduction rule by induction on i. When i = 1,
P is a line with more than k points. We abuse notation and also use P to refer
to this collection of points. Suppose F \ FP is a set cover for the instance, let G
be a minimal set cover obtained from F \ FP . Then, by Observation 1, any set
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in G can contain at most one point of P . To cover all elements of P , there must
be at least k + 1 sets in G. By Observation 4, we correctly say YES. If no such
set cover exists, then we know that any set cover for the input instance must
contain at least one hyperplane from FP . Let P ′ ⊂ P be the set of all but k
points that are deleted by the Reduction Rule and P ′′ = P \ P ′. Also, let F ′ be
the family of hyperplanes that became empty and got deleted from F . Suppose
G = {H1, . . . , Hl} is a minimal solution for (U,F , k). Since P is a line with more
than k points, there must be at least one Hi that contains all of P . Now, the
following cases can occur:

1. Suppose there are two planes Hi,Hj , 1 ≤ i 	= j ≤ l, both of which contain the
set P . Then none of the points in P are uniquely covered by this solution.
The points which are uniquely covered are not deleted as a result of this
Reduction Rule. Also, by definition of minimality, no hyperplane of G could
have become empty after this Reduction Rule was applied. Hence, G remains
a solution for Unique Set Cover in (U \ P ′,F \ F ′, k).

2. Suppose l > k. Since we have dealt with the case when P is covered be at
least 2 hyperplanes of G, we can assume that there is exactly one hyperplane
in G that contains P . There are at least k remaining hyperplanes in G. Since,
G is a minimal solution for Unique Set Cover, each of these remaining
hyperplanes cover a point uniquely, and none of these uniquely covered points
belong to P . Hence, G remains a solution for (U \ P ′,F \ F ′, k).

3. Finally, suppose l ≤ k, and as before, let H ∈ G be the hyperplane that
contains all points in P . Then at most l − 1 points of P are not uniquely
covered. All other points of P must be uniquely covered. In particular, at
most l − 1 points of P \ P ′ are not uniquely covered , which implies that at
least k − l +1 points in P \P ′ are uniquely covered by G. By minimality, for
each hyperplane H ′ in G \ {H} there is a point pH′ that is uniquely covered
by H ′. Thus, at least k−l+1 points from P \P ′ and l−1 points from G\{H}
are covered uniquely. Again, by minimality, no hyperplane of G could have
become empty because of application of the Reduction Rule. Hence, G is a
solution in (U \ P ′,F \ F ′, k).

On the other hand, let G′ be a minimal solution for (U \P ′,F \F ′, k). Assume G′

is not a solution for (U,F , k). Then each point in P ′′ is covered by a different set
in G′. Let this subfamily of G′, with at least k hyperplanes, be H′.Let G ∈ FP .
Consider G′ ∪ G, which is clearly a set cover for (U,F). Let S ⊂ G′ ∪ G be a
minimal set cover of (U,F). Suppose P1 ⊆ (U \ P ′) was a set of k points, such
that for each hyperplane H in H′ there is a point in P1 that it uniquely covers
with respect to G′. Let P2 ⊆ P1 be uniquely covered by S. Each point in P1 \ P2

has exactly one hyperplane in S, other than G, containing it. By the minimality
of S, this hyperplane has a point that is uniquely covered by it. Therefore, for
all of the points in P2 \ P1, either that point is uniquely covered by G or a
hyperplane (other than G) in S containing it is uniquely covering another point.
Therefore S still covers at least k points uniquely and is a solution for (U,F , k).
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Now, assume i > 1 and the Induction Hypothesis is true for all j < i. By
arguments similar to the base case, the reduction rule is sound for i. The full
proof is in the Appendix. ��

We exhaustively apply this Reduction Rule. At the end, any hyperplane
contains at most kd−1 points. Let G be a minimal set cover for the instance. If
there are at least k+1 hyperplanes in G, then due to Observation 4, we correctly
say YES. Otherwise, there are at most k hyperplanes in the set cover G, which
implies that |U | ≤ k(d−1) · k. The number of hyperplanes that can contain these
points is at most (kd)d. Thus, we have a kernel for the problem. For the algorithm,
we guess k points P ⊆ U that are uniquely covered by a solution and the family
G of at most k hyperplanes that are responsible for this unique coverage. Let
FP = {H|H ∈ F \ G,∃p ∈ P s.t p ∈ H}. We check whether the family F \ FP

is a set cover or not. There are at most O(kkd2
) possible pairs (P,G). Thus the

problem is FPT. ��
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