
Information Processing Letters 115 (2015) 439–446
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Approximation algorithms for maximum independent set of a

unit disk graph

Gautam K. Das a, Minati De b, Sudeshna Kolay c, Subhas C. Nandy d,∗,
Susmita Sur-Kolay d

a Dept. of Mathematics, Indian Institute of Technology Guwahati, Guwahati, India
b Dept. of Computer Science, The Technion—Israel Institute of Technology, Israel
c The Institute of Mathematical Sciences, Chennai, India
d Indian Statistical Institute, Kolkata, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 November 2013
Received in revised form 5 November 2014
Accepted 6 November 2014
Available online 15 November 2014
Communicated by R. Uehara

Keywords:
Maximum independent set
Unit disk graph
Approximation algorithms
PTAS
Computational geometry

We propose a 2-approximation algorithm for the maximum independent set problem for a
unit disk graph. The time and space complexities are O (n3) and O (n2), respectively. For a
penny graph, our proposed 2-approximation algorithm works in O (n log n) time using O (n)

space. We also propose a polynomial-time approximation scheme (PTAS) for the maximum
independent set problem for a unit disk graph. Given an integer k > 1, it produces a
solution of size 1

(1+ 1
k)2 |OPT| in O (k4nσk log k + n log n) time and O (n + k log k) space, where

OPT is the subset of disks in an optimal solution and σk ≤ 7k
3 + 2. For a penny graph, the

proposed PTAS produces a solution of size 1
(1+ 1

k)
|OPT| in O (22σk nk + n log n) time using

O (2σk + n) space.
© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Unit disk graphs play an important role in formulat-
ing several problems in mobile ad hoc networks. A unit
disk graph G = (V , E) is the intersection graph of a set
of circular disks C = {C1, C2, . . . , Cn}, placed in R2, each
having diameter 1. The center of disk Ci is denoted by ci .
Each vertex vi ∈ V corresponds to a disk Ci , and an edge
(vi, v j) ∈ E indicates that the corresponding pair of unit
disks Ci and C j intersect, i.e., δ(ci, c j) ≤ 1, where δ(a, b) is
the Euclidean distance between a pair of points a, b ∈ R

2.
In a mobile network, if all its base stations have the same
range of transmission, then these can be viewed as the
vertices of a unit disk graph. Various practical problems
on this network can be formulated in terms of a unit disk

* Corresponding author.
E-mail address: nandysc@isical.ac.in (S.C. Nandy).
http://dx.doi.org/10.1016/j.ipl.2014.11.002
0020-0190/© 2014 Elsevier B.V. All rights reserved.
graph. In this paper, we consider the problem of finding
a maximum independent set (MIS) in a given unit disk
graph, where the co-ordinates (xi, yi) of the center ci of
each disk Ci are given.

The MIS problem for unit disk graph is known to be NP-
complete [2]. Thus, research on this topic is concentrated
on designing efficient approximation algorithms. Most of
the related works assume that the geometric representa-
tion, i.e., the layout of the set of unit disks is given. In such
an environment, the MIS for unit disk graph is defined as
follows:

Given a set C of n circular disks, each of diameter 1, placed
arbitrarily in R2 , find a subset OPT of non-intersecting disks
in C such that OPT has the maximum cardinality among all
possible subsets of non-intersecting disks in C .

Previous works: A dynamic programming based shift-
ing strategy was used by Erlebach et al. [7] to design a

http://dx.doi.org/10.1016/j.ipl.2014.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:nandysc@isical.ac.in
http://dx.doi.org/10.1016/j.ipl.2014.11.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.11.002&domain=pdf

440 G.K. Das et al. / Information Processing Letters 115 (2015) 439–446
Fig. 1. (a) A layout of unit disks, (b) corresponding unit disk graph, and (c) horizontal lines at distance 1 dividing the region into strips.
polynomial-time approximation scheme (PTAS) for finding
a maximum weighted independent set (disjoint disks of
maximum total weight) in an intersection graph of n disks
of arbitrary radii. They proposed a (1 + 1

k+1)2-approxima-

tion algorithm1 in nO (k4) time, where k is an integer
greater than 1. Matsui [12] showed that if the centers of
a set of n unit disks lie inside a region bounded by a pair
of parallel lines at a distance at most k apart, then an op-

timal MIS can be obtained in O (n
4� 2k√

3
�
) time. He also gave

an approximation algorithm for the MIS problem for unit
disk graphs, that produces a solution of size (1 − 1

r)|OPT|,
and runs in O (rn

4� 2(r−1)√
3

�
) time using O (n2r) space, for any

positive integer r ≥ 2. Here OPT is the subset of disks in an
optimum solution.

The concept of thickness was introduced by van Leeu-
wen [11] to propose a fixed parameter tractable algorithm
for the MIS problem for a unit disk graph. An instance of
a unit disk layout is said to have thickness τ if the re-
gion containing the disks can be split into a set of strips of
width 1 such that each strip contains at most τ disk cen-
ters. Further, he showed that an instance of the MIS prob-
lem with thickness τ can be solved in O (τ 222τ n) time.

Agarwal et al. [1] proposed a 2-approximation algo-
rithm for the MIS problem for the rectangle intersec-
tion graph corresponding to a given set of rectangles of
fixed size. They also proposed a PTAS for this MIS prob-
lem which produces a (1 + 1

k)-approximation result in
O (n log n + n2k−1) time for any positive integer k. For a set
of arbitrary squares or rectangles of bounded aspect ratio
in Rd , Chan [4] proposed a PTAS that runs in O (n1/εd−1

)

time and space with 0 < ε 	 1. They improved the space
complexity to O (n) by sacrificing the running time to
O (n1/εd

). Recently, Chan and Har-Peled [5] addressed the
MIS problem for pseudo-disks in the plane. In the un-
weighted case, for a set of n pseudo-disks, their algorithm
produces a solution of size (1 − ε)|OPT| in O (nO (1/ε2))

time; this result is similar to Erlebach’s results [7] for n
disks of arbitrary radii. For the weighted case, they pro-
posed an O (n3) time algorithm to produce an independent
set of total weight Ω(|OPT|), where OPT is a subset of
independent disks that produces maximum weight over
all possible independent sets, provided the set of pseudo-
disks has linear union complexity.

1 An approximation algorithm for the MIS problem is said to be an
α-approximation algorithm if it produces a solution of size 1

α |OPT|, where
OPT is the subset of disks in an optimal solution of the said problem.
Our main results: First, we propose a 2-approximation al-
gorithm for the MIS problem for a given unit disk graph.
The time and space complexities of our proposed algo-
rithm are O (n3) and O (n2), respectively. The perspec-
tive of this algorithm is that (i) the best known constant
factor approximation algorithm available for this problem
achieves an approximation factor 3 with time complexity
O (n2) [13], and (ii) by plugging r = 2 in Matsui’s PTAS re-
sult for the MIS problem of unit disk graph [12], we get
a 2-approximation algorithm that runs in O (n8) time us-
ing O (n4) space. Hence, our 2-approximation algorithm is
much faster than the best known 2-approximation algo-
rithm for the MIS problem for unit disk graphs.

Second, we consider the MIS problem for a penny graph,
which is a special case of unit disk graph where the cor-
responding unit disks do not overlap, i.e., the distance
between any two disk centers is at least 1. Here an inter-
section between a pair of disks implies that the distance
between corresponding centers is exactly 1. The MIS prob-
lem for the penny graph is also NP-complete [3]. Our algo-
rithm produces a 2-approximation result for a penny graph
in O (n log n) time.

Next, we propose a PTAS for the MIS problem for the
unit disk graph. It needs to optimally solve a subproblem
of the MIS problem where the centers of a set of unit
disks lie inside a square region of size k × k. We show
that this problem can be solved in O (k3mσk log k) time us-
ing O (k log k + min(ϕk, m)) space, where m is the input
size of the subproblem, σk ≤ 7k

3 + 2 and ϕk ≤ 9(� k
2 �)2. We

then apply the two level shifting strategy of Hochbaum
and Maass [10] to get a solution of the original MIS prob-
lem, that is of size at least 1

(1+ 1
k)2 |OPT|, in O (k4nσk log k)

time using O (n + k log k) space, where n is the input size
of the original MIS problem. The time complexity of our
algorithm is comparable with that of [12]; but its space
complexity is O (n + k log k) compared to O (n2k) of [12].
For penny graphs, the time and space complexities of our
PTAS are O (22σk nk + n log n) and O (2σk + n), respectively.

2. MIS problem for unit disk graphs

A layout of a set C of unit disks and the corresponding
unit disk graph are shown in Figs. 1(a) and 1(b), respec-
tively. An independent set in this unit disk graph consists
of a set of disks I ⊆ C which are mutually non-intersecting.
The objective of the MIS problem is to find the largest sub-
set of disks in C which are mutually non-intersecting.

As in the 2-approximation algorithm for the MIS prob-
lem of fixed width rectangle intersection graph [1], we

G.K. Das et al. / Information Processing Letters 115 (2015) 439–446 441
Fig. 2. Proof of Lemma 1.
split the region containing the members in C into a
set of s (≤ n) disjoint strips {H1, H2, . . . , Hs} of unit
height, separated by horizontal lines at y-coordinates
{h1, h2, . . . , hs+1}. The j-th strip H j contains the set of
disks Q j = {Ct |Ct ∈ C and h j < yt ≤ h j+1} (see Fig. 1(c)).
Finally, we consider only those strips which contain at
least one disk center.

Matsui [12] showed that if the width of a strip is
√

3
2 ,

then the intersection graph of unit disks centered inside
a strip is a co-comparability graph [8]. Thus, the opti-
mum solution of the MIS problem for such a graph can be
computed in O (m2) time [12], where m is the number of
disk-centers inside that strip. We show that for a strip of
width 1, the optimum solution of the MIS problem inside a
strip can be obtained in O (m3) time and O (m2) space us-
ing dynamic programming. Finally, we use this algorithm
for designing our 2-approximation algorithm for the MIS
problem for the given unit disk graph.

We compute the MIS of disks in each strip separately.
Let I j denote a maximum independent set of disks whose
centers are in the strip H j . Now observe the following.

Observation 1. If | j − k| > 1, then the disks in I j and Ik are
non-intersecting.

However, disks in I j and I j+1 may intersect.

So, both ISodd = {I1 ∪ I3 ∪ . . .} and ISeven = {I2 ∪ I4 ∪ . . .}
are independent sets. We report the solution IS for the
MIS problem as the one among ISodd and ISeven having
the larger cardinality. In Theorem 1, we show that |IS| ≥
1
2 |OPT|, where OPT is the optimum solution of the MIS
problem for the set of disks C .

Now, we describe the method of computing the MIS of
unit disks whose centers lie in a strip H of width 1. The
following result is pertinent to our method.

Lemma 1. Let C1 , C2 , C3 and C4 be four disks of unit diame-
ter with centers c1 = (x1, y1), c2 = (x2, y2), c3 = (x3, y3) and
c4 = (x4, y4), respectively, lying inside a horizontal strip H of
width 1, and x1 < x2 < x3 < x4 . If C1 , C2 , C3 are pairwise non-
intersecting and C2 , C3 , C4 are also pairwise non-intersecting,
then C1 and C4 are also non-intersecting.

Proof. Suppose that (i) C1, C2, C3 are mutually non-inter-
secting and (ii) C2, C3, C4 are also mutually non-inter-
secting. As a contradiction, let us assume that C1 and C4
are intersecting, i.e., δ(c1, c4) ≤ 1.

Consider the vertical strip V whose left and right
boundaries are at c1 and c4, respectively (see Fig. 2(a)).
As x1 < x2 < x3 < x4, both c2 and c3 are inside the verti-
cal strip V . Next, consider two circles D1 and D4 of unit
radius centered at c1 and c4, respectively. As the unit
disks C2 and C3 are mutually non-intersecting to both C1
and C4, their centers c2 and c3 must be outside the region
D1 ∪ D4. So, c2 and c3 are inside the vertical strip V but
outside the region D1 ∪ D4. Now, there are the following
two possibilities for the positions of c2 and c3:

Case 1: c2 and c3 are in different sides of the line segment
c1c4,

Case 2: both c2 and c3 are in the same side of the line
segment c1c4.

In Case 1, let c′
2 and c′

3 be the extreme two intersection
points of the line segment c2c3 with the region D1 ∪ D4
(see Fig. 2(a)). So, δ(c2, c3) ≥ δ(c′

2, c
′
3). Here, we can have

the following two sub-cases.

Case 1.1: c′
2 and c′

3 are on the same circle (see Fig. 2(a)),

Case 1.2: c′
2 and c′

3 are on the different circles (see
Fig. 2(b)).

In Case 1.1, without loss of generality, assume that c′
2 and

c′
3 are on the circle D1. Here, the line segments pq and

c′
2c′

3 do not intersect with each other but both of them
intersect with the line segment c1c4. Thus the minor arc
ĉ′

2c′
3 of D1 always contains the minor arc p̂q of D1. Thus

δ(c2, c3) ≥ δ(c′
2, c

′
3) > δ(p, q) = 2 × √

1 − (δ(c1, c4)/2)2 ≥√
3 as δ(c1, c4) ≤ 1.

In Case 1.2, the line segments c′
2c′

3 and pq must be in-
tersecting. Let k be this intersection point (see Fig. 2(b)).
Consider the triangles (c′

2c4k) and (pc4k) having com-
mon side c4k, δ(c4, c′

2) = δ(c4, p) and � c′
2c4k ≥ � pc4k.

So, δ(c′
2, k) ≥ δ(p, k). Similarly, from the two triangles

(kc1c′
3) and (kc1q), we can show that δ(k, c′

3) ≥ δ(k, q).
Thus, here also δ(c2, c3) ≥ δ(c′

2, c
′
3) = δ(c′

2, k) + δ(k, c′
3) ≥

δ(p, k) + δ(k, q) = δ(p, q) ≥ √
3.

442 G.K. Das et al. / Information Processing Letters 115 (2015) 439–446
Now, consider the rectangle R = H ∩ V which contains
c1, c2, c3 and c4. As the longest line segment that can
be accommodated inside the rectangle R is its diagonal,
which is of length at most

√
2, so δ(c2, c3) ≤

√
2 which

contradicts both Case 1.1 and Case 1.2. Thus, Case 1 is not
possible.

In Case 2, we have the following two sub-cases:

Case 2.1: c1 and c3 are in the same side of the line segment
c2c4 (see Fig. 2(c)),

Case 2.2: c1 and c3 are in different sides of the line seg-
ment c2c4 (see Fig. 2(d)).

In Case 2.1, since x2 < x3, c3 must be in the triangle
(c2, c4, m), where c2m is a vertical line (see Fig. 2(c)).
Here, δ(c2, c3) + δ(c3, c4) ≤ δ(c2, m) + δ(m, c4) ≤ 2. So, the
unit disk C3 intersects either the unit disk C2 or C4, which
is a contradiction. So, the possibility of case 2.1 is ruled
out.

In Case 2.2, as the maximum distance between c1
and c4 along the boundary of R = H ∩ V is 3, we
have δ(c1, c2) + δ(c2, c3) + δ(c3, c4) ≤ 3. This implies that
min{δ(c1, c2), δ(c2, c3), δ(c3, c4)} ≤ 1 (see Fig. 2(d)). Thus,
at least one of the corresponding pair of disks are inter-
secting, which contradicts one of the two premises (i) or
(ii) above for the lemma. Thus, our initial assumption that
C1 and C4 are intersecting is wrong. This proves that the
statement of the lemma is correct. �

Let Q = {C1, C2, . . . Cm} be a set of m unit disks whose
centers lie in the strip H . We assume that the centers of
no two disks have the same x-coordinate. In our algorithm,
we consider the disks in Q are in increasing order of the
x-coordinates of their centers.

We compute the MIS for Q by maintaining an up-
per triangular matrix μ for the dynamic programming.
Its (j, k)-th element corresponds to two non-intersecting
disks C j , Ck , where j < k. The indices of the matrix μ are
[0, . . . , m − 1] × [1, . . . , m], and each element μ[j, k] con-
tains the size of the largest independent set containing C j
and Ck as the rightmost two elements.

Initially, all the matrix elements contain 0. The disks
are processed in increasing order of the x-coordinates of
their centers. When a disk Ck is being processed, we set
μ[0, k] = 1 indicating that a singleton element Ck forms
an independent set. In other words, we assume a virtual
left most unit disk C0 such that C0 ∩ Ck = ∅ where k ∈
{1, 2, . . .m}. Lemma 1 suggests to compute the j-th row of
the matrix μ as follows:

μ[j,k] = j−1
max
i=0

{
μ[i, j] + 1

∣∣Ci ∩ Ck = ∅}
if C j ∩ Ck = ∅,

0 otherwise.

The matrix element μ[j∗, k∗] having the maximum value
is the size of the maximum independent set of Q . The
corresponding independent set is reported by executing
a backward pass starting from μ[j∗, k∗]. In each step,
from μ[j, k] it moves to μ[i, j] (to report Ci) if μ[i, j] =
max j−1

μ[α, j]. If there are multiple choices, any one can
α=0
be chosen for reporting, and the search continues from
there. The process continues until i = 0 is reached.

Lemma 2. If the centers of a set of m unit disks lie inside a
strip of width 1, then the dynamic programming procedure, pre-
sented above, correctly computes the optimum solution of the
MIS problem for the corresponding unit disk graph in O (m3)

time using O (m2) space.

Proof. The correctness of our dynamic programming algo-
rithm follows from Lemma 1.

In order to compute each element of the matrix, one
needs to consider at most m entries. Since the number of
elements in the matrix μ is O (m2), the time and space
complexity results follow. The backward pass for reporting
the independent set needs O (m2) time, since reporting of
each entry needs scanning a row of the matrix μ. �
Theorem 1. Given a set C of n unit disks in R2 , a subset of at
least 1

2 |OPT| non-intersecting disks can be obtained in O (n3)

time using O (n2) space, where |OPT| is a largest subset of mu-
tually non-intersecting disks in the set.

Proof. Let OPTodd (resp. OPTeven) be the set of centers
of the unit disks in an optimum solution OPT that lie
in odd (resp. even) numbered strips. Therefore, |ISodd| ≥
|OPTodd|, and |ISeven| ≥ |OPTeven|. Thus, |ISodd| + |ISeven| ≥
|OPT|, and hence we have 2 max{|ISodd|, |ISeven|} ≥ |OPT|.
This implies that the size of the reported answer |IS| =
max{|ISodd|, |ISeven|} ≥ 1

2 |OPT|.
Since the two sets of unit disks in every pair of odd

numbered strips are disjoint, the total time required for
computing ISodd (MIS for all the odd numbered strips) is
O (n3). The same result holds for computing ISeven (MIS for
all the even numbered strips). Thus the time complexity
result follows.

The space complexity follows from the size of the ma-
trix μ to be maintained for solving the subproblem corre-
sponding to each strip. �
3. MIS problem for penny graphs

If unit disks do not overlap, then the corresponding
unit disk graph is referred as penny graph. In other words,
a unit disk graph is a penny graph if it has a unit disk
representation in which the distance of each pair of two
centers is at least 1. We refer the unit disks corresponding
to the penny graph as pennies. Here an edge in the graph
indicates that the corresponding two pennies touch each
other.

The MIS problem for the penny graph is NP-hard [3].
We show that a 2-approximation result of the MIS problem
for such a graph can be computed in O (n log n) time.

As in Section 2, we split the plane into strips of width 1.
Considering each strip separately, we compute the maxi-
mum independent set among the pennies whose centers
lie in that strip. We report the union of the solutions of ei-
ther the even numbered strips or the odd numbered strips
depending on whose size is maximum. Following the same
argument as in Theorem 1, it can be shown that the size

G.K. Das et al. / Information Processing Letters 115 (2015) 439–446 443
Fig. 3. A geometric layout of penny graph.
of this solution is 1
2 |OPT|, where OPT is a solution of the

MIS problem for this penny graph of maximum cardinality.
In order to compute the maximum independent set

among the pennies whose centers lie inside a strip, we
draw vertical lines at unit distance apart, such that each
penny is intersected by a vertical line. Next, we remove
those vertical lines which does not intersect any penny.

Lemma 3. A vertical line can intersect at most 4 pennies whose
centers are inside a horizontal strip of unit width.

Proof. We will prove the lemma by proving that a vertical
line can intersect at most two pennies having their centers
in the same side of a vertical line inside a strip of unit
width.

For a contradiction, let us assume that there exists more
than 2 such pennies which intersect a vertical line
, and
whose centers lie in the same side of
. Thus, their cen-
ters lie in a rectangle of size 1

2 × 1 whose horizontal sides
are aligned with the boundaries of the strip, and one of
the vertical sides is aligned with the line
. Consider a
horizontal line segment that splits this rectangle into two
squares of size 1

2 × 1
2 . By pigeonhole principle, one of these

squares must contain the centers of at least two pennies.
Thus the distance of the centers of these two pennies is at
most 1√

2
< 1. This is impossible since two pennies cannot

properly intersect. �
Fig. 3(a) demonstrates an example with 3 pennies

whose centers lie in a strip and are intersected by a verti-
cal line.

Suppose we have r vertical lines inside a strip as men-
tioned above. We then consider an (r + 2)-partite node
weighted digraph where the set of nodes in the i-th
set, denoted by V i , consists of all possible independent
sets of disks among those intersected by the i-th ver-
tical line, i = 1, 2, . . . , r. By Lemma 3, the number of
nodes in any V i can be at most 16. The weight of a
node is equal to the number of non-intersecting disks
it represents. Further, V 0 and Vr+1 respectively contain
the dummy nodes s and t , each having weight 0. In
Fig. 3(c), an instance is shown (without s and t), where
the number of nodes corresponding to the vertical lines
V 1, V 2 and V 3 are 8, 2 and 4, respectively. The nodes
of V 1 are {φ, S1, S2, S3, S12, S13, S23, S123}, that of V 2 are
{φ, S4} and that of V 3 are {φ, S6, S7, S67}. For a vertical
line Vα , a node Sijk
 represents the non-intersecting pen-
nies {Ci, C j, Ck, C
} intersected by Vα . Similarly, nodes Sijk ,
Sij and Si for Vα are defined. If there is no penny on Vα ,
then we have φ for Vα . Next, there is a directed edge −−→uv
between a pair of nodes u ∈ V i and v ∈ V j if i < j and
the disks corresponding to u and v are all pairwise non-
intersecting.2 There is no directed edge between a pair of
nodes in V i , i = 1, 2, . . . , r. We add a directed edge from
the node s to each node in

⋃r
i=1 V i , and also a directed

edge from each node in
⋃r

i=1 V i to the node t . We also
have two fields π(v) and μ(v) with each node v , where
π(v) is the predecessor of v on the longest weighted path
from s to v , and μ(v) indicates the weight of the afore-
said path from s to v . The maximum independent set of

2 In Fig. 3, the edges from nodes in V 1 to nodes in V 2 and V 3 are
shown. For the sake of neatness, the edges (i) from nodes in V 2 to those
in V 3, from s to the nodes in V 1, V 2, V 3 and from the nodes in V 1, V 2,
V 3 to t are not shown.

The center c5 of the disk C5 lies outside the strip; so it does not
participate in the graph for the current strip.

444 G.K. Das et al. / Information Processing Letters 115 (2015) 439–446
the penny graph is the longest weighted path from s to t
in this digraph. This can be computed in polynomial time
since the digraph is acyclic [6].

Note that we need not explicitly construct the graph.
We start from s and process the vertices of V i , i =
1, 2, . . . , r in order. While considering the vertices in V i ,
we assume that each node of V i contains the length of
the longest path from s to that node, and we extend the
paths from the nodes in V i to those in V i+1 and V i+2. Two
points need to be noted here:

• while processing the nodes in V i , the reason for
choosing the next two consecutive levels V i+1 and
V i+2 is that there may not exist an edge among any
pair of nodes (u, v), where u ∈ V i and v ∈ V i+1. But,
there must exist edges from V i to V i+2.

• while processing the nodes in V i , the reason for not
putting any edge between nodes from V i to the nodes
in the levels V i+3, . . . , Vr is that, we need not have to
consider the transitively oriented edges for computing
the longest path in a digraph.

After processing all the nodes in Vr , the length of the
longest path is available at node t . The exact path also
can be reported using the π field of the nodes along the
longest path in reverse direction starting from the node t .
Thus, the time complexity of computing the longest path
of the graph corresponding to a strip is dominated by sort-
ing of the centers of the pennies inside that strip. We have
the following result.

Theorem 2. Given a set of n pennies in R2 , a set of mutually
non-intersecting pennies of size at least 1

2 |OPT| can be com-
puted in O (n log n) time using O (n) space, where OPT is the
largest subset of mutually non-intersecting pennies present in
the plane.

It needs to be mentioned that if the centers of the pen-
nies have integer coordinates then an optimum solution of
the MIS problem for the penny graph can be obtained in
polynomial time using the following facts:

(a) As the centers of the unit disks are placed on the ver-
tices of a grid, the corresponding penny graph is pla-
nar and bipartite; it can be written as G = (V 1 ∪ V 2, E)

where the set of vertices V 1 and V 2 represent the set
of disks with centers in even and odd diagonals of the
grid, respectively.

(b) A maximum independent set of this penny graph can
be obtained from a maximum bipartite matching [9];
the time complexity is O (

√
n|E|) which is O (n1.5)

since the graph is planar.

4. Polynomial-time approximation scheme (PTAS)

We use two level shifting strategy of Hochbaum and
Maass [10] to propose a PTAS for the MIS problem for a
unit disk graph. As in the earlier sections, we split the re-
gion into horizontal strips each of width 1. In the first level
of shifting strategy, we perform k + 1 phases of execution.
In the i-th phase (0 ≤ i ≤ k), we partition the plane into
blocks; the first block consists of i consecutive strips from
the beginning, and other blocks consist of k consecutive
strips leaving one strip between two consecutive blocks so
that solutions of different blocks are non-intersecting. The
last block may contain fewer strips (see also [1]).

In a phase of the first level, we compute the solution
of each block separately by applying the second level of
shifting strategy (see subsection 4.2), add up the solutions
of the blocks to get the solution of that phase. The phase
producing a solution of maximum cardinality, is reported.

4.1. Optimally computing MIS for unit disks centered in a k × k
square

Let ϕk be the maximum number of non-overlapping
unit disks whose centers lie in a k × k square region.

Lemma 4. ϕk ≤ 9(� k
2 �)2 .

Proof. Follows from the fact that a 2 × 2 square can con-
tain at most 9 non-overlapping unit disks (divide 2 × 2
square into 9 equal cells, the length of each diagonal of
these cells is less than 1). �

Let σk be the maximum number of mutually non-
overlapping disks whose centers lie in a strip of width
k > 1 and intersected by a vertical line
.

Lemma 5. σk ≤ 7k
3 + 2.

Proof. The proof of this lemma is similar to Lemma 3. All
the disks whose centers lie in the same side of the verti-
cal line
 of the strip and are intersected by the line are
within a k × 1

2 rectangle R . For k ≤ 6, we can show that
if we partition R into k + 1 equal cells by k horizontal
lines, then each of these cells cannot accommodate more
than one points. The reason is that the maximum distance
between two points residing in a k

k+1 × 1
2 rectangle is at

most
√

k
k+1

2 + 1
2

2
< 1, when k ≤ 6. So, when k ≤ 6, the

number of mutually non-overlapping disks centered in a
strip of width k and intersected by a vertical line
 is at
most 2(k + 1). For k > 6, we obtain the bound by split-
ting the k × 2 rectangle into � k

6 � smaller rectangles each
of size 6 × 2 and remaining one of smaller size. Thus, in
general, we have σk ≤ 14 × � k

6 � + 2(k − 6 × � k
6 � + 1) =

2 × � k
6 � + 2k + 2 ≤ (7k

3 + 2). �
Let m = |C′|, where C′ is the set of unit disks whose

centers lie in a k × k square region. We choose all possible
subsets of size 1, 2, . . . , ϕk among the set of m disks. For
each choice of size i, the checking of whether the chosen
disks are mutually non-intersecting needs O (ik) time in
the worst case.3 Thus, the total time is O (k3mϕk). The extra

3 We sort the chosen disks with respect to their x-coordinates in
O (i log i) time in the worst case. Now, the testing of whether a chosen
disk c intersects any other chosen disk c′ needs at most O (k) time. The
reason is as follows: let c be intersected by a vertical line
′ , now we
need to check c with the chosen disks that are intersected by
′ , and the

G.K. Das et al. / Information Processing Letters 115 (2015) 439–446 445
space required for generating the possible subsets is O (m).
We now describe a faster method.

Consider the middle-most vertical line
 in the re-
gion R . Let it intersect a subset S ⊆ C′ , where |S| ≤ m in
the worst case. As the maximum number of mutually non-
intersecting members of S intersecting
 is σk , we consider
all possible mutually non-intersecting subsets of disks of
sizes 0, 1, 2, . . . , σk . The number of such subsets can be
at most O (mσk). For each subset S ′ ⊆ S , compute a non-
intersecting set of disks of maximum cardinality among
the members in C′ that contains the members of S ′ as
stated below. Finally, the one having maximum size is re-
ported.

While processing a subset S ′ ⊆ S , we remove the disks
in S ′ , and those in C′ which are intersected by the mem-
bers of S ′ . The remaining disks in C′ are partitioned into
two disjoint subsets to the left and right of
. We compute
the optimum solution of these two subsets independently
using the same procedure recursively. The centers of each
subset of disks is now contained in a rectangle of size
k × � k

2 �.
We maintain an array containing the disks in C′ in

sorted order of their x-coordinates. While executing a sub-
problem in the recursive call, we can identify the subset of
disks S ∈ C′ that are intersected by the corresponding ver-
tical line
 using binary search. The centers of these disks
are contiguous in the array C′ . We need an array of size
σk to generate all possible combinations of disks of sizes
1, 2, . . . , σk among the members in S . A valid subset is the
one whose members (i) are mutually non-intersecting, and
(ii) do not intersect with the disks in the solution consid-
ered in the levels of recursion prior to this level. Thus, in
each level of recursion, we need to (i) preserve the array
containing the permutation, and (ii) to pass the indepen-
dent set of disks, say χ , chosen till now to its next level,
which can be at most m in number. Again by Lemma 4,
this number can be at most ϕk . Thus, considering all the
levels of recursion the total space required can be at most
O (k log k + min(ϕk, m)). The first term corresponds to the
extra space required for storing a binary sequence of k el-
ements for all the levels of recursion.

We use T (m, q) to denote the time for computing
the optimum solution of a rectangle of size k × q. Thus,
we have T (m, q) = O (log m) + d0mσk × (d1k2 + d2k3 +
d3k + 2T (m, q2)), where d0, d1, d2, d3 are constants. Here,
O (log m) time is required to identify a disk in S inter-
sected by the corresponding vertical line
; the first, sec-
ond, third and fourth terms inside the parenthesis indicate
the time for (i) checking whether the chosen disks are
non-intersecting, (ii) checking whether the chosen disks
are non-intersecting with the disks in set χ chosen in
the lower levels of recursion, (iii) inserting the chosen
disks in the set χ , and (iv) for solving the two sub-
problems in the next level of recursion. Thus, we have
T (m, q) = log m + c1k3mσk + c2mσk T (m, q2), where c1 and
c2 are constants. Solving this recursion, we get T (m, k) =
O (k3mσk log k). Thus, we have the following results:

vertical lines previous and next to
′ by traversing in the sorted list both
towards the left and the right of c. The number of such disks is O (k) (see
Lemma 5) even if i > k.
Lemma 6. The worst case time and extra space required for
computing an optimum solution of the MIS problem for a
set of m disks whose centers lie in a square of size k × k is
O (k3mσk log k) and O (k log k + min(ϕk, m)), respectively. Here
ϕk ≤ 9(� k

2 �)2 and σk ≤ 7k
3 + 2.

4.2. MIS for unit disk layout of a block of width k

Here the objective is to find a set of non-intersecting
subset of disks among the set of disks in CB whose cen-
ters lie in a block B of width k (determined by k horizontal
strips) where k > 1. We draw vertical lines at unit dis-
tance apart and execute k + 1 phases. In the i-th phase,
we consider the first rectangle of size i × k and other con-
secutive k × k squares leaving one vertical strip between
each of them.4 In Lemma 6, we show that the optimum
solution of the MIS problem for a k × k square region R
can be solved in time O (k3|C′|σk log k), where C′ ⊆ CB is
the subset of disks whose centers lie inside the square and
σk ≤ 7k

3 + 2. The same result holds for a rectangle of size
i × k, i < k. This leads to the following result:

Lemma 7. Given a set CB of nB disks whose centers lie inside
a block B of width k, a non-intersecting subset ISB of the disks
in CB can be computed in O (k4nσk log k

B) time, such that |ISB | ≥
1

(1+ 1
k)

|OPT B |, where OPT B is a maximum cardinality subset of

non-intersecting disks in the sets CB and σk ≤ 7k
3 + 2.

Proof. The time complexity follows from the fact that
(i) the shifting strategy consists of k + 1 phases, and
(ii) the k × k squares considered in a phase are disjoint.
The analysis of the approximation result is similar to that
of the PTAS for fixed height rectangles proposed by Agar-
wal et al. [1]. Here, in the i-th phase, we have computed
the optimum solution ISi

B for the set of disks considered
in this phase. If αi is the set of all disks in the opti-
mum solution OPT B that are intersected by the vertical
lines numbered {i + j ∗ k, ∀ j = 0, 1, 2, . . .}, then |ISi

B | ≥
|OPT B | − αi . Since mink

i=0 αi ≤ 1
k+1 |OPT B |, we have |ISB | =

maxk
i=0 |ISi

B | ≥ |OPT B | − mink
i=0 αi ≥ |OPT B | − 1

k+1 |OPT B | =
1

(1+1/k)
|OPT B |. �

4.3. Approximation result and complexity

Theorem 3. For a given integer k ≥ 1, the two level nested
shifting strategy for solving the MIS problem produces a solu-
tion of size 1

(1+ 1
k)2 |OPT|, where OPT is the subset of disks in

an optimum solution. The worst case time and space complex-
ities are O (k4nσk log k) and O (n + k log k), respectively, where
σk ≤ 7k

3 + 2.

Proof. The analysis of approximation result is similar to
that in Lemma 7. In each phase, instead of computing the
optimum solution, we are computing a solution of size

4 In other words, the i-th phase consists of all the disks that are not
intersected by the i + j ∗ k-th vertical line, for all j = 0, 1, 2,

446 G.K. Das et al. / Information Processing Letters 115 (2015) 439–446
1
(1+ 1

k)
|OPT|. Thus, after executing the k + 1 phases, the re-

ported answer (the solution of maximum size among the
k + 1 phases) achieves an approximation factor (1 + 1

k)2.
As the disks in different blocks are disjoint in a

phase, the total time required for executing a phase is
O (k3nσk log k). Since we need to execute (k + 1)-phases, the
time complexity result follows. The space complexity is
justified while explaining the recursion. �

A similar technique leads to a PTAS for the penny graph
also. The complexity results are as follows:

Theorem 4. For a given integer k ≥ 1, one can obtain a
(1 + 1

k)-approximation result for penny graph in O (22σk nk +
n log n) time using O (2σk + n) space, where σk ≤ 7k

3 + 2.

Proof. While processing a block B of width k containing
a set C B of disks (m = |C B |) whose centers lie inside the
block B , the sorting of those disk-centers with respect to
their x-coordinates needs O (m log m) time. We use simi-
lar strategy as in Section 3. While solving this instance,
the number of nodes in the graph corresponding to a ver-
tical line can be at most 2σk . Here processing of a node
needs comparing with the nodes on its predecessor and
successor vertical line. Since the number of non-empty
vertical strips in a block can be O (m) in the worst case,
the time for computing the optimal solution in the block
B of m vertical strips is O (22σk m). Since the disks of differ-
ent blocks are disjoint, the time complexity of a phase is
O (22σk n). Again, since we need to execute k +1 phases, the
overall time complexity is O (22σk nk). Using the same argu-
ment as in Section 3, the space complexity is O (2σk + n).

In each phase, as we compute the optimum solution of
each block, so the analysis of the approximation factor is
similar to that in Lemma 7. �
Acknowledgement

The authors wish to acknowledge the anonymous re-
viewer for the valuable comments that have improved the
quality of the paper.

References

[1] P.K. Agarwal, M. van Kreveld, S. Suri, Label placement by maximum
independent set in rectangles, Comput. Geom. 11 (1998) 209–218.

[2] B.N. Clark, C.J. Colbourn, D.S. Johnson, Unit disk graph, Discrete Math.
86 (1990) 165–177.

[3] M.R. Cerioli, L. Faria, T.O. Ferreira, F. Protti, On minimum clique
partition and maximum independent set on unit disk graphs and
penny graphs: complexity and approximation, Electron. Notes Dis-
crete Math. 18 (2004) 73–79.

[4] T.M. Chan, Polynomial-time approximation schemes for packing and
piercing fat objects, J. Algorithms 46 (2003) 178–189.

[5] T.M. Chan, S. Har-Peled, Approximation algorithms for maximum in-
dependent set of pseudo-disks, in: Proceedings of the 25th Annual
Symposium on Computational Geometry, 2009, pp. 333–340.

[6] T.H. Cormen, C.E. Lieserson, R.L. Rivest, Introduction to Algorithms,
Prentice-Hall, 2007.

[7] T. Erlebach, K. Jansen, E. Seidel, Polynomial-time approximation
schemes for geometric intersection graphs, SIAM J. Comput. 34
(2005) 1302–1323.

[8] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Else-
vier, 2004.

[9] M.R. Garey, D.S. Johnson, Computers and Intractability: a Guide to
the Theory of NP-Completeness, Freeman, 1979.

[10] D.S. Hochbaum, W. Maass, Approximation schemes for covering and
packing problems in image processing and VLSI, J. ACM 32 (1985)
130–136.

[11] E.J. van Leeuwen, Approximation algorithms for unit disk graphs,
Technical Report UU-CS-2004-066, Institute of Information and Com-
puting Sciences, Utrecht University, 2004.

[12] T. Matsui, Approximation algorithms for maximum independent set
problems and fractional coloring problems on unit disk graphs, in:
Proceedings of the Japan Conference on Discrete and Computational
Geometry, JCDCG 1998, in: LNCS, vol. 1763, 2000, pp. 194–200.

[13] M. Marathe, H. Breu, H.B. Hunt III, S.S. Ravi, D.J. Rosenkrantz, Simple
heuristics for unit disk graphs, Networks 25 (1995) 59–68.

http://refhub.elsevier.com/S0020-0190(14)00235-X/bib414B53s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib414B53s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib43434As1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib43434As1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib43464650s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib43464650s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib43464650s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib43464650s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib6368616E32303033s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib6368616E32303033s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib4368616E3039s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib4368616E3039s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib4368616E3039s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib434C52s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib434C52s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib454A53s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib454A53s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib454A53s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib676F6C756D626963s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib676F6C756D626963s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib474A3739s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib474A3739s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib484Ds1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib484Ds1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib484Ds1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib4As1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib4As1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib4As1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib4Ds1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib4Ds1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib4Ds1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib4Ds1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib4D42485252s1
http://refhub.elsevier.com/S0020-0190(14)00235-X/bib4D42485252s1

	Approximation algorithms for maximum independent set of a unit disk graph
	1 Introduction
	2 MIS problem for unit disk graphs
	3 MIS problem for penny graphs
	4 Polynomial-time approximation scheme (PTAS)
	4.1 Optimally computing MIS for unit disks centered in a kxk square
	4.2 MIS for unit disk layout of a block of width k
	4.3 Approximation result and complexity

	Acknowledgement
	References

