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We propose a 2-approximation algorithm for the maximum independent set problem for a 
unit disk graph. The time and space complexities are O (n3) and O (n2), respectively. For a 
penny graph, our proposed 2-approximation algorithm works in O (n log n) time using O (n)

space. We also propose a polynomial-time approximation scheme (PTAS) for the maximum 
independent set problem for a unit disk graph. Given an integer k > 1, it produces a 
solution of size 1

(1+ 1
k )2 |OPT| in O (k4nσk log k + n log n) time and O (n + k log k) space, where 

OPT is the subset of disks in an optimal solution and σk ≤ 7k
3 + 2. For a penny graph, the 

proposed PTAS produces a solution of size 1
(1+ 1

k )
|OPT| in O (22σk nk + n log n) time using 

O (2σk + n) space.
© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Unit disk graphs play an important role in formulat-
ing several problems in mobile ad hoc networks. A unit 
disk graph G = (V , E) is the intersection graph of a set 
of circular disks C = {C1, C2, . . . , Cn}, placed in R2, each 
having diameter 1. The center of disk Ci is denoted by ci . 
Each vertex vi ∈ V corresponds to a disk Ci , and an edge 
(vi, v j) ∈ E indicates that the corresponding pair of unit 
disks Ci and C j intersect, i.e., δ(ci, c j) ≤ 1, where δ(a, b) is 
the Euclidean distance between a pair of points a, b ∈ R

2. 
In a mobile network, if all its base stations have the same 
range of transmission, then these can be viewed as the 
vertices of a unit disk graph. Various practical problems 
on this network can be formulated in terms of a unit disk 

* Corresponding author.
E-mail address: nandysc@isical.ac.in (S.C. Nandy).
http://dx.doi.org/10.1016/j.ipl.2014.11.002
0020-0190/© 2014 Elsevier B.V. All rights reserved.
graph. In this paper, we consider the problem of finding 
a maximum independent set (MIS) in a given unit disk 
graph, where the co-ordinates (xi, yi) of the center ci of 
each disk Ci are given.

The MIS problem for unit disk graph is known to be NP-
complete [2]. Thus, research on this topic is concentrated 
on designing efficient approximation algorithms. Most of 
the related works assume that the geometric representa-
tion, i.e., the layout of the set of unit disks is given. In such 
an environment, the MIS for unit disk graph is defined as 
follows:

Given a set C of n circular disks, each of diameter 1, placed 
arbitrarily in R2 , find a subset OPT of non-intersecting disks 
in C such that OPT has the maximum cardinality among all 
possible subsets of non-intersecting disks in C .

Previous works: A dynamic programming based shift-
ing strategy was used by Erlebach et al. [7] to design a 
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Fig. 1. (a) A layout of unit disks, (b) corresponding unit disk graph, and (c) horizontal lines at distance 1 dividing the region into strips.
polynomial-time approximation scheme (PTAS) for finding 
a maximum weighted independent set (disjoint disks of 
maximum total weight) in an intersection graph of n disks 
of arbitrary radii. They proposed a (1 + 1

k+1 )2-approxima-

tion algorithm1 in nO (k4) time, where k is an integer 
greater than 1. Matsui [12] showed that if the centers of 
a set of n unit disks lie inside a region bounded by a pair 
of parallel lines at a distance at most k apart, then an op-

timal MIS can be obtained in O (n
4� 2k√

3
�
) time. He also gave 

an approximation algorithm for the MIS problem for unit 
disk graphs, that produces a solution of size (1 − 1

r )|OPT|, 
and runs in O (rn

4� 2(r−1)√
3

�
) time using O (n2r) space, for any 

positive integer r ≥ 2. Here OPT is the subset of disks in an 
optimum solution.

The concept of thickness was introduced by van Leeu-
wen [11] to propose a fixed parameter tractable algorithm 
for the MIS problem for a unit disk graph. An instance of 
a unit disk layout is said to have thickness τ if the re-
gion containing the disks can be split into a set of strips of 
width 1 such that each strip contains at most τ disk cen-
ters. Further, he showed that an instance of the MIS prob-
lem with thickness τ can be solved in O (τ 222τ n) time.

Agarwal et al. [1] proposed a 2-approximation algo-
rithm for the MIS problem for the rectangle intersec-
tion graph corresponding to a given set of rectangles of 
fixed size. They also proposed a PTAS for this MIS prob-
lem which produces a (1 + 1

k )-approximation result in 
O (n log n + n2k−1) time for any positive integer k. For a set 
of arbitrary squares or rectangles of bounded aspect ratio 
in Rd , Chan [4] proposed a PTAS that runs in O (n1/εd−1

)

time and space with 0 < ε 	 1. They improved the space 
complexity to O (n) by sacrificing the running time to 
O (n1/εd

). Recently, Chan and Har-Peled [5] addressed the 
MIS problem for pseudo-disks in the plane. In the un-
weighted case, for a set of n pseudo-disks, their algorithm 
produces a solution of size (1 − ε)|OPT| in O (nO (1/ε2))

time; this result is similar to Erlebach’s results [7] for n
disks of arbitrary radii. For the weighted case, they pro-
posed an O (n3) time algorithm to produce an independent 
set of total weight Ω(|OPT|), where OPT is a subset of 
independent disks that produces maximum weight over 
all possible independent sets, provided the set of pseudo-
disks has linear union complexity.

1 An approximation algorithm for the MIS problem is said to be an 
α-approximation algorithm if it produces a solution of size 1

α |OPT|, where 
OPT is the subset of disks in an optimal solution of the said problem.
Our main results: First, we propose a 2-approximation al-
gorithm for the MIS problem for a given unit disk graph. 
The time and space complexities of our proposed algo-
rithm are O (n3) and O (n2), respectively. The perspec-
tive of this algorithm is that (i) the best known constant 
factor approximation algorithm available for this problem 
achieves an approximation factor 3 with time complexity 
O (n2) [13], and (ii) by plugging r = 2 in Matsui’s PTAS re-
sult for the MIS problem of unit disk graph [12], we get 
a 2-approximation algorithm that runs in O (n8) time us-
ing O (n4) space. Hence, our 2-approximation algorithm is 
much faster than the best known 2-approximation algo-
rithm for the MIS problem for unit disk graphs.

Second, we consider the MIS problem for a penny graph, 
which is a special case of unit disk graph where the cor-
responding unit disks do not overlap, i.e., the distance 
between any two disk centers is at least 1. Here an inter-
section between a pair of disks implies that the distance 
between corresponding centers is exactly 1. The MIS prob-
lem for the penny graph is also NP-complete [3]. Our algo-
rithm produces a 2-approximation result for a penny graph 
in O (n log n) time.

Next, we propose a PTAS for the MIS problem for the 
unit disk graph. It needs to optimally solve a subproblem 
of the MIS problem where the centers of a set of unit 
disks lie inside a square region of size k × k. We show 
that this problem can be solved in O (k3mσk log k) time us-
ing O (k log k + min(ϕk, m)) space, where m is the input 
size of the subproblem, σk ≤ 7k

3 + 2 and ϕk ≤ 9(� k
2 �)2. We 

then apply the two level shifting strategy of Hochbaum 
and Maass [10] to get a solution of the original MIS prob-
lem, that is of size at least 1

(1+ 1
k )2 |OPT|, in O (k4nσk log k)

time using O (n + k log k) space, where n is the input size 
of the original MIS problem. The time complexity of our 
algorithm is comparable with that of [12]; but its space 
complexity is O (n + k log k) compared to O (n2k) of [12]. 
For penny graphs, the time and space complexities of our 
PTAS are O (22σk nk + n log n) and O (2σk + n), respectively.

2. MIS problem for unit disk graphs

A layout of a set C of unit disks and the corresponding 
unit disk graph are shown in Figs. 1(a) and 1(b), respec-
tively. An independent set in this unit disk graph consists 
of a set of disks I ⊆ C which are mutually non-intersecting. 
The objective of the MIS problem is to find the largest sub-
set of disks in C which are mutually non-intersecting.

As in the 2-approximation algorithm for the MIS prob-
lem of fixed width rectangle intersection graph [1], we 
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Fig. 2. Proof of Lemma 1.
split the region containing the members in C into a 
set of s (≤ n) disjoint strips {H1, H2, . . . , Hs} of unit 
height, separated by horizontal lines at y-coordinates 
{h1, h2, . . . , hs+1}. The j-th strip H j contains the set of 
disks Q j = {Ct |Ct ∈ C and h j < yt ≤ h j+1} (see Fig. 1(c)). 
Finally, we consider only those strips which contain at 
least one disk center.

Matsui [12] showed that if the width of a strip is 
√

3
2 , 

then the intersection graph of unit disks centered inside 
a strip is a co-comparability graph [8]. Thus, the opti-
mum solution of the MIS problem for such a graph can be 
computed in O (m2) time [12], where m is the number of 
disk-centers inside that strip. We show that for a strip of 
width 1, the optimum solution of the MIS problem inside a 
strip can be obtained in O (m3) time and O (m2) space us-
ing dynamic programming. Finally, we use this algorithm 
for designing our 2-approximation algorithm for the MIS 
problem for the given unit disk graph.

We compute the MIS of disks in each strip separately. 
Let I j denote a maximum independent set of disks whose 
centers are in the strip H j . Now observe the following.

Observation 1. If | j − k| > 1, then the disks in I j and Ik are 
non-intersecting.

However, disks in I j and I j+1 may intersect.

So, both ISodd = {I1 ∪ I3 ∪ . . .} and ISeven = {I2 ∪ I4 ∪ . . .}
are independent sets. We report the solution IS for the 
MIS problem as the one among ISodd and ISeven having 
the larger cardinality. In Theorem 1, we show that |IS| ≥
1
2 |OPT|, where OPT is the optimum solution of the MIS 
problem for the set of disks C .

Now, we describe the method of computing the MIS of 
unit disks whose centers lie in a strip H of width 1. The 
following result is pertinent to our method.

Lemma 1. Let C1 , C2 , C3 and C4 be four disks of unit diame-
ter with centers c1 = (x1, y1), c2 = (x2, y2), c3 = (x3, y3) and 
c4 = (x4, y4), respectively, lying inside a horizontal strip H of 
width 1, and x1 < x2 < x3 < x4 . If C1 , C2 , C3 are pairwise non-
intersecting and C2 , C3 , C4 are also pairwise non-intersecting, 
then C1 and C4 are also non-intersecting.

Proof. Suppose that (i) C1, C2, C3 are mutually non-inter-
secting and (ii) C2, C3, C4 are also mutually non-inter-
secting. As a contradiction, let us assume that C1 and C4
are intersecting, i.e., δ(c1, c4) ≤ 1.

Consider the vertical strip V whose left and right 
boundaries are at c1 and c4, respectively (see Fig. 2(a)). 
As x1 < x2 < x3 < x4, both c2 and c3 are inside the verti-
cal strip V . Next, consider two circles D1 and D4 of unit 
radius centered at c1 and c4, respectively. As the unit 
disks C2 and C3 are mutually non-intersecting to both C1
and C4, their centers c2 and c3 must be outside the region 
D1 ∪ D4. So, c2 and c3 are inside the vertical strip V but 
outside the region D1 ∪ D4. Now, there are the following 
two possibilities for the positions of c2 and c3:

Case 1: c2 and c3 are in different sides of the line segment 
c1c4,

Case 2: both c2 and c3 are in the same side of the line 
segment c1c4.

In Case 1, let c′
2 and c′

3 be the extreme two intersection 
points of the line segment c2c3 with the region D1 ∪ D4
(see Fig. 2(a)). So, δ(c2, c3) ≥ δ(c′

2, c
′
3). Here, we can have 

the following two sub-cases.

Case 1.1: c′
2 and c′

3 are on the same circle (see Fig. 2(a)),

Case 1.2: c′
2 and c′

3 are on the different circles (see 
Fig. 2(b)).

In Case 1.1, without loss of generality, assume that c′
2 and 

c′
3 are on the circle D1. Here, the line segments pq and 

c′
2c′

3 do not intersect with each other but both of them 
intersect with the line segment c1c4. Thus the minor arc 
ĉ′

2c′
3 of D1 always contains the minor arc p̂q of D1. Thus 

δ(c2, c3) ≥ δ(c′
2, c

′
3) > δ(p, q) = 2 × √

1 − (δ(c1, c4)/2)2 ≥√
3 as δ(c1, c4) ≤ 1.

In Case 1.2, the line segments c′
2c′

3 and pq must be in-
tersecting. Let k be this intersection point (see Fig. 2(b)). 
Consider the triangles (c′

2c4k) and (pc4k) having com-
mon side c4k, δ(c4, c′

2) = δ(c4, p) and � c′
2c4k ≥ � pc4k. 

So, δ(c′
2, k) ≥ δ(p, k). Similarly, from the two triangles 

(kc1c′
3) and (kc1q), we can show that δ(k, c′

3) ≥ δ(k, q). 
Thus, here also δ(c2, c3) ≥ δ(c′

2, c
′
3) = δ(c′

2, k) + δ(k, c′
3) ≥

δ(p, k) + δ(k, q) = δ(p, q) ≥ √
3.
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Now, consider the rectangle R = H ∩ V which contains 
c1, c2, c3 and c4. As the longest line segment that can 
be accommodated inside the rectangle R is its diagonal, 
which is of length at most 

√
2, so δ(c2, c3) ≤

√
2 which 

contradicts both Case 1.1 and Case 1.2. Thus, Case 1 is not 
possible.

In Case 2, we have the following two sub-cases:

Case 2.1: c1 and c3 are in the same side of the line segment 
c2c4 (see Fig. 2(c)),

Case 2.2: c1 and c3 are in different sides of the line seg-
ment c2c4 (see Fig. 2(d)).

In Case 2.1, since x2 < x3, c3 must be in the triangle 
(c2, c4, m), where c2m is a vertical line (see Fig. 2(c)). 
Here, δ(c2, c3) + δ(c3, c4) ≤ δ(c2, m) + δ(m, c4) ≤ 2. So, the 
unit disk C3 intersects either the unit disk C2 or C4, which 
is a contradiction. So, the possibility of case 2.1 is ruled 
out.

In Case 2.2, as the maximum distance between c1
and c4 along the boundary of R = H ∩ V is 3, we 
have δ(c1, c2) + δ(c2, c3) + δ(c3, c4) ≤ 3. This implies that 
min{δ(c1, c2), δ(c2, c3), δ(c3, c4)} ≤ 1 (see Fig. 2(d)). Thus, 
at least one of the corresponding pair of disks are inter-
secting, which contradicts one of the two premises (i) or 
(ii) above for the lemma. Thus, our initial assumption that 
C1 and C4 are intersecting is wrong. This proves that the 
statement of the lemma is correct. �

Let Q = {C1, C2, . . . Cm} be a set of m unit disks whose 
centers lie in the strip H . We assume that the centers of 
no two disks have the same x-coordinate. In our algorithm, 
we consider the disks in Q are in increasing order of the 
x-coordinates of their centers.

We compute the MIS for Q by maintaining an up-
per triangular matrix μ for the dynamic programming. 
Its ( j, k)-th element corresponds to two non-intersecting 
disks C j , Ck , where j < k. The indices of the matrix μ are 
[0, . . . , m − 1] × [1, . . . , m], and each element μ[ j, k] con-
tains the size of the largest independent set containing C j
and Ck as the rightmost two elements.

Initially, all the matrix elements contain 0. The disks 
are processed in increasing order of the x-coordinates of 
their centers. When a disk Ck is being processed, we set 
μ[0, k] = 1 indicating that a singleton element Ck forms 
an independent set. In other words, we assume a virtual 
left most unit disk C0 such that C0 ∩ Ck = ∅ where k ∈
{1, 2, . . .m}. Lemma 1 suggests to compute the j-th row of 
the matrix μ as follows:

μ[ j,k] = j−1
max
i=0

{
μ[i, j] + 1

∣∣Ci ∩ Ck = ∅}
if C j ∩ Ck = ∅,

0 otherwise.

The matrix element μ[ j∗, k∗] having the maximum value 
is the size of the maximum independent set of Q . The 
corresponding independent set is reported by executing 
a backward pass starting from μ[ j∗, k∗]. In each step, 
from μ[ j, k] it moves to μ[i, j] (to report Ci) if μ[i, j] =
max j−1

μ[α, j]. If there are multiple choices, any one can 
α=0
be chosen for reporting, and the search continues from 
there. The process continues until i = 0 is reached.

Lemma 2. If the centers of a set of m unit disks lie inside a 
strip of width 1, then the dynamic programming procedure, pre-
sented above, correctly computes the optimum solution of the 
MIS problem for the corresponding unit disk graph in O (m3)

time using O (m2) space.

Proof. The correctness of our dynamic programming algo-
rithm follows from Lemma 1.

In order to compute each element of the matrix, one 
needs to consider at most m entries. Since the number of 
elements in the matrix μ is O (m2), the time and space 
complexity results follow. The backward pass for reporting 
the independent set needs O (m2) time, since reporting of 
each entry needs scanning a row of the matrix μ. �
Theorem 1. Given a set C of n unit disks in R2 , a subset of at 
least 1

2 |OPT| non-intersecting disks can be obtained in O (n3)

time using O (n2) space, where |OPT| is a largest subset of mu-
tually non-intersecting disks in the set.

Proof. Let OPTodd (resp. OPTeven) be the set of centers 
of the unit disks in an optimum solution OPT that lie 
in odd (resp. even) numbered strips. Therefore, |ISodd| ≥
|OPTodd|, and |ISeven| ≥ |OPTeven|. Thus, |ISodd| + |ISeven| ≥
|OPT|, and hence we have 2 max{|ISodd|, |ISeven|} ≥ |OPT|. 
This implies that the size of the reported answer |IS| =
max{|ISodd|, |ISeven|} ≥ 1

2 |OPT|.
Since the two sets of unit disks in every pair of odd 

numbered strips are disjoint, the total time required for 
computing ISodd (MIS for all the odd numbered strips) is 
O (n3). The same result holds for computing ISeven (MIS for 
all the even numbered strips). Thus the time complexity 
result follows.

The space complexity follows from the size of the ma-
trix μ to be maintained for solving the subproblem corre-
sponding to each strip. �
3. MIS problem for penny graphs

If unit disks do not overlap, then the corresponding 
unit disk graph is referred as penny graph. In other words, 
a unit disk graph is a penny graph if it has a unit disk 
representation in which the distance of each pair of two 
centers is at least 1. We refer the unit disks corresponding 
to the penny graph as pennies. Here an edge in the graph 
indicates that the corresponding two pennies touch each 
other.

The MIS problem for the penny graph is NP-hard [3]. 
We show that a 2-approximation result of the MIS problem 
for such a graph can be computed in O (n log n) time.

As in Section 2, we split the plane into strips of width 1. 
Considering each strip separately, we compute the maxi-
mum independent set among the pennies whose centers 
lie in that strip. We report the union of the solutions of ei-
ther the even numbered strips or the odd numbered strips 
depending on whose size is maximum. Following the same 
argument as in Theorem 1, it can be shown that the size 
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Fig. 3. A geometric layout of penny graph.
of this solution is 1
2 |OPT|, where OPT is a solution of the 

MIS problem for this penny graph of maximum cardinality.
In order to compute the maximum independent set 

among the pennies whose centers lie inside a strip, we 
draw vertical lines at unit distance apart, such that each 
penny is intersected by a vertical line. Next, we remove 
those vertical lines which does not intersect any penny.

Lemma 3. A vertical line can intersect at most 4 pennies whose 
centers are inside a horizontal strip of unit width.

Proof. We will prove the lemma by proving that a vertical 
line can intersect at most two pennies having their centers 
in the same side of a vertical line inside a strip of unit 
width.

For a contradiction, let us assume that there exists more 
than 2 such pennies which intersect a vertical line 
, and 
whose centers lie in the same side of 
. Thus, their cen-
ters lie in a rectangle of size 1

2 × 1 whose horizontal sides 
are aligned with the boundaries of the strip, and one of 
the vertical sides is aligned with the line 
. Consider a 
horizontal line segment that splits this rectangle into two 
squares of size 1

2 × 1
2 . By pigeonhole principle, one of these 

squares must contain the centers of at least two pennies. 
Thus the distance of the centers of these two pennies is at 
most 1√

2
< 1. This is impossible since two pennies cannot

properly intersect. �
Fig. 3(a) demonstrates an example with 3 pennies 

whose centers lie in a strip and are intersected by a verti-
cal line.

Suppose we have r vertical lines inside a strip as men-
tioned above. We then consider an (r + 2)-partite node 
weighted digraph where the set of nodes in the i-th 
set, denoted by V i , consists of all possible independent 
sets of disks among those intersected by the i-th ver-
tical line, i = 1, 2, . . . , r. By Lemma 3, the number of 
nodes in any V i can be at most 16. The weight of a 
node is equal to the number of non-intersecting disks 
it represents. Further, V 0 and Vr+1 respectively contain 
the dummy nodes s and t , each having weight 0. In 
Fig. 3(c), an instance is shown (without s and t), where 
the number of nodes corresponding to the vertical lines 
V 1, V 2 and V 3 are 8, 2 and 4, respectively. The nodes 
of V 1 are {φ, S1, S2, S3, S12, S13, S23, S123}, that of V 2 are 
{φ, S4} and that of V 3 are {φ, S6, S7, S67}. For a vertical 
line Vα , a node Sijk
 represents the non-intersecting pen-
nies {Ci, C j, Ck, C
} intersected by Vα . Similarly, nodes Sijk , 
Sij and Si for Vα are defined. If there is no penny on Vα , 
then we have φ for Vα . Next, there is a directed edge −−→uv
between a pair of nodes u ∈ V i and v ∈ V j if i < j and 
the disks corresponding to u and v are all pairwise non-
intersecting.2 There is no directed edge between a pair of 
nodes in V i , i = 1, 2, . . . , r. We add a directed edge from 
the node s to each node in 

⋃r
i=1 V i , and also a directed 

edge from each node in 
⋃r

i=1 V i to the node t . We also 
have two fields π(v) and μ(v) with each node v , where 
π(v) is the predecessor of v on the longest weighted path 
from s to v , and μ(v) indicates the weight of the afore-
said path from s to v . The maximum independent set of 

2 In Fig. 3, the edges from nodes in V 1 to nodes in V 2 and V 3 are 
shown. For the sake of neatness, the edges (i) from nodes in V 2 to those 
in V 3, from s to the nodes in V 1, V 2, V 3 and from the nodes in V 1, V 2, 
V 3 to t are not shown.

The center c5 of the disk C5 lies outside the strip; so it does not 
participate in the graph for the current strip.
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the penny graph is the longest weighted path from s to t
in this digraph. This can be computed in polynomial time 
since the digraph is acyclic [6].

Note that we need not explicitly construct the graph. 
We start from s and process the vertices of V i , i =
1, 2, . . . , r in order. While considering the vertices in V i , 
we assume that each node of V i contains the length of 
the longest path from s to that node, and we extend the 
paths from the nodes in V i to those in V i+1 and V i+2. Two 
points need to be noted here:

• while processing the nodes in V i , the reason for 
choosing the next two consecutive levels V i+1 and 
V i+2 is that there may not exist an edge among any 
pair of nodes (u, v), where u ∈ V i and v ∈ V i+1. But, 
there must exist edges from V i to V i+2.

• while processing the nodes in V i , the reason for not 
putting any edge between nodes from V i to the nodes 
in the levels V i+3, . . . , Vr is that, we need not have to 
consider the transitively oriented edges for computing 
the longest path in a digraph.

After processing all the nodes in Vr , the length of the 
longest path is available at node t . The exact path also 
can be reported using the π field of the nodes along the 
longest path in reverse direction starting from the node t . 
Thus, the time complexity of computing the longest path 
of the graph corresponding to a strip is dominated by sort-
ing of the centers of the pennies inside that strip. We have 
the following result.

Theorem 2. Given a set of n pennies in R2 , a set of mutually 
non-intersecting pennies of size at least 1

2 |OPT| can be com-
puted in O (n log n) time using O (n) space, where OPT is the 
largest subset of mutually non-intersecting pennies present in 
the plane.

It needs to be mentioned that if the centers of the pen-
nies have integer coordinates then an optimum solution of 
the MIS problem for the penny graph can be obtained in 
polynomial time using the following facts:

(a) As the centers of the unit disks are placed on the ver-
tices of a grid, the corresponding penny graph is pla-
nar and bipartite; it can be written as G = (V 1 ∪ V 2, E)

where the set of vertices V 1 and V 2 represent the set 
of disks with centers in even and odd diagonals of the 
grid, respectively.

(b) A maximum independent set of this penny graph can 
be obtained from a maximum bipartite matching [9]; 
the time complexity is O (

√
n|E|) which is O (n1.5)

since the graph is planar.

4. Polynomial-time approximation scheme (PTAS)

We use two level shifting strategy of Hochbaum and 
Maass [10] to propose a PTAS for the MIS problem for a 
unit disk graph. As in the earlier sections, we split the re-
gion into horizontal strips each of width 1. In the first level 
of shifting strategy, we perform k + 1 phases of execution. 
In the i-th phase (0 ≤ i ≤ k), we partition the plane into 
blocks; the first block consists of i consecutive strips from 
the beginning, and other blocks consist of k consecutive 
strips leaving one strip between two consecutive blocks so 
that solutions of different blocks are non-intersecting. The 
last block may contain fewer strips (see also [1]).

In a phase of the first level, we compute the solution 
of each block separately by applying the second level of 
shifting strategy (see subsection 4.2), add up the solutions 
of the blocks to get the solution of that phase. The phase 
producing a solution of maximum cardinality, is reported.

4.1. Optimally computing MIS for unit disks centered in a k × k
square

Let ϕk be the maximum number of non-overlapping 
unit disks whose centers lie in a k × k square region.

Lemma 4. ϕk ≤ 9(� k
2 �)2 .

Proof. Follows from the fact that a 2 × 2 square can con-
tain at most 9 non-overlapping unit disks (divide 2 × 2
square into 9 equal cells, the length of each diagonal of 
these cells is less than 1). �

Let σk be the maximum number of mutually non-
overlapping disks whose centers lie in a strip of width 
k > 1 and intersected by a vertical line 
.

Lemma 5. σk ≤ 7k
3 + 2.

Proof. The proof of this lemma is similar to Lemma 3. All 
the disks whose centers lie in the same side of the verti-
cal line 
 of the strip and are intersected by the line are 
within a k × 1

2 rectangle R . For k ≤ 6, we can show that 
if we partition R into k + 1 equal cells by k horizontal 
lines, then each of these cells cannot accommodate more 
than one points. The reason is that the maximum distance 
between two points residing in a k

k+1 × 1
2 rectangle is at 

most 
√

k
k+1

2 + 1
2

2
< 1, when k ≤ 6. So, when k ≤ 6, the 

number of mutually non-overlapping disks centered in a 
strip of width k and intersected by a vertical line 
 is at 
most 2(k + 1). For k > 6, we obtain the bound by split-
ting the k × 2 rectangle into � k

6 � smaller rectangles each 
of size 6 × 2 and remaining one of smaller size. Thus, in 
general, we have σk ≤ 14 × � k

6 � + 2(k − 6 × � k
6 � + 1) =

2 × � k
6 � + 2k + 2 ≤ ( 7k

3 + 2). �
Let m = |C′|, where C′ is the set of unit disks whose 

centers lie in a k × k square region. We choose all possible 
subsets of size 1, 2, . . . , ϕk among the set of m disks. For 
each choice of size i, the checking of whether the chosen 
disks are mutually non-intersecting needs O (ik) time in 
the worst case.3 Thus, the total time is O (k3mϕk ). The extra 

3 We sort the chosen disks with respect to their x-coordinates in 
O (i log i) time in the worst case. Now, the testing of whether a chosen 
disk c intersects any other chosen disk c′ needs at most O (k) time. The 
reason is as follows: let c be intersected by a vertical line 
′ , now we 
need to check c with the chosen disks that are intersected by 
′ , and the 
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space required for generating the possible subsets is O (m). 
We now describe a faster method.

Consider the middle-most vertical line 
 in the re-
gion R . Let it intersect a subset S ⊆ C′ , where |S| ≤ m in 
the worst case. As the maximum number of mutually non-
intersecting members of S intersecting 
 is σk , we consider 
all possible mutually non-intersecting subsets of disks of 
sizes 0, 1, 2, . . . , σk . The number of such subsets can be 
at most O (mσk ). For each subset S ′ ⊆ S , compute a non-
intersecting set of disks of maximum cardinality among 
the members in C′ that contains the members of S ′ as 
stated below. Finally, the one having maximum size is re-
ported.

While processing a subset S ′ ⊆ S , we remove the disks 
in S ′ , and those in C′ which are intersected by the mem-
bers of S ′ . The remaining disks in C′ are partitioned into 
two disjoint subsets to the left and right of 
. We compute 
the optimum solution of these two subsets independently 
using the same procedure recursively. The centers of each 
subset of disks is now contained in a rectangle of size 
k × � k

2 �.
We maintain an array containing the disks in C′ in 

sorted order of their x-coordinates. While executing a sub-
problem in the recursive call, we can identify the subset of 
disks S ∈ C′ that are intersected by the corresponding ver-
tical line 
 using binary search. The centers of these disks 
are contiguous in the array C′ . We need an array of size 
σk to generate all possible combinations of disks of sizes 
1, 2, . . . , σk among the members in S . A valid subset is the 
one whose members (i) are mutually non-intersecting, and 
(ii) do not intersect with the disks in the solution consid-
ered in the levels of recursion prior to this level. Thus, in 
each level of recursion, we need to (i) preserve the array 
containing the permutation, and (ii) to pass the indepen-
dent set of disks, say χ , chosen till now to its next level, 
which can be at most m in number. Again by Lemma 4, 
this number can be at most ϕk . Thus, considering all the 
levels of recursion the total space required can be at most 
O (k log k + min(ϕk, m)). The first term corresponds to the 
extra space required for storing a binary sequence of k el-
ements for all the levels of recursion.

We use T (m, q) to denote the time for computing 
the optimum solution of a rectangle of size k × q. Thus, 
we have T (m, q) = O (log m) + d0mσk × (d1k2 + d2k3 +
d3k + 2T (m, q2 )), where d0, d1, d2, d3 are constants. Here, 
O (log m) time is required to identify a disk in S inter-
sected by the corresponding vertical line 
; the first, sec-
ond, third and fourth terms inside the parenthesis indicate 
the time for (i) checking whether the chosen disks are 
non-intersecting, (ii) checking whether the chosen disks 
are non-intersecting with the disks in set χ chosen in 
the lower levels of recursion, (iii) inserting the chosen 
disks in the set χ , and (iv) for solving the two sub-
problems in the next level of recursion. Thus, we have 
T (m, q) = log m + c1k3mσk + c2mσk T (m, q2 ), where c1 and 
c2 are constants. Solving this recursion, we get T (m, k) =
O (k3mσk log k). Thus, we have the following results:

vertical lines previous and next to 
′ by traversing in the sorted list both 
towards the left and the right of c. The number of such disks is O (k) (see 
Lemma 5) even if i > k.
Lemma 6. The worst case time and extra space required for 
computing an optimum solution of the MIS problem for a 
set of m disks whose centers lie in a square of size k × k is 
O (k3mσk log k) and O (k log k + min(ϕk, m)), respectively. Here 
ϕk ≤ 9(� k

2 �)2 and σk ≤ 7k
3 + 2.

4.2. MIS for unit disk layout of a block of width k

Here the objective is to find a set of non-intersecting 
subset of disks among the set of disks in CB whose cen-
ters lie in a block B of width k (determined by k horizontal 
strips) where k > 1. We draw vertical lines at unit dis-
tance apart and execute k + 1 phases. In the i-th phase, 
we consider the first rectangle of size i × k and other con-
secutive k × k squares leaving one vertical strip between 
each of them.4 In Lemma 6, we show that the optimum 
solution of the MIS problem for a k × k square region R
can be solved in time O (k3|C′|σk log k), where C′ ⊆ CB is 
the subset of disks whose centers lie inside the square and 
σk ≤ 7k

3 + 2. The same result holds for a rectangle of size 
i × k, i < k. This leads to the following result:

Lemma 7. Given a set CB of nB disks whose centers lie inside 
a block B of width k, a non-intersecting subset ISB of the disks 
in CB can be computed in O (k4nσk log k

B ) time, such that |ISB | ≥
1

(1+ 1
k )

|OPT B |, where OPT B is a maximum cardinality subset of 

non-intersecting disks in the sets CB and σk ≤ 7k
3 + 2.

Proof. The time complexity follows from the fact that 
(i) the shifting strategy consists of k + 1 phases, and 
(ii) the k × k squares considered in a phase are disjoint. 
The analysis of the approximation result is similar to that 
of the PTAS for fixed height rectangles proposed by Agar-
wal et al. [1]. Here, in the i-th phase, we have computed 
the optimum solution ISi

B for the set of disks considered 
in this phase. If αi is the set of all disks in the opti-
mum solution OPT B that are intersected by the vertical 
lines numbered {i + j ∗ k, ∀ j = 0, 1, 2, . . .}, then |ISi

B | ≥
|OPT B | − αi . Since mink

i=0 αi ≤ 1
k+1 |OPT B |, we have |ISB | =

maxk
i=0 |ISi

B | ≥ |OPT B | − mink
i=0 αi ≥ |OPT B | − 1

k+1 |OPT B | =
1

(1+1/k)
|OPT B |. �

4.3. Approximation result and complexity

Theorem 3. For a given integer k ≥ 1, the two level nested 
shifting strategy for solving the MIS problem produces a solu-
tion of size 1

(1+ 1
k )2 |OPT|, where OPT is the subset of disks in 

an optimum solution. The worst case time and space complex-
ities are O (k4nσk log k) and O (n + k log k), respectively, where 
σk ≤ 7k

3 + 2.

Proof. The analysis of approximation result is similar to 
that in Lemma 7. In each phase, instead of computing the 
optimum solution, we are computing a solution of size 

4 In other words, the i-th phase consists of all the disks that are not 
intersected by the i + j ∗ k-th vertical line, for all j = 0, 1, 2, . . . .
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1
(1+ 1

k )
|OPT|. Thus, after executing the k + 1 phases, the re-

ported answer (the solution of maximum size among the 
k + 1 phases) achieves an approximation factor (1 + 1

k )2.
As the disks in different blocks are disjoint in a 

phase, the total time required for executing a phase is 
O (k3nσk log k). Since we need to execute (k + 1)-phases, the 
time complexity result follows. The space complexity is 
justified while explaining the recursion. �

A similar technique leads to a PTAS for the penny graph 
also. The complexity results are as follows:

Theorem 4. For a given integer k ≥ 1, one can obtain a 
(1 + 1

k )-approximation result for penny graph in O (22σk nk +
n log n) time using O (2σk + n) space, where σk ≤ 7k

3 + 2.

Proof. While processing a block B of width k containing 
a set C B of disks (m = |C B |) whose centers lie inside the 
block B , the sorting of those disk-centers with respect to 
their x-coordinates needs O (m log m) time. We use simi-
lar strategy as in Section 3. While solving this instance, 
the number of nodes in the graph corresponding to a ver-
tical line can be at most 2σk . Here processing of a node 
needs comparing with the nodes on its predecessor and 
successor vertical line. Since the number of non-empty 
vertical strips in a block can be O (m) in the worst case, 
the time for computing the optimal solution in the block 
B of m vertical strips is O (22σk m). Since the disks of differ-
ent blocks are disjoint, the time complexity of a phase is 
O (22σk n). Again, since we need to execute k +1 phases, the 
overall time complexity is O (22σk nk). Using the same argu-
ment as in Section 3, the space complexity is O (2σk + n).

In each phase, as we compute the optimum solution of 
each block, so the analysis of the approximation factor is 
similar to that in Lemma 7. �
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