
25

Exact Algorithms for Terrain Guarding

PRADEESHA ASHOK, International Institute of Information Technology Bangalore

FEDOR V. FOMIN, University of Bergen

SUDESHNA KOLAY, Eindhoven University of Technology, Netherlands

SAKET SAURABH, University of Bergen and Institute of Mathematical Sciences

MEIRAV ZEHAVI, Ben-Gurion University

Given a 1.5-dimensional terrain T , also known as an x-monotone polygonal chain, the Terrain Guarding
problem seeks a set of points of minimum size onT that guards all of the points onT . Here, we say that a point
p guards a point q if no point of the line segment pq is strictly below T . The Terrain Guarding problem
has been extensively studied for over 20 years. In 2005 it was already established that this problem admits a
constant-factor approximation algorithm (SODA 2005). However, only in 2010 King and Krohn (SODA 2010)
finally showed that Terrain Guarding is NP-hard. In spite of the remarkable developments in approxima-
tion algorithms for Terrain Guarding, next to nothing is known about its parameterized complexity. In
particular, the most intriguing open questions in this direction ask whether, if parameterized by the size k of
a solution guard set, it admits a subexponential-time algorithm and whether it is fixed-parameter tractable.

In this article, we answer the first question affirmatively by developing an nO (
√

k)-time algorithm for both
Discrete Terrain Guarding and Continuous Terrain Guarding. We also make non-trivial progress with
respect to the second question: we show that Discrete Orthogonal Terrain Guarding, a well-studied spe-
cial case of Terrain Guarding, is fixed-parameter tractable.

CCS Concepts: • Theory of computation → Fixed parameter tractability;

Additional Key Words and Phrases: Terrain guarding, art gallery, exponential-time algorithms

ACM Reference format:

Pradeesha Ashok, Fedor V. Fomin, Sudeshna Kolay, Saket Saurabh, and Meirav Zehavi. 2018. Exact Algorithms
for Terrain Guarding. ACM Trans. Algorithms 14, 2, Article 25 (April 2018), 20 pages.
https://doi.org/10.1145/3186897

A preliminary version of this article will appear in the proceedings of SoCG 2017. The research leading to these re-
sults received funding from the European Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013)/ERC Grant Agreement no. 306992 (S.S.). Part of this work was done while F. V. Fomin and M. Zehavi were
visiting the Simons Institute for the Theory of Computing.
Authors’ addresses: P. Ashok, International Institute of Information Technology Bangalore, 26/C, Hosur Road, Electronics
City Phase 1, Electronic City, Bengaluru, Karnataka 560100, India; email: pradeesha@iiitb.ac.in; F. V. Fomin, University
of Bergen, Department of Informatics, Thormøhlensgate 55 N-5008 Bergen, Norway; email: fomin@ii.uib.no; S. Kolay,
Eindhoven University of Technology, Netherlands, Eindhoven, 5612AZ, Netherlands; email: s.kolay@tue.nl; S. Saurabh,
University of Bergen, Department of Informatics, Thormøhlensgate 55 N-5008 Bergen, Norway and Institute of Mathemat-
ical Sciences, 4th Cross Street, CIT Campus, Tharamani, Chennai, Tamil Nadu 600113, India; email: saket@imsc.res.in; M.
Zehavi, Computer Science Department, Alon High-Tech Building, Ben-Gurion University of the Negev, Beersheba, Israel;
email: meiravze@bgu.ac.il.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 1549-6325/2018/04-ART25 $15.00
https://doi.org/10.1145/3186897

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

https://doi.org/10.1145/3186897
mailto:permissions@acm.org
https://doi.org/10.1145/3186897

25:2 P. Ashok et al.

1 INTRODUCTION

The study of terrains, also known as x-monotone polygonal chains, has attracted widespread and
growing interest over the last few decades in the field of Discrete Computational Geometry. A
terrain is a graphT = (V ,E) where each vertexvi ∈ V , 1 ≤ i ≤ n, is associated with a point (xi ,yi)
on the two-dimensional Euclidean plane such that x1 < x2 < · · · < xn , and the edge set is E =
{{vi ,vi+1} : 1 ≤ i ≤ n − 1}. The points lying on the terrain could be the vertices vi , 1 ≤ i ≤ n, or
the points that lie on the edge set E. In the Terrain Guarding problem, the input is a terrain and
a positive integer k , and the task is to decide whether one can place guards on at most k points
on a given terrain such that each point on the terrain is seen by at least one guard. Here, we say that
a point p sees a point q if no point of the line segment pq is strictly below T . This problem is also
known as the Continuous Terrain Guarding problem or Terrain Guarding in a continuous
domain, since we are allowed to place guards on the continuous domain of the given terrain, and
we want to cover all points lying on the terrain. Another variant of this problem is the Discrete
Terrain Guarding problem, where the input consists of a terrain T = (V ,E) on n vertices and a
positive integer k ≤ n, and the objective is to determine whether there is a subset S ⊆ V of size
at most k that sees V . This problem will also be referred to as Terrain Guarding in a discrete
domain.

Both discrete and continuous variants of the Terrain Guarding problem arise in a wide variety
of applications relevant to the design of various communication technologies such as cellular tele-
phony and line-of-sight transmission networks for radio broadcasting. It also arises in applications
of coverage of highways, streets, and walls with street lights or security cameras [3, 15].

The visibility graphs of terrains exhibit unique properties which render the complexity of the
Terrain Guarding problem difficult to elucidate. Some of these properties have already been
observed in 1995 by Abello et al. [1], and some of them remain unknown despite recent advances
to identify them [14]. Indeed, the Terrain Guarding problem has been extensively studied since
1995, when an NP-hardness proof was claimed but never completed by Chen et al. [6]. Almost 15
years later King and Krohn [24] finally showed that this problem is NP-hard.

Particular attention has been given to the Terrain Guarding problem from the viewpoint of
approximation algorithms. In 2005, Ben-Moshe et al. [3] obtained the first constant-factor approx-
imation algorithm for Discrete Terrain Guarding. Afterward, the approximation factor was
gradually improved in [7, 13, 23], until a Polynomial-Time Approximation Scheme (PTAS) was
proposed by Gibson et al. [18] for Discrete Terrain Guarding. Recently, Friedrichs et al. [15]
showed that even the Continuous Terrain Guarding problem admits a PTAS.

The Terrain Guarding problem has also gained interest due to its deceptive resemblance to
the Art Gallery problem, where instead of a terrain, it is necessary to guard a polygon. The Art
Gallery problem was introduced by Klee in 1973 [28], and it is arguably one of the most well-
known problems in Discrete Computational Geometry. For more information on the Art Gallery
problem, we refer to the books dedicated to its study [16, 28, 30]. Note that the Art Gallery prob-
lem does not admit a subexponential-time algorithm. Indeed, the known NP-hardness reduction
for the Art Gallery problem, even when restricted to orthogonal polygons, reduces a 3-SAT in-
stance on n variables and m clauses to an instance of Art Gallery with O (n +m) vertices [28,
29]. This reduction combined with the Exponential Time Hypothesis (ETH) [8, 20] implies the
following result.

Corollary 1 (Folklore). Unless ETH fails, there is no algorithm for Art Gallery, even when

restricted to orthogonal polygons, that achieves a running time of 2o (n) . That is, the Art Gallery
problem does not admit a subexponential-time algorithm.

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

Exact Algorithms for Terrain Guarding 25:3

In the parameterized setting, where n is the number of vertices in the polygon and k is the
number of guards, clearly one can design an algorithm for the Art Gallery problem running
in time nO (k) by enumerating all subsets of vertices of size at most k . Interestingly, by the very
recent result of Bonnet and Miltzow [5] this trivial brute-force algorithm is essentially optimal.
More precisely, they proved that an algorithm solving Art Gallery in time f (k) · no (k/ log k) for
any function f would imply that the ETH fails. The reduction given in [5] also implies that Art
Gallery is W[1]-hard parameterized by k . Thus, it is highly unlikely that Art Gallery is fixed-
parameter tractable (FPT). On the other hand, the Art Gallery problem on monotone polygons
seems to be an easier variant to solve. As evidence, the monotone variant has a constant factor
approximation [25] while no such result is known for Art Gallery. Since terrains are also de-
fined by monotone chains, this gives us a hint that the Terrain Guarding problem might yield
better algorithms than Art Gallery. We should point out that, to the best of our knowledge, no
subexponential or FPT algorithms are known for Art Gallery in monotone polygons.

Orthogonal Terrain Guarding is a problem of independent interest that is a special case of
Terrain Guarding. In this problem, the terrain is orthogonal: for each vertex vi , 2 ≤ i ≤ n − 1,
either both xi−1 = xi and yi = yi+1 or both yi−1 = yi and xi = xi+1. In other words, each edge is
either a horizontal line segment or a vertical line segment, and each vertex is incident to at most
one horizontal edge and at most one vertical edge. The Orthogonal Terrain Guarding problem
has already been studied from the perspective of algorithms theory [12, 21, 26, 27]. Although the
PTASes designed in [18] or [15] work for the Orthogonal Terrain Guarding problem as well,
there are a few studies on this particular variant of Terrain Guarding that bring out interesting
structural properties specific to this variant. A prime example is the work of Katz and Roisman
[21], where they gave a relatively simple 2-approximation algorithm for the problem of guarding
all vertices of an orthogonal terrain by vertices. Recently, Lyu and Üngör improved upon this result
by developing a linear-time 2-approximation algorithm for Orthogonal Terrain Guarding. The
papers [27] and [12] studied restrictions under which Orthogonal Terrain Guarding can be
solved in polynomial time.

While by now we have quite satisfactory understanding of the approximability of Terrain
Guarding, the parameterized hardness of this problem is unknown. Currently, the most funda-
mental open questions regarding the complexity of the Terrain Guarding problem are the fol-
lowing:

—Does Terrain Guarding admit a subexponential-time algorithm?
—Is Terrain Guarding FPT with respect to k?

Indeed, King and Krohn [24] state that “the biggest remaining question regarding the complex-
ity of Terrain Guarding is whether or not it is FPT.” Moreover, interest in the design of efficient,
exact exponential-time algorithms for this problem has been expressed at workshops such as the
Lorentz Workshop on Fixed-Parameter Computational Geometry [17]. To the best of our knowl-
edge, the only work which is somewhat related to the second question is the one by Khodakarami
et al. [22], who introduced the parameter “the depth of the onion peeling of a terrain” and showed
that Terrain Guarding is FPT with respect to this parameter.

In this article, we address both of these questions. First, we completely resolve the first ques-
tion by designing a subexponential-time algorithm for Terrain Guarding in both discrete and

continuous domains. For this purpose, we develop an nO (
√

k)-time algorithm for Terrain Guard-
ing in discrete domains. Friedrichs et al. [15] proved that given an instance of Terrain Guard-
ing in a continuous domain, one can construct (in polynomial time) an equivalent instance of
Terrain Guarding in a discrete domain. More precisely, given an instance (T = (V ,E),k) of

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

25:4 P. Ashok et al.

Terrain Guarding in a continuous domain, Friedrichs et al. [15] designed a discretization proce-
dure that outputs an instance (T ′ = (V ′,E ′),k) of Terrain Guarding in a discrete domain such
that (T = (V ,E),k) is a yes-instance if and only if (T ′ = (V ′,E ′),k) is a yes-instance. Unfortu-
nately, this reduction blows up the number of vertices of the terrain to O (n3), and therefore the
existence of a subexponential-time algorithm for Terrain Guarding in discrete domains does not
imply that there exists such an algorithm for Terrain Guarding in continuous domains. How-
ever, observe that the reduction does not change the value of the parameter k . Thus, since we solve

Terrain Guarding in discrete domains in time nO (
√

k) rather than nO (
√

n) , we are able to deduce
that Terrain Guarding in continuous domains is solvable in time nO (

√
k) . Observe that, in both

discrete and continuous domains, it can be assumed that k ≤ n: to guard all of the points that lie
on a terrain, it is sufficient to place guards only on the vertices of the terrain. Hence, when we
solve Terrain Guarding in continuous domains, we assume that k ≤ n where n is the number
of vertices of the input continuous terrain and not of the discrete terrain output by the reduction.
The next theorem summarizes our algorithmic contribution.

Theorem 1.1. Terrain Guarding in both discrete and continuous domains is solvable in time

nO (
√

k) . Thus, it is also solvable in time nO (
√

n) .

Observe that our result, Theorem 1.1, demonstrates an interesting dichotomy in the complexities
of Terrain Guarding and the Art Gallery problem: Corollary 1 implies that the Art Gallery
problem does not admit an algorithm with running time 2o (n) , while Terrain Guarding in both
discrete and continuous domains is solvable in time 2O (

√
n log n) . When we measure the running

time in terms of both n and k , the Art Gallery problem does not admit an algorithm with run-
ning time f (k) · no (k/ log k) for any function f [5], while Terrain Guarding in both discrete and

continuous domains is solvable in time nO (
√

k) .
Our algorithm is based on a suitable definition of a planar graph. A notion of a planar graph

was recently used in designing a local search based PTAS for the Terrain Guarding problem [18].
We were inspired by this construction and tried to use an appropriate notion of a planar graph
in our settings. Toward this we define a planar graph that has a small domination number and
which captures both the manner in which a hypothetical solution guards the terrain and some
information on the layout of the terrain itself. Having this planar graph, we are able to “guess”
separators whose exploitation, which involves additional guesses guided by the structure of the
graph, essentially results in a divide-and-conquer algorithm. The design of the divide-and-conquer
algorithm is also non-trivial since given our guesses, it is not possible to divide the problem into
two simpler subproblems in the obvious way—that is, we cannot divide the terrain into two disjoint
subterrains that can be handled separately. We overcome this difficulty by dividing not the terrain
itself, but a set of points of interest on the terrain.

We also shed light on the second question by showing that Orthogonal Terrain Guarding
of vertices of the orthogonal terrain with vertices is FPT with respect to the parameter k . More
precisely, we obtain the following result.

Theorem 1.2. Orthogonal Terrain Guarding of vertices of the terrain with vertices is solvable

in time kO (k) · nO (1) .

Our algorithm is based on new insights into the structure of orthogonal terrains, particularly
into the relations between their left and right reflex and convex vertices. We integrate these in-
sights in the design of an algorithm that is based on the proof that one can ignore “exposed ver-
tices,” which are vertices seen by too many vertices of a specific type, greedy localization, and a
non-trivial branching strategy. We conclude the introduction by posing the following open prob-
lems: Are Terrain Guarding and Orthogonal Terrain Guarding in continuous domains FPT?

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

Exact Algorithms for Terrain Guarding 25:5

2 PRELIMINARIES

For a positive integer k , we use [k] as a shorthand for {1, 2, . . . ,k }.
Graphs. We use standard notation and terminology from the book of Diestel [10] for graph-

related terms which are not explicitly defined here. We only consider simple undirected graphs.
Given a graph H , V (H) and E (H) denote its vertex set and edge set, respectively. Given a subset
U ⊆ V (H), the subgraph of H induced byU is denoted by H [U]. A dominating set of H is a subset
S ⊆ V (H) such that each vertex inV (H) either belongs to S or has a neighbor in S . The domination

number of H , denoted by γ (H), is the minimum size of a dominating set of H . A clique cover of H is
a partition (V1,V2, . . . ,Vt) of V (H) for some t ∈ N such that for any i ∈ [t], H [Vi] is a clique. The
size of the clique cover is t . The clique cover number of H , denoted by κ (H), is the minimum size
of a clique cover of H . An independent set of H is a subset U ⊆ V (H) such that there do not exist
two vertices inU that are neighbors in H . The independence number of H , denoted by α (H), is the
maximum size of an independent set of H . Given a graphG, a cycleC = {v1,v2, . . . ,vn ,vn+1 = v1}
is called an induced cycle if the induced subgraph on the vertex set V (C) is the cycle C itself. A
chordal graph is a graph that has no induced cycle on more than three vertices. In the context of
chordal graphs, we will need to rely on the following well-known results.

Theorem 2.1 ([19]). Let H be a chordal graph. Then

—A clique cover of H of minimum size can be found in linear time.

—An independent set of H of maximum size can be found in linear time.

—κ (H) = α (H).

Terrains. A 1.5-dimensional terrain T = (V ,E), or terrain for short, is a graph on vertex-set V =
{v1,v2, . . . ,vn } where each vertex vi is associated with a point (xi ,yi) on the two-dimensional
Euclidean plane such that x1 < x2 < · · · < xn , and the edge set is E = {{vi ,vi+1} : i ∈ [n − 1]}. We
say that a point p sees a point q if every point of the line segment pq is either on or above T . Note
that if a point p sees a point q, then the point q sees the point p as well. More generally, we say
that a set of points P sees a set of points Q if each point in Q is seen by at least one point in P .

An orthogonal terrain, also known as a rectilinear terrain, is a terrain T = (V ,E) where for each
vertexvi , 2 ≤ i ≤ n − 1, either both xi−1 = xi andyi = yi+1 or bothyi−1 = yi and xi = xi+1. In other
words, an orthogonal terrain is a terrain where each edge is either a horizontal line segment or
vertical line segment, and each vertex is incident to at most one horizontal edge and at most one
vertical edge. A vertexvi , 2 ≤ i ≤ n − 1 belongs to one of the four following categories: if xi = xi+1

and yi > yi+1, it is a right reflex vertex; if xi = xi+1 and yi < yi+1, it is a right convex vertex; if
xi = xi−1 and yi > yi−1, it is a left reflex vertex; if xi = xi−1 and yi < yi−1, it is a left convex vertex.
Moreover, if x1 = x2 andy1 > y2,v1 is a right reflex vertex; if x1 = x2 andy1 < y2, it is a right convex
vertex; otherwise, it is a left convex vertex. Symmetrically, if xn = xn−1 and yn > yn−1, vn is a left
reflex vertex; if xn = xn−1 and yn < yn−1, it is a left convex vertex; otherwise, it is a right convex
vertex. We also say that a vertex is a reflex vertex if it is either a left reflex vertex or a right reflex
vertex, and otherwise, it is a convex vertex. Furthermore, we say that left reflex/convex vertices
are opposite to right reflex/convex vertices. An illustrative example of these notions is given in
Figure 1.

LetT = (V ,E) be a terrain and letU be a subset ofV . We use vis(U) to denote the set containing
every vertex in V that is seen by at least one vertex in U . In case U = {u}, we abuse notation
and write vis(u) to refer to vis(U). We use cut(U) to denote the set of (maximal) subterrains of
T that result from the removal of the vertices in U . That is, cut(U) is the set of each subterrain
T ′ = (V ′,E ′) for which there exist i < j such that V ′ = {vi ,vi+1, . . . ,vj } ⊆ V \U , either i = 1 or
vi−1 ∈ U , and either j = n orvj+1 ∈ U . An illustrative example of this notation is given in Figure 2.

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

25:6 P. Ashok et al.

Fig. 1. Reflex and convex vertices.

Fig. 2. The result of the operation cut(U) where U is the set of black vertices.

Given a subset X ⊆ V and subterrain T ′ = (V ′,E ′), we define X [T ′] = X ∩V ′. Moreover, given a
set of terrains T , we let X [T] be set of vertices that is the union of the sets in {X [T ′] : T ′ ∈ T }.
Terrain Guarding Problems. For the sake of clarity, we would like to state the several variants
of Terrain Guarding that we consider in this article. The decision version of the (Discrete)
Terrain Guarding problem is defined as follows. Its input consists of a terrain T = (V ,E) on n
vertices and a positive integerk ≤ n, and the objective is to determine whether there is a subset S ⊆
V of size at most k that seesV . We say that such a subset S is a solution. In the special case where
the input terrain is an orthogonal terrain, the problem is known as the Orthogonal Terrain
Guarding problem.

The Terrain Guarding problem is also defined in the context of continuous domains, in which
case it is called the Continuous Terrain Guarding problem. The input for the Continuous
Terrain Guarding problem is the same as the input for the Discrete Terrain Guarding prob-
lem. We say that a point lies on the terrain T if it is either a vertex in V or a point on an edge

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

Exact Algorithms for Terrain Guarding 25:7

between two adjacent vertices. The objective is to determine whether there is a subset of points
of size at most k that lie on T and which see every point that lies on T .

To develop our algorithms for Discrete Terrain Guarding, it will be more convenient to
solve a problem generalizing Discrete Terrain Guarding, which we call Annotated Terrain
Guarding. Roughly speaking, Annotated Terrain Guarding is the variant of Discrete
Terrain Guarding where one cannot place a “guard” on any vertex, but only on vertices from
a given set G, and where it is not necessary to “cover” all of the vertices in V , but only those
belonging to a given setC . Formally, the input consists of a terrainT = (V ,E) on n vertices, a pos-
itive integer k ≤ n, and subsets G,C ⊆ V . The objective is to determine whether there is a subset
S ⊆ G of size at most k that sees C . We say that such a subset S is a solution. Clearly, Discrete
Terrain Guarding is the special case of Annotated Terrain Guarding where G = C = V . We
will refer to the special case where the input terrain is an orthogonal terrain as the Annotated
Orthogonal Terrain Guarding problem.

Treewidth. A tree decomposition of a graph H is a pair (D, β), where D is a rooted tree and β :
V (D) → 2V (G) is a mapping that satisfies the following conditions.

—For each vertexv ∈ V (H), the set {d ∈ V (D) : v ∈ β (d)} induces a non-empty and connected
subtree of D.

—For each edge {v,u} ∈ E (H), there exists d ∈ V (D) such that {v,u} ⊆ β (d).

A vertex d inV (D) is called a node, and the set β (d) is called the bag at d . We let descendants(d)
denote the set of descendants of d in D. The width of (D, β) is the size of the largest bag minus one
(i.e., maxd ∈V (D) |β (d) | − 1). The treewidth of H , denoted by tw (H), is the minimum width among
all possible tree decompositions of H .

Standard arguments on trees (see, e.g., [8, Lemma 7.20]) imply the correctness of the following
observation.

Observation 1. Let (D, β) be a tree decomposition of a graphH where D is a binary tree, and let S
be a subset ofV (H). Then, there exists a noded ∈ V (D) such that |S |/3 ≤ |⋃d ′ ∈descendants(d) β (d ′) ∩ S |
and |⋃d ′ ∈descendants(d)\{d } β (d ′) ∩ S | ≤ 2|S |/3.

Parameterized Complexity. In Parameterized Complexity each problem instance is accompa-
nied by a parameter k . A central notion in this field is the one of FPT. This means, for a given
instance (I ,k), solvability in time f (k) |I |O (1) where f is some function of k . For more information
on Parameterized Complexity we refer the reader to monographs such as [8, 11].

Bit Vectors. A t-length bit vector is a vectorv = (v1,v2, . . . ,vt) such that for any i ∈ [t],vi ∈ {0, 1}.
Given two t-length bit vectors v and u, the Hamming distance between them, denoted by H (v,u),
is the number of indices i ∈ [t] such that vi � ui .

3 SUBEXPONENTIAL ALGORITHM

Recall that the Annotated Terrain Guarding problem takes as input a terrain T = (V ,E) on
n vertices, a positive integer k ≤ n, and subsets G,C ⊆ V . The objective is to determine whether
there is a subset S ⊆ G of size at most k that sees C . In this section, we prove that Annotated
Terrain Guarding can be solved in time nO (

√
n) . In fact, we obtain a somewhat stronger result:

Theorem 3.1. Annotated Terrain Guarding is solvable in time nO (
√

k) .

Since Discrete Terrain Guarding is a special case of Annotated Terrain Guarding, we
derive the following result.

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

25:8 P. Ashok et al.

Corollary 2. Discrete Terrain Guarding is solvable in time nO (
√

k) .

We also derive the following result.

Corollary 3. Continuous Terrain Guarding is solvable in time nO (
√

k) .

Throughout this section, we let (T = (V ,E),n,k,G,C) denote the input instance of Annotated
Terrain Guarding. First, in Section 3.1, we carefully define a planar graph PS that captures rela-
tions between a hypothetical solution and the setC . Then, in Section 3.2, we rely on properties of
PS to show that there exists a partition of G ∪C into two sets which rarely “alternate” along the
terrain and which are both relatively “small.” In Section 3.3, we show how the existence of this
partition allows us to design an algorithm for Annotated Terrain Guarding. The algorithm is
based on the method of divide and conquer, although the subproblems we obtain are not associated
with subterrains smaller than the original one. Finally, in Section 3.4 we deduce that Continuous

Terrain Guarding is also solvable in time nO (
√

k) .

3.1 The Planar Graph PS

In this section, we assume that the input instance is a yes-instance. Let S be some hypothetical
solution, that is, a subset of G of size at most k that sees C . We define three sets of edges:

—The set E1 contains an edge {vi ,vj } between any two verticesvi ,vj ∈ S ∪C such that there
is no vt ∈ S ∪C with i < t < j.

—The set E2 contains an edge {vi ,vj } between any two vertices vi ∈ S and vj ∈ C ∩ vis(vi)
such that i < j and there is no vt ∈ S with t < i and vj ∈ vis(vt).

—The set E3 contains an edge {vi ,vj } between any two vertices vi ∈ S and vj ∈ C ∩ vis(vi)
such that j < i and there is no vt ∈ S with i < t and vj ∈ vis(vt).

We define PS as the graph on the vertex setV (PS) = S ∪C and the edge set E (PS) = E1 ∪ E2 ∪ E3.
Denote the vertices in V (PS) by u1,u2, . . . ,u |V (PS) | with respect to the order (from left to right) in
which they appear on the terrainT . An illustrative example is given in Figure 3. We show that PS

is a planar graph using techniques similar to that in [18]. To show that PS is a planar graph, we
will need the following result, known as the Order Claim, which was proved in [3].

Lemma 3.2 ([3]). Let vi ,vj ,vt ,vr be four vertices in V such that i < t < j < r . If vi sees vj and vt

sees vr , then vi sees vr .

Our proof also relies on the following result.

Lemma 3.3. There is no pair of edges {ui ,uj }, {ut ,ur } ∈ E2 such that i < t < j < r . Symmetrically,

there is no pair of edges {ui ,uj }, {ut ,ur } ∈ E3 such that i < t < j < r .

Proof. Since the proofs of the two claims are symmetric, we only prove the first one. Targeting
toward a contradiction, suppose that there exist two edges {ui ,uj }, {ut ,ur } ∈ E2 such that i < t <
j < r . Since ui sees uj and ut sees ur , by Lemma 3.2, we have that ui and ur see each other. By the
definition of E2,ui ,ut ∈ S anduj ,ur ∈ C , and it holds that t is the smallest index of a vertex in S that
sees ur . However, we deduced that ui and ur see each other, which results in a contradiction. �

Lemma 3.4. The graph PS is a planar graph.

Proof. For each i ∈ [|V (PS) |], place ui on the point (i, 0) of the two-dimensional Euclidean
plane. Draw each edge {ui ,ui+1} ∈ E1 on the line segment between (i, 0) and (i + 1, 0) (see Figure 4).
Since E (PS) = E1 ∪ E2 ∪ E3, to prove that PS is a planar graph it is now sufficient to show that all
of the edges in E2 \ E1 can be drawn above the line segment u1u |V (PS) | without crossing, while all

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

Exact Algorithms for Terrain Guarding 25:9

Fig. 3. A sketch of the embedding of the planar graph PS where S = {a, f , i,n} (black vertices) and C =
{b, c,d, e,д,h, j,k, l ,m} (grey vertices). Here, E1 = {{a,b}, {b, c}, {c,d }, {d, e}, {e, f }, { f ,д}, {д,h}, {h, i}, {i, j},
{j,k }, {k, l }, {l ,m}, {m,n}}, E2 = {{a,b}, {a, c}, {a, e}, {a, l }, { f ,д}, { f ,k }, {i, j}} and E3 = {{c,n}, {d, f }, {e, f },
{h, i}, {l ,n}, {m,n}}.

of the edges in E3 \ E1 can be drawn below the line segment u1u |V (PS) | without crossing. Since the
proofs of these two arguments are symmetric, we only prove the first one among them.

We draw each edge {ui ,uj } ∈ E2 \ E1, where i < j, on the half-arc with center at (i + j−i
2 , 0), ra-

dius of length j−i
2 , and such that each point on the half-arc has a non-negative y-coordinate (see

Figure 4). We remark that such an embedding is known as a two-page book embedding. Now, we
consider two arbitrary edges {ui ,uj }, {ut ,ur } ∈ E2 \ E1, where i < j and t < r , and prove that they
do not cross. Let Δi j be the semicircle defined by the embedding of {ui ,uj } and the line segment
uiuj , and let Δtr be the semicircle defined by the embedding of {ut ,ur } and the line segment utur .
Without loss of generality, assume that i ≤ t , and that if i = t then r < j. In case j < t , the semicir-
cles Δi j and Δtr can only intersect on the point uj = ut . Thus, we next assume that t ≤ j. In case
i = t ≤ r < j, the semicircle Δi j contains the semicircle Δtr , and they only intersect on the line
segment utur . Thus, by Lemma 3.3, we are only left with the case where i < t < r ≤ j. However,
in this case the semicircle Δi j again contains the semicircle Δtr , and they only intersect on the line
segment utur . �

Recall that we use tw (H) to denote the treewidth and γ (H) the dominating number of a graph
H . The proof of the following result is given in [2] (see also [9]).

Lemma 3.5 ([2]). There exists a constant c such that for any planar graph H , tw (H) ≤ c
√
γ (H).

From now on, we let c denote the constant mentioned in this lemma. We are now ready to bound
the treewidth of PS .

Lemma 3.6. tw (PS) ≤ c
√
k .

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

25:10 P. Ashok et al.

Fig. 4. A precise description of the embedding of the planar graph PS in Figure 3 where the edges are colored

blue.

Proof. We claim that the set S is a dominating set of PS . Indeed, consider some vertex vj ∈
V (PS) \ S . By the definition of V (PS), we have that vj ∈ C \ S . The set S sees C and therefore it
contains a vertex vi that sees vj . Without loss of generality, assume that i < j, and let i be the
smallest index of a vertex in S that sees vj . Observe that {vi ,vj } ∈ E2, and therefore vi dominates

vj . We have that γ (PS) ≤ |S | ≤ k . By Lemmata 3.4 and 3.5, we conclude that tw (PS) ≤ c
√
k . �

3.2 The Existence of Exploitable Partitions

In this section, we continue to assume that the input instance is a yes-instance, and again we let S be
some hypothetical solution. Given a subsetU ⊆ G ∪C and a mapping f : cut(U) → {0, 1}, denote
cut(f , 0) = {T ′ ∈ cut(U) : f (T ′) = 0} and cut(f , 1) = {T ′ ∈ cut(U) : f (T ′) = 1}. Thus, cut(f , 0)
and cut(f , 1) form a partition of the set of subterrains cut(U). Moreover, given a subset X ⊆ V ,
denote X [f , 0] = X [cut(f , 0)] and X [f , 1] = X [cut(f , 1)]. Roughly speaking, we will use such a
carefully chosen set U and a function f to achieve the following goal. The set U will partition
the terrainT into subterrains, but these subterrains do not necessarily correspond to independent
subproblems. Yet, the function f : cut(U) → {0, 1} will partition cut(U) into two sets of subter-
rains such that each of them will be independent (in a certain exploitable sense) and relatively
small. In our algorithm, the terrain itself will not change—the partition is only meant to control
the annotations associated with it.

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

Exact Algorithms for Terrain Guarding 25:11

To make the above mentioned divide-and-conquer approach work, we need the following defi-
nition. Each of its properties will be exploited in the following section.

Definition 3.7. Let U ⊆ G ∪C , and let f be a mapping f : cut(U) → {0, 1}. We say that the pair
(U , f) is good if the following conditions are satisfied.

(1) |U | ≤ 2c
√
k .

(2) S ∩U sees U .
(3) |S[f , 0]|, |S[f , 1]| ≤ 2

3 |S |.
(4) S ∩ (U ∪G[f , 0]) sees C[f , 0]; S ∩ (U ∪G[f , 1]) sees C[f , 1].

Roughly speaking, the motivation behind the introduction of each property is the following.
The first property implies that the setU is small, and therefore it will be possible to “guess” it. The
second property implies that by placing guards in the set S ∩U , we can see all of the vertices ofU .
The third property implies that the two subproblems are small in a narrow yet exploitable sense:
each subproblem will include the entire terrain and therefore its size will be roughly the same as
the size of the original problem, yet the number of guards one should place to solve it will be much
smaller than the number of guards one should place to solve to the original problem. We briefly
note that each subproblem will be associated with the entire terrain, including vertices on which
we cannot place guards and which are already covered/may not be covered, because such vertices
play a role in blocking the lines of sights between other vertices on which we can place guards and
vertices that should be covered. The last property implies that the subproblems are independent
in the sense that we do not need to cover a vertex of one subproblem using a guard that we place
when we solve the other subproblem.

The rest of this section focuses on the proof of the existence of a good pair.

Lemma 3.8. There exists a good pair (U , f).

Proof. By Lemma 3.6, tw (PS) ≤ c
√
k . Therefore, we can let (D, β) denote a tree decomposition

of PS whose width w is at most c
√
k . It is known that given a tree decomposition (D, β), one can

obtain a tree decomposition of the same width where D is a binary tree [8], and therefore we
can assume that D is a binary tree. By Observation 1 and since V (PS) = S ∪C , we can let d be a
node inV (D) such that |S |/3 ≤ |⋃d ′ ∈descendants(d) β (d ′) ∩ S | and |⋃d ′ ∈descendants(d)\{d } β (d ′) ∩ S | ≤
2|S |/3. Denote A = (

⋃
d ′ ∈descendants(d)\{d } β (d ′)) and B = (S ∪C) \ (A ∪ β (d)). Then, |A ∩ S |, |B ∩

S | ≤ 2|S |/3. Observe that by the definition of a tree decomposition A ∩ B = ∅. For each vertex
v ∈ β (d), if v ∈ S , define s (v) = v , and otherwise let s (v) denote a vertex in S that sees v (if there
are several vertices in S that see v , choose one arbitrarily).

We define U = β (d) ∪ {s (v) : v ∈ β (d)}. At this point, we can already verify that the first two
properties in Definition 3.7 are satisfied. First, since |β (d) | ≤ c

√
k and |{s (v) : v ∈ β (d)}| ≤ |β (d) |,

we have that |U | ≤ 2c
√
k . Second, since {s (v) : v ∈ β (d)} sees β (d) and {s (v) : v ∈ β (d)} ⊆ S , it

holds that S ∩U sees U .
Next, we define the function f : cut(U) → {0, 1}. To this end, consider some subterrain T ′ ∈

cut(U). Since β (d) ⊆ U , it holds that T ′ is a subterrain of some subterrain ̂T ∈ cut(β (d)). By the
definition of a tree decomposition and since E1 ⊆ E (PS), we deduce that either (S ∪C)[̂T] ⊆ A

or (S ∪C)[̂T] ⊆ B, and therefore either (S ∪C)[T ′] ⊆ A or (S ∪C)[T ′] ⊆ B. This means that f
can classify T ′ as follows: f (T ′) = 0 if (S ∪C)[T ′] ⊆ A, and f (T ′) = 1 if (S ∪C)[T ′] ⊆ B. Since
|A ∩ S |, |B ∩ S | ≤ 2|S |/3, we have that |S[f , 0]|, |S[f , 1]| ≤ 2|S |/3. That is, the third property in
Definition 3.7 is satisfied.

It remains to show that the last property in Definition 3.7 is satisfied. Since its two claims are
symmetric, we only show that S ∩ (U ∪G[f , 0]) sees C[f , 0]. Suppose, by way of contradiction,

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

25:12 P. Ashok et al.

that this claim is not true. Then, because S sees C , there is a vertex vi ∈ C[f , 0] such that among
the vertices in S , vi is seen only by vertices in S ∩C[f , 1]. Consider the following two cases:

—There exists a vertex in S ∩C[f , 1] to the left of vi that sees vi . Let vj be the leftmost such
vertex. Then, {vi ,vj } ∈ E2.

—There exists a vertex in S ∩C[f , 1] to the right of vi that sees vi . Let vj be the rightmost
such vertex. Then, {vi ,vj } ∈ E3.

Thus, in both cases, by the definition of a tree decomposition and since vi ,vj � U , it holds that
either vi ,vj ∈ A or vi ,vj ∈ B. However, vi ∈ C[f , 0] ⊆ A while vj ∈ C[f , 1] ⊆ B, which is a con-
tradiction. We conclude that the last property in Definition 3.7 is satisfied. �

3.3 Divide-and-Conquer

In this section, we rely on Lemma 3.8 to design an algorithm, based on the method of divide-and-

conquer, that solves Annotated Terrain Guarding in time nO (
√

k) .
We start by presenting an algorithmic interpretation of Lemma 3.8. To this end, we need the

following definition.

Definition 3.9. A tuple (U ,U ′, f ,k0,k1) is relevant if the following conditions are satisfied.

(1) U ⊆ G ∪C satisfies |U | ≤ 2c
√
k .

(2) U ′ ⊆ U ∩G sees U .
(3) f : cut(U) → {0, 1}.
(4) k0,k1 ∈ {0} ∪ [�2k/3�]; k0 + k1 + |U ′| = k .

Lemma 3.10. One can compute in timenO (
√

k) a collectionQ of relevant tuples whose size is bounded

by nO (
√

k) such that if the input instance is a yes-instance, then there exists a solution S of size k and

at least one tuple in Q having the following properties.

(1) (U , f) is a good pair (with respect to S).

(2) U ′ = U ∩ S .

(3) |S[f , 0]| ≤ k0; |S[f , 1]| ≤ k1.

Proof. Initially, we let Q = ∅. Then, we execute an exhaustive search which inserts every rele-

vant tuple into Q . There are at most
∑2c

√
k

i=1 (|G∩C |
i

) = 2O (
√

k log n) choices for U , where for each set

U , there are at most 2 |U | ≤ 22c
√

k choices for U ′. For each pair (U ,U ′), the domain of f , cut(U),

is of size |U | + 1. Thus, for each pair (U ,U ′), there are at most 2 |U |+1 ≤ 22c
√

k+1 choices for f , and
for each triple (U ,U ′, f), there are at most k + 1 choices for the pair (k0,k1). Thus, our procedure

runs in time nO (
√

k) and outputs a set Q of size nO (
√

k) .
To complete the proof, suppose that the input instance is a yes-instance, and let S be a solution.

Let (U , f) be a good pair with respect to S whose existence is guaranteed by Lemma 3.8. Define
U ′ = U ∩ S , k0 = |S[f , 0]|, and k1 = k − |S[f , 0]| − |U ′|. Then, by Definition 3.7, we deduce that
(U ,U ′, f ,k0,k1) is a relevant tuple and therefore it belongs to Q . Clearly, this tuple satisfies the
three properties mentioned in the statement of this lemma. �

Let Q be a collection of tuples given by Lemma 3.10. With each tuple (U ,U ′, f ,k0,k1) ∈
Q , we associate a pair of instances of Annotated Terrain Guarding, (I0 (U ,U ′, f ,k0),
I1 (U ,U ′, f ,k1)), as follows: I0 (U ,U ′, f ,k0) = (T ,k0,G0,C0) whereG0 = G[f , 0] andC0 = C[f , 0] \
vis(U ′); I1 (U ,U ′, f ,k1) = (T ,k1,G1,C1) where G1 = G[f , 1] and C1 = C[f , 1] \ vis(U ′). We set
I (Q) = {(I0 (U ,U ′, f ,k0), I1 (U ,U ′, f ,k1)) : (U ,U ′, f ,k0,k1) ∈ Q }.

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

Exact Algorithms for Terrain Guarding 25:13

Lemma 3.11. The input instance is a yes-instance if and only if there exists a pair (I0, I1) in I (Q)
such that both I0 and I1 are yes-instances.

Proof. First, suppose that the input instance is a yes-instance, and let S be a solution.
Then, by Lemma 3.10, there exists (U ,U ′, f ,k0,k1) ∈ Q such that (f ,U) is a good pair with re-
spect to S , U ′ = U ∩ S , |S[f , 0]| ≤ k0, |S[f , 1]| ≤ k1. Denote I0 (U ,U ′, f ,k0) = (T ,k0,G0,C0) and
I1 (U ,U ′, f ,k1) = (T ,k1,G1,C1). By the fourth property in Definition 3.7, S ∩ (U ∪G[f , 0]) sees
C[f , 0] and S ∩ (U ∪G[f , 1]) seesC[f , 1], and therefore S[f , 0] seesC0 and S[f , 1] seesC1. Clearly,
S[f , 0] ⊆ G0 and S[f , 1] ⊆ G1, and therefore S[f , 0] is a solution to (T ,k0,G0,C0) and S[f , 1] is a
solution to (T ,k1,G1,C1)

For the opposite direction, suppose that there exists a pair (I0 (U ,U ′, f ,k0), I1 (U ,U ′, f ,k1)) in
I (Q) such that both I0 (U ,U ′, f ,k0) and I1 (U ,U ′, f ,k1) are yes-instances. Denote I0 (U ,U ′, f ,k0) =
(T ,k0,G0,C0) and I1 (U ,U ′, f ,k1) = (T ,k1,G1,C1). Let S0 and S1 be solutions to (T ,k0,G0,C0) and
(T ,k1,G1,C1), respectively. Define S = S0 ∪ S1 ∪U ′. By the fourth property in Definition 3.9, |S | =
|S0 | + |S1 | + |U ′| ≤ k0 + k1 + |U ′| = k . By the second property in Definition 3.9 and since S0 ⊆ G0 ⊆
G and S1 ⊆ G1 ⊆ G, we have that S ⊆ G. Moreover, by the second property in Definition 3.9, U ′

sees U ∩C , and since S0 sees C0 and S1 sees C1, we have that S sees C . We conclude that S is a
solution to the input instance. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We present a recursive algorithm that solves Annotated Terrain
Guarding in the desired time. At each stage, if k ≤ 10c , it uses brute-force to solve the instance in
polynomial time. Otherwise, it computes the set I (Q) where Q is given by Lemma 3.10. For each
pair (I0, I1) ∈ I (Q), it calls itself recursively twice: once with the input I0 and once with the input
I1. If the answers to both inputs I0 and I1 are positive, it returns a positive answer. At the end, if no
pair resulted in two positive answers, it returns a negative answer. By Lemma 3.11, the algorithm
returns the correct answer.

By Lemma 3.10, we have that |I (Q) | = |Q | = nO (
√

k) . Consider some pair (I0 (U ,U ′, f ,k0),
I1 (U ,U ′, f ,k1)) in I (Q). By the fourth property in Definition 3.9, k0,k1 ≤ 2k/3. Let t (k,n) de-

note the running time of our algorithm. Then, there exists a constant d such that t (k,n) ≤ nd
√

k ·
t (2k/3). Let p be the largest number smaller than 10c such that there exists q for which

√
(2/3)qk =

p. Thus, t (n,k) = nd (
√

k+
√

(2/3)k+
√

(2/3)2k+· · ·+p) = nd
√

k (1+
√

(2/3)+
√

(2/3)2+· · ·+
√

(2/3)q) = nO (
√

k) , since
(1 +
√

(2/3) +
√

(2/3)2 + · · · +
√

(2/3)q) is a geometric series that always converges to a
constant. �

3.4 Continuous Terrain Guarding

Let (T = (V ,E),k) be an instance of the Continuous Terrain Guarding problem. Friedrichs et al.
[15] proved that one can construct in polynomial time an equivalent instance (T ′ = (V ′,E ′),k ′)
of Discrete Terrain Guarding such that n′ = O (n3) and k ′ = k . By Corollary 2, we have that

(T ′ = (V ′,E ′),k ′) is solvable in time n′O (
√

k ′) = nO (
√

k) . That is, we derive Corollary 3.
We remark that the correctness of this result, and in particular of our conclusion that Contin-

uous Terrain Guarding admits a subexponential-time algorithm, crucially relies on the fact that

we solved Discrete Terrain Guarding in time nO (
√

k) rather than nO (
√

n) .

4 PARAMETERIZED ALGORITHM FOR ORTHOGONAL TERRAIN GUARDING

In this section, we prove that Discrete Orthogonal Terrain Guarding is FPT:

Theorem 4.1. Discrete Orthogonal Terrain Guarding is solvable in time kO (k) · nO (1) .

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

25:14 P. Ashok et al.

Throughout this section, we let R� , Rr , C� , and Cr denote the sets of left reflex vertices,
right reflex vertices, left convex vertices, and right convex vertices, respectively. We further let
R = R� ∪Rr and C = C� ∪ Cr denote the sets of reflex vertices and convex vertices, respec-
tively. Katz and Roisman [21] showed that an instance (T = (V ,E),n,k) of Discrete Orthogonal
Terrain Guarding is a yes-instance if and only if the instance (T = (V ,E),n,k,R,C) of Anno-
tated Orthogonal Terrain Guarding is a yes-instance. In other words, it is sufficient to place
guards only on reflex vertices and to guard only convex vertices. Therefore, we say that an instance
(T = (V ,E),n,k,G,C) of Annotated Orthogonal Terrain Guarding is relevant if R = G and
C = C , and in the rest of this section, we focus on the proof of the following result.

Lemma 4.2. Relevant instances of Annotated Orthogonal Terrain Guarding are solvable in

time kO (k) · nO (1) .

First, in Section 4.1, we show that vertices seen by too many vertices of the opposite type can
actually be ignored as they will be guarded even if we do not explicitly demand it. In Section 4.2,
we describe solutions via clique covers in chordal graphs. This description will allow us to find a
set of size at most k ′, for any k ′ ≤ k , that guards a subset of left convex vertices of interest via left
reflex vertices, or provide a witness for the non-existence of such a set. Next, in Section 4.3, we
examine the Hamming distance between vectors that describe the way in which convex vertices
can be guarded, and show that this distance cannot be too large. Finally, in Section 4.4, we integrate
the results obtained in the three previous sections into the design of our branching parameterized
algorithm for relevant instances of Annotated Orthogonal Terrain Guarding.

4.1 Ignoring Exposed Vertices

In this section, we handle seemingly problematic vertices, which comply with the following
definition.

Definition 4.3. A vertex v ∈ V (T) is exposed if it is a convex vertex seen by more than k + 2
opposite reflex vertices.

We let E denote the set of exposed vertices, E� = C� ∩ E and Er = Cr ∩ E. The efficiency of the
second phase of our branching procedure, presented in Section 4.4, relies on the assumption thatC
does not contain exposed vertices. However,C = C , and the set C may very well contain exposed
vertices. We circumvent this difficulty by showing that vertices in E can actually be ignored. To
prove this claim, we need the following notation. Given a vertex v ∈ E� , we let uv

1 ,u
v
2 , . . . ,u

v
k+3

denote the k + 3 leftmost right reflex vertices that see v , sorted from left to right by the order in
which they lie onT (see Figure 5(A)). Symmetrically, given a vertexv ∈ Er , we let uv

1 ,u
v
2 , . . . ,u

v
k+3

denote the k + 3 rightmost left reflex vertices that see v , sorted from right to left by the order
in which they lie on T (see Figure 5(B)). By the definition of an orthogonal terrain, we have the
following observation.

Observation 2. For each vertex v ∈ E, the x-coordinate of uv
1 is the same as that of v and the

y-coordinate of uv
1 is larger than that of v . For any 2 ≤ i ≤ k + 3, the y-coordinate of uv

i is the same

as that of v , and if v ∈ E� (v ∈ Er), the x-coordinate of uv
i is larger (smaller, respectively) than that

of v .

In the two following lemmata, we continue to examine vertices in E.

Lemma 4.4. For each vertex v ∈ E� and index 2 ≤ i ≤ k + 2, there exists a vertex in C� \ E� that

lies between uv
i and uv

i+1. Symmetrically, for each vertex v ∈ Er and index 2 ≤ i ≤ k + 2, there exists

a vertex in Cr \ Er that lies between uv
i and uv

i+1.

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

Exact Algorithms for Terrain Guarding 25:15

Fig. 5. Exposed vertices are black, and reflex vertices of the opposite type that see them are white. The

parameter k is 2.

Proof. We only prove the first claim, since the proof of the second claim is symmetric. Consider
a vertex v ∈ E� and an index 2 ≤ i ≤ k + 2. Since uv

i and uv
i+1 are right reflex vertices, there exists

at least one left convex vertex that lies between them. Letw be such a vertex which has the smallest
y-coordinate among all such vertices. To show that w � E� , it is sufficient to show that w is not
seen by more than two right reflex vertices. Suppose, by way of contradiction, that this claim is
false. Then, by Observation 2, there exist two right reflex vertices to the right of w that see w and
whosey-coordinates are the same as that ofw . In particular, these two right reflex vertices see each
other, and they lie between uv

i and uv
i+1. However, between two right reflex vertices that see each

other and which have the same y-coordinate, there exists a left convex vertex whose y-coordinate
is smaller than theirs. The existence of such a vertex contradicts the choice of w . �

Lemma 4.5. Let S be a solution to (T ,n,k,R,C \ E). For each vertex v ∈ E� , there exists an index

2 ≤ i ≤ k + 2 and a vertex that lies strictly between uv
i and uv

i+1 which is seen by a vertex in S to the

right of uv
i+1. Symmetrically, for each vertex v ∈ Er , there exists an index 2 ≤ i ≤ k + 2 and a vertex

that lies strictly between uv
i and uv

i+1 which is seen by a vertex in S to the left of uv
i+1.

Proof. We only prove the first claim, since the proof of the second claim is symmetric. By
Observation 2 and since uv

k+3 sees v , no vertex that lies between v and uv
k+3 has a y-coordinate

larger than that of v . In particular, for any pair of distinct indices 2 ≤ i, j ≤ k + 2, vertices that lie
between uv

i and uv
i+1, excluding uv

i+1, cannot see any vertex that lies between uv
j and uv

j+1 whose
y-coordinate is smaller than that of v . Moreover, the y-coordinate of any convex vertex that lies
strictly between v and uv

k+3 is smaller than that of v . Therefore, since |S | ≤ k , Lemma 4.4 implies
that there exists an index 2 ≤ i ≤ k + 2 and a vertex that lies strictly between uv

i and uv
i+1 and is

seen by a vertex s ∈ S that does not lie between uv
i and uv

i+1. Since no vertex that lies between v
and uv

k+3 has a y-coordinate larger than that of v , the vertex s is a left reflex vertex that lies to the
right of uv

i+1. �

We are now ready to show that vertices in E can be ignored.

Lemma 4.6. (T ,n,k,R,C) is a yes-instance if and only if (T ,n,k,R,C \ E) is a yes-instance.

Proof. Since C \ E ⊆ C , it is clear that the forward direction is true. To prove the reverse di-
rection, suppose that (T ,n,k,R,C \ E) is a yes-instance, and let S denote a solution. To show that

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

25:16 P. Ashok et al.

(T ,n,k,R,C) is a yes-instance, it is sufficient to show that S sees E. We will only show that S sees
E� , since the proof that S sees Er is symmetric.

Let v be some left convex vertex in E� . By Lemma 4.5, there exists an index 2 ≤ i ≤ k + 2 and
a vertex that lies strictly between uv

i and uv
i+1 which is seen by a vertex s ∈ S to the right of uv

i+1.
Sinceuv

i+1 seesv , Lemma 3.2 implies that s seesv . Since the choice ofv was arbitrary, we conclude
that the lemma is correct. �

4.2 Describing Solutions via Clique Covers in Chordal Graphs

Katz and Roisman [21] defined two graphs that aim to capture relations between convex vertices.
The first graph, GL , is defined as follows: V (GL) = CL and E (GL) = {{v,u} : there exists a vertex
in RL that sees both v and u}. The second one, GR , is defined symmetrically: V (GR) = CR and
E (GR) = {{v,u} : there exists a vertex in RR that sees both v and u}. For these graphs, Katz and
Roisman [21] proved the following useful result.

Lemma 4.7 ([21]). The graph GL satisfies the following properties.

—The graph GL is a chordal graph.

—For any subsetU ⊆ V (GL), GL[U] is a clique if and only if there exists a left reflex vertex that

sees all of the vertices in U .

The symmetric claim holds for the graph GR .

By relying on Lemma 4.7, Katz and Roisman [21] showed that one can decide in polynomial time
whether there exists a subset S ⊆ RL of size k ′ that sees CL . To design our branching procedure
(in Section 4.4), we will need the following stronger claim.

Lemma 4.8. LetU ⊆ CL and k ′ ∈ N. Then, one can decide in polynomial time whether there exists

a subset S ⊆ RL of size k ′ that seesU . In case such a subset does not exist, one can find in polynomial

time a subset U ′ ⊆ U of size k ′ + 1 such that there does not exist a subset S ⊆ RL of size k ′ that sees

U ′.

Proof. Since the family of chordal graphs is hereditary, Property 1 of Lemma 4.7 implies that
GL[U] is a chordal graph. Thus, by Theorem 2.1, κ (GL[U]) can be computed in polynomial time.
Moreover, Property 2 of Lemma 4.7 implies that there exists a subset S ⊆ RL of size k ′ that sees
U if and only if κ (GL[U]) ≤ k ′. We deduce that one can decide in polynomial time whether there
exists a subset S ⊆ RL of size k ′ that sees U .

Now, suppose that there does not exist a subset S ⊆ RL of size k ′ that seesU . Then, κ (GL[U]) >
k ′. By Theorem 2.1, it also holds that α (GL[U]) > k ′, and we can thus obtain (in polynomial time)
an independent set U ′ of GL[U] of size k ′ + 1. If U ′ could have been seen by at most k ′ vertices
in RL , by the pigeonhole principle, there should have been a vertex in RL that sees at least two
vertices in U ′. This would have implied that there exists an edge in GL[U] between two vertices
in U ′, contradicting the fact that U ′ is an independent set of GL[U]. �

Symmetrically, we obtain the following claim.

Lemma 4.9. LetU ⊆ CR and k ′ ∈ N. Then, one can decide in polynomial time whether there exists

a subset S ⊆ RR of size k ′ that seesU . In case such a subset does not exist, one can find in polynomial

time a subsetU ′ ⊆ U of size k ′ + 1 such that there does not exist a subset S ⊆ RR of size k ′ that sees

U ′.

4.3 Hamming Distance

In this section, we associate vectors with subsets of R, and then examine the Hamming distance
between these vectors and a special vector. We start with the definition of the association. Here,

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

Exact Algorithms for Terrain Guarding 25:17

we set m = |C \ E |, and let u1,u2, . . . ,um denote the vertices in C \ E sorted from left to right by
the order in which they lie on T .

Definition 4.10. Let S ⊆ R be a set that sees C . Then, the vector associated with S is them-length
bit vector (b1,b2, . . . ,bm) such that bi = 0 if and only ifui is seen by a vertex in S that is a left reflex
vertex.

In other words, the vector associated with a subset S ⊆ R that sees C indicates, for each vertex
that we would like to guard, whether it is guarded by at least one left reflex vertex or only by right
reflex vertices. Observe that by the definition of an orthogonal terrain, a reflex vertex can see at
most two vertices of the opposite type.

Observation 3. Any reflex vertex v sees at most two convex vertices of the opposite type: one has

the same x-coordinate as v and the other has the same y-coordinate as v .

Next, we examine the Hamming distance between a vector associated with a solution and a
special vector.

Lemma 4.11. Let S∗ be a solution to (T ,n,k,R,C \ E), and let b
∗

be the m-length bit vector asso-

ciated with S∗. Let b be the m-length bit vector (b1,b2, . . . ,bm) such that bi = 0 if and only if ui is a

left convex vertex. Then, H (b
∗
,b) ≤ 2k .

Proof. Since |S∗ | ≤ k , Observation 3 implies that at most 2k vertices in C \ E are seen by ver-
tices in S∗ of the opposite type. Therefore, apart from at most 2k vertices, each vertex in C \ E is

seen only by vertices in S∗ of the same type. This observation implies that H (b
∗
,b) ≤ 2k . �

The study of vectors associated with subsets of R, and the Hamming distance between these
vectors and the vector b helps in the analysis of the branching algorithm that will be described in
the following section. The Hamming distance serves as a measure for the branching algorithm and
this is how Lemma 4.11 will be useful to us to bound the running time of the branching algorithm.

4.4 Branching

We are now ready to present ALG(T = (V ,E),n,R,C,δ ,k�,kr), our algorithm for relevant in-
stances of Annotated Orthogonal Terrain Guarding. Initially, it is called with the arguments
C = C \ E, δ = 2k , and every choice of k�,kr ∈ [k] such that k� + kr = k . As the execution of the
algorithm progresses, vertices are removed fromC , and the values of k�, kr , and δ decrease. Note
that there are only k choices of k� and kr , and there exists a choice of k� and kr such that if
there exists a solution S , it holds that |S ∩R� | = k� and |S ∩Rr | = kr . Accordingly, and in light of
Lemma 4.11, we say that the input instance (in the context of a pair (k�,kr)) is identifiable if there
exists a solution S such that |S ∩R� | = k� , |S ∩Rr | = kr and the Hamming distance between b
and the vector associated with S is at most δ . Thus, to prove Lemma 4.2, it is sufficient to prove
the following result.

Lemma 4.12. ALG (T = (V ,E),n,R,C,δ ,k�,kr) runs in time kO (k) · nO (1) , and returns YES if and

only if the input instance is identifiable.

Proof. The pseudocode of our algorithm is given in Algorithm 1. First, we argue that if the
input instance is identifiable, then the algorithm returns YES. In this argument, we follow the
pseudocode line by line, and also highlight the phases of our branching. In case δ < 0, we return
NO, since the Hamming distance between any two vectors is non-negative. Next, suppose that
δ ≥ 0. By Lemma 4.8, we may proceed by deciding in polynomial time whether C ∩ CL cannot

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

25:18 P. Ashok et al.

ALGORITHM 1: ALG(T = (V ,E),n,R,C,δ ,k� ,kr)

1: if δ < 0 then

2: Return NO.
3: else if C ∩ CL cannot be seen by any set of at most k� vertices from RL then

4: Compute a set U ⊆ C ∩ CL of size k� + 1 that cannot be seen by any set of at most k� vertices from
RL .

5: for all v ∈ U do

6: for all u ∈ RR ∩ vis(v) do Return ALG(T = (V ,E),n,R,C \ vis(u),δ − 1,k� ,kr − 1).
7: end for

8: else if C ∩ CR cannot be seen by any set of at most kr vertices from RR then

9: Compute a set U ⊆ C ∩ CR of size kr + 1 that cannot be seen by any set of at most kr vertices from
RR .

10: for all v ∈ U do

11: for all u ∈ RL ∩ vis(v) do Return ALG(T = (V ,E),n,R,C \ vis(u),δ − 1,k� − 1,kr).
12: end for

13: else

14: Return YES.
15: end if

be seen by any set of at most k� vertices from RL . If this is the case, then by Lemma 4.8 we can
compute in polynomial time a set U ⊆ C ∩ CL of size k� + 1 that cannot be seen by any set of at
most k� vertices from RL . In case the input instance is identifiable, there exists a vertexv ∈ U that
should be seen by a right reflex vertex. We try every option to identify the vertex v ; this is the
first phase of our branching. Then, we try every option to identify a vertex u ∈ RR ∩ vis(v) that
should both see v and belong to a solution; this is the second phase of our branching. Since v is
not exposed, there are at most k + 2 such options to consider. For each such option, we place a
guard on u. Therefore, we decrement kr by 1, remove the vertices in vis(u) from C , and since at
least one bit is flipped in b, we also decrement δ by 1. For an identifiable input instance, we will
have made correct choices in at least one of the paths in the branch-tree. Now, if the answer is
negative, by performing the symmetric test with respect to the setC ∩ CR , we can safely conclude
that an identifiable instance is detected correctly.

Suppose the algorithm returns YES for (T = (V ,E),n,R,C,δ ,k�,kr). In this case we prove, by
induction on δ , thatC can be guarded by k� vertices of R� and kr vertices of Rr . If δ < 0, then the
algorithm returns NO. Therefore, the base case is when δ = 0. In this case, the algorithm returns
YES only ifC ∩ CL can be seen by any set of at most k� vertices from RL andC ∩ CR can be seen by
any set of at most kr vertices from RR . This also means that the relevant instance is a yes-instance,
and therefore the algorithm returns the correct answer. Let us assume the induction hypothesis
that the algorithm returns the correct answer for all recursive calls with δ < d . Suppose the input
instance of the algorithm has δ = d . It is possible that the algorithm returns YES because C ∩ CL

can be seen by any set of at most k� vertices from RL andC ∩ CR can be seen by any set of at most
kr vertices from RR . In this case, the algorithm correctly detects a yes-instance. Otherwise, without
loss of generality,C ∩ CL cannot be seen by any set of at most k� vertices from RL . This means that
the algorithm computes a setU ⊆ C ∩ CL of size k� + 1 that cannot be seen by any set of at most k�
vertices from RL . Then, there is a v ∈ U and a u ∈ RR ∩ vis(v) such that the recursive call on the
instance (T = (V ,E),n,R,C \ vis(u),δ − 1,k�,kr − 1) returns YES. By induction hypothesis, the
algorithm returns the correct answer on (T = (V ,E),n,R,C \ vis(u),δ − 1,k�,kr − 1). This means
that C \ vis(u) can be guarded by k� vertices of RL and kr − 1 vertices of RR . Since u ∈ RR , we

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

Exact Algorithms for Terrain Guarding 25:19

conclude that C can be guarded by k� vertices of RL and kr vertices of RR . Thus, the algorithm
returns YES correctly.

To conclude that Lemma 4.12 is correct, it remains to show that the running time of our al-
gorithm is bounded by kO (k) · nO (1) . We have argued that the operations performed at each call
can be executed in polynomial time, and that at each call the algorithm calls itself recursively
at most O (k2) times. Since initially δ = 2k , when δ < 0 the algorithm does not call itself recur-
sively, and at each recursive call, δ is decremented by 1, we deduce that the algorithm runs in time
kO (k) · nO (1) . �

5 CONCLUSION AND SUBSEQUENT WORK

We studied the well-known Terrain Guarding problem, addressing two fundamental questions
relating to its complexity:

—Does Terrain Guarding admit a subexponential-time algorithm?
—Is Terrain Guarding FPT with respect to k?

We have resolved the first question: both Discrete Terrain Guarding and Continuous
Terrain Guarding admit subexponential-time algorithms. For discrete orthogonal domains we
have also resolved the second question: Discrete Orthogonal Terrain Guarding is FPT.

We would like to conclude our article by suggesting several directions for further research. First
and foremost, it remains to establish the fixed-parameter (in)tractability of Terrain Guarding in
general (discrete and continuous) domains, as well as to determine whether Discrete Orthogo-
nal Terrain Guarding is NP-hard or not. In case Terrain Guarding is FPT, one can further ask
whether it admits a polynomial kernel. An affirmative answer to this question, combined with our
subexponential-time algorithm, would imply that Terrain Guarding admits a subexponential-
time parameterized algorithm. Finally, it would also be interesting to investigate whether the run-
ning time of our subexponential-time algorithm can be substantially improved, or whether it is
essentially tight under reasonable complexity assumptions. We remark that the proof given by
King and Krohn [24] to show that Terrain Guarding is NP-hard only implies that unless ETH

fails, Terrain Guarding cannot be solved in time 2o (n
1
4) .

In a recent manuscript, Bonnet and Giannopoulos [4] showed that Discrete Orthogonal
Terrain Guarding is NP-complete. They also showed that the reduction of King and Krohn [24],
as well as their reduction for Discrete Orthogonal Terrain Guarding, can actually be made
linear (instead of quadratic). Using these new reductions, it is proved that unless ETH fails, Ter-
rain Guarding and Discrete Orthogonal Terrain Guarding cannot be solved in time 2o (

√
n) .

Thus, the results of Bonnet and Giannopoulos [4] resolve two of our open problems.

REFERENCES

[1] J. Abello, O. Egecioglu, and K. Kumar. 1995. Visibility graphs of staircase polygons and the weak Bruhat order I: From
visibility graphs to maximal chains. Discrete and Computational Geometry 14, 3 (1995), 331–358.

[2] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. 2002. Fixed parameter algorithms for dominating
set and related problems on planar graphs. Algorithmica 33, 4 (2002), 461–493.

[3] Boaz Ben-Moshe, Matthew J. Katz, and Joseph S. B. Mitchell. 2007. A constant-factor approximation algorithm for
optimal 1.5D terrain guarding. SIAM J. Comput. 36, 6 (2007), 1631–1647.

[4] Édouard Bonnet and Panos Giannopoulos. 2017. Orthogonal terrain guarding is NP-complete. CoRR abs/1710.00386.
http://arxiv.org/abs/1710.00386.

[5] Édouard Bonnet and Tillmann Miltzow. 2016. Parameterized hardness of art gallery problems. In Proceedings of the

24th Annual European Symposium on Algorithms, ESA (LIPIcs), Vol. 57. 19:1–19:17.
[6] Danny Z. Chen, Vladimir Estivill-Castro, and Jorge Urrutia. 1995. Optimal guarding of polygons and monotone chains.

In Proceedings of the 7th Canadian Conference on Computational Geometry (CCCG). 133–138.

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

http://arxiv.org/abs/1710.00386

25:20 P. Ashok et al.

[7] K. L. Clarkson and K. R. Varadarajan. 2007. Improved approximation algorithms for geometric set cover. Discrete and

Computational Geometry 37, 1 (2007), 43–58.
[8] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. 2015. Param-

eterized Algorithms. Springer.
[9] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. 2005. Subexponential parameterized algorithms on

graphs of bounded genus and H -minor-free graphs. Journal of the ACM 52, 6 (2005), 866–893.
[10] R. Diestel. 2012. Graph Theory (4th ed.). Springer.
[11] R. Downey and M. R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer.
[12] Stephane Durocher, Pak Ching Li, and Saeed Mehrabi. 2015. Guarding orthogonal terrains. In Proceedings of the 27th

Canadian Conference on Computational Geometry (CCCG).
[13] M. K. Elbassioni, E. Krohn, D. Matijevic, J. Mestre, and D. Severdija. 2011. Improved approximations for guarding

1.5-dimensional terrains. Algorithmica 60, 2 (2011), 451–463.
[14] William S. Evans and Noushin Saeedi. 2015. On characterizing terrain visibility graphs. Journal of Computational

Geometry 6, 1 (2015), 108–141.
[15] S. Friedrichs, M. Hemmer, J. King, and C. Schmidt. 2016. The continuous 1.5D terrain guarding problem: Discretiza-

tion, optimal solutions, and PTAS. Journal of Computational Geometry 7, 1 (2016), 256–284.
[16] S. K. Ghosh. 2007. Visibility Algorithms in the Plane.Cambridge University Press.
[17] P. Giannopoulos. 2016. Open problems: Guarding problems. Lorentz Workshop on Fixed-Parameter Computational

Geometry, Leiden, the Netherlands, 12.
[18] M. Gibson, G. Kanade, E. Krohn, and K. Varadarajan. 2014. Guarding terrains via local search. Journal of Computational

Geometry 5, 1 (2014), 168–178.
[19] M. C. Golumbic. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.
[20] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential com-

plexity?Journal of Computer and System Sciences 63, 4 (2001), 512–530.
[21] M. J. Katz and G. S. Roisman. 2008. On guarding the vertices of rectilinear domains. Computational Geometry 39, 3

(2008), 219–228.
[22] F. Khodakarami, F. Didehvar, and A. Mohades. 2015. A fixed-parameter algorithm for guarding 1.5D terrains. Theo-

retical Computer Science 595 (2015), 130–142.
[23] James King. 2006. A 4-approximation algorithm for guarding 1.5-dimensional terrains. In Proceedings of the 7th Latin

American Symposium on Theoretical Informatics, LATIN, Lecture Notes in Computer Science, Vol. 3887. 629–640.
[24] James King and Erik Krohn. 2011. Terrain guarding is NP-hard. SIAM Journal on Computing 40, 5 (2011), 1316–1339.
[25] Erik A. Krohn and Bengt J. Nilsson. 2013. Approximate guarding of monotone and rectilinear polygons. Algorithmica

66, 3 (2013), 564–594.
[26] Yangdi Lyu and Alper Üngör. 2016. A fast 2-approximation algorithm for guarding orthogonal terrains. In Proceedings

of the 28th Canadian Conference on Computational Geometry (CCCG). 161–167.
[27] S. Mehrabi. 2015. Guarding the vertices of an orthogonal terrain using vertex guards. arXiv:1512.08292.
[28] J. O’Rourke. 1987. Art Gallery Theorems and Algorithms. Oxford University Press.
[29] D. Schuchardt and H. D. Hecker. 1995. Two NP-hard art-gallery problems for ortho-polygons. Mathematical Logic

Quarterly 41 (1995), 261–267.
[30] J. Urrutia. 2000. Art gallery and illumination problems. Handbook of Computational Geometry 1, 1 (2000), 973–1027.

Received April 2017; revised November 2017; accepted February 2018

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 25. Publication date: April 2018.

