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Abstract. A classical result by Edwards states that every connected
graph G on n vertices and m edges has a cut of size at least m

2
+ n−1

4
.

We generalize this result to r-hypergraphs, with a suitable notion of
connectivity that coincides with the notion of connectivity on graphs for
r = 2. More precisely, we show that for every “partition connected” r-
hypergraph (every hyperedge is of size at most r) H over a vertex set
V (H), and edge set E(H) = {e1, e2, . . . em}, there always exists a 2-
coloring of V (H) with {1,−1} such that the number of hyperedges that
have a vertex assigned 1 as well as a vertex assigned −1 (or get “split”) is
at least µH+ n−1

r2r−1 . Here µH =
∑m

i=1(1−2/2|ei|) =
∑m

i=1(1−21−|ei|). We
use our result to show that a version of r-Set Splitting, namely, Above

Average r-Set Splitting (AA-r-SS), is fixed parameter tractable
(FPT). Observe that a random 2-coloring that sets each vertex of the
hypergraph H to 1 or −1 with equal probability always splits at least µH

hyperedges. In AA-r-SS, we are given an r-hypergraph H and a positive
integer k and the question is whether there exists a 2-coloring of V (H)
that splits at least µH + k hyperedges. We give an algorithm for AA-

r-SS that runs in time f(k)nO(1), showing that it is FPT, even when
r = c1 log n, for every fixed constant c1 < 1. Prior to our work AA-

r-SS was known to be FPT only for constant r. We also complement
our algorithmic result by showing that unless NP ⊆ DTIME(nlog log n),
AA-�log n�-SS is not in XP.

1 Introduction

Max Cut is a well known classical problem. Here, the input is a graph G and
a positive integer k and the objective is to check whether there is a cut of size
at least k. A cut of a graph is a bipartition of the vertices of a graph into two
disjoint subsets. The size of the cut is the number of edges whose end points are
in different subsets of the bipartition. Max Cut is NP-hard and has been the
focus of extensive study, from the algorithmic perspective in computer science
as well as the extremal perspective in combinatorics. In this paper we focus on
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a generalization of Max Cut to hypergraphs and study this generalization with
respect to extremal combinatorics and parameterized complexity.

A hypergraph H consists of a vertex set V (H) and a set E(H) of hyperedges.
A hyperedge e ∈ E(H) is a subset of the vertex set V (H). By V (e) we denote
the subset of vertices corresponding to the edge e. A hypergraph is called an
r-hypergraph if the size of each hyperedge is upper bounded by r. Given a hy-
pergraph 2-coloring, φ : V (H) → {−1, 1}, we say that it splits a hyperedge e if
V (e) has a vertex assigned 1 as well as a vertex assigned −1 under φ. In Max

r-Set Splitting, a generalization of Max Cut, we are given a hypergraph H
and a positive integer k and the objective is to check whether there exists a
coloring function φ : V (H) → {−1, 1} such that at least k hyperedges are split.
This problem is the main topic of this article.

For a graph G, let ζ(G) be the size of a maximum cut. Erdős [9] observed
that ζ(G) ≥ m/2 for graphs with m edges. To see this notice that a random
bipartition of the vertices of a graph G with m edges gives a cut with size at
least m/2. A natural question was whether the bound on ζ could be improved.
Answering a question of Erdős [9], Edwards [8] proved that for any graph G on

m edges ζ(G) ≥
⌈
m
2 +

√
m
8 + 1

64 − 1
16

⌉
. In the same paper Edwards also showed

that for every connected graph G on n vertices and m edges, ζ(G) ≥ m
2 + n−1

4 .
These bounds are known to be tight (see [2] for a survey on this area). Our first
result generalizes this classical result. For an r-hypergraph H , let ζ(H) be the
maximum number of edges that can be split by a hypergraph 2-coloring. Let H
be a hypergraph with vertex set V (H), and edge set E(H) = {e1, e2, . . . em}.
Observe that a random 2-coloring that sets each vertex of hypergraph H to 1
or −1 with equal probability always splits at least μH =

∑m
i=1(1 − 2/2|ei|) =∑m

i=1(1− 21−|ei|) number of hyperedges. We show that if an r-hypergraph H is
“partition connected” then ζ(H) ≥ μH + n−1

r2r−1 .

Theorem 1. Let H be a partition connected r-hypergraph with an n sized vertex
set V (H), and edge set E(H) = {e1, e2, . . . , em}. Then ζ(H) ≥ μH+ n−1

r2r−1 . Here,

μH =
∑m

i=1(1− 21−|ei|).

Since the definition of partition connectivity coincides with the definition of con-
nectivity on graphs, for partition connected uniform 2-hypergraphs (every hyper-
edge has size exactly 2), ζ(H) ≥ m

2 + n−1
4 . The notion of uniform 2-hypergraphs

is same as that of ordinary graphs, thus, for r = 2, we get the old result of
Edwards. Proof of Theorem 1 could also be thought of as a generalization of a
similar proof obtained in [3] for ordinary graphs.

We use our combinatorial result to study an above guarantee version of Max

r-Set Splitting in the realm of parameterized complexity. The goal of param-
eterized complexity is to find ways of solving NP-hard problems more efficiently
than brute force: here the aim is to restrict the combinatorial explosion to a
parameter that is hopefully much smaller than the input size. Formally, a pa-
rameterization of a problem is assigning an integer k to each input instance and
we say that a parameterized problem is fixed-parameter tractable (FPT) if there
is an algorithm that solves the problem in time f(k) · |I|O(1), where |I| is the size
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of the input and f is an arbitrary computable function depending on the param-
eter k only. Another notion from parameterized complexity that will be useful
to our article is kernelization. A parameterized problem Π is said to admit a
g(k) kernel if there is a polynomial time algorithm that transforms any instance
(x, k) to an equivalent instance (x′, k′) such that |x′| ≤ g(k) and k′ ≤ g(k). If
g(k) = kO(1) or g(k) = O(k) we say that Π admits a polynomial kernel and
linear kernel respectively.

Just as NP-hardness is used as evidence that a problem probably is not poly-
nomial time solvable, there exists a hierarchy of complexity classes above FPT,
and showing that a parameterized problem is hard for one of these classes gives
evidence that the problem is unlikely to be fixed-parameter tractable. The main
classes in this hierarchy are:

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ XP

The principal analogue of the classical intractability class NP is W [1], which is a
strong analogue, because a fundamental problem complete forW [1] is the k-Step
Halting Problem for Nondeterministic Turing Machines (with unlim-
ited nondeterminism and alphabet size) — this completeness result provides an
analogue of Cook’s Theorem in classical complexity. In particular this means
that an FPT algorithm for any W [1] hard problem would yield a O(f(k)nc)
time algorithm for k-Step Halting Problem for Nondeterministic Tur-

ing Machines. A convenient source of W [1]-hardness reductions is provided by
the result that k-Clique is complete for W [1]. Other highlights of the theory
include the fact that k-Dominating Set, by contrast, is complete for W [2].
XP is the class of all problems that are solvable in time O(ng(k)). The book by
Downey and Fellows [7] provides a good introduction to the topic of parameter-
ized complexity. For recent developments see the books by Flum and Grohe [10]
and Niedermeier [20].

Studies on problems parameterized above guaranteed combinatorial bounds
are in vogue. A simple example of such a problem is the decision problem that
takes as input a planar graph on n vertices and asks if there is an independent
set of size at least n

4 + k. An independent set of size at least n/4 is guaranteed

by the Four Color Theorem. Could this problem be solved in time O(ng(k)), for
some function g? Is there an FPT algorithm? No one knows. This is a nice and
simple example of this research theme, which is quite well-motivated and that
has developed strongly since it was introduced by Mahajan and Raman [17].
They showed that several above guarantee versions of Max Cut and Max Sat

are FPT. Later, Mahajan et al. [18] published a paper with several new results
and open problems around parameterizations beyond guaranteed lower and up-
per bounds. In a breakthrough paper Gutin et al. [12] developed a probabilis-
tic approach to problems parameterized above or below tight bounds. Alon et
al. [1] combined this approach with methods from algebraic combinatorics and
Fourier analysis to obtain an FPT algorithm for parameterized Max r-SAT be-
yond the guaranteed lower bound. Other significant results in this direction in-
clude quadratic kernels for ternary permutation constraint satisfaction problems
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parameterized above average and results around systems of linear equations over
field with two elements [3,4,13,15].

A standard parameterized version of Max r-Set Splitting is defined by
asking whether there exists a hypergraph 2-coloring that splits at least k hyper-
edges. This version ofMax r-Set Splitting, called p-Set Splitting, has been
extensively studied in parameterized algorithms. In p-Set Splitting we do not
restrict the size of hyperedges to at most r as in the case of Max r-Set Split-

ting. Dehne, Fellows and Rosamond [6] initiated the study of p-Set Splitting

and gave an algorithm running in time O∗(72k) (the O∗() notation suppresses
the polynomial factor). After several rounds of improvement the current fastest
algorithm is given by Nederlof and van Rooij [19] and runs in time O∗(1.8213k).

From now onwards we only consider r-hypergraphs. If we have a hyperedge of
size one then it can never be split and hence we can remove it from consideration.
So we assume that every hyperedge is of size at least 2 and at most r. Let H
be a hypergraph with vertex set V (H), and edge set E(H) = {e1, e2, . . . em}.
Since every hyperedge is of size at least 2, we have that μH ≥ m/2. Thus, the
standard parameterization of Max r-Set Splitting is trivially FPT because
of the following argument. If k ≤ m/2 then the answer is yes else we have
that m ≤ 2k and hence n ≤ 2kr. In this case we can enumerate all the {1,−1}
colorings to V (H) and check whether anyone of them splits at least k hyperedges
and answer accordingly. Thus given an r-hypergraph H , the more meaningful
question is whether there exists a {1,−1} coloring of V (H) that splits at least
μH + k clauses. In other words, we are interested in the following above average
version of Max r-Set Splitting.

Above Average r-Set Splitting (AA-r-SS)
Instance: An r-hypergraph H and a non-negative integer k.

Parameter: k.
Question: Does there exist 2-coloring of V (H) that splits at

least μH + k hyperedges?

It is known by the results in [15] that AA-r-SS is FPT for a constant r
(r = O(1)). From an algorithmic point of view, a natural question is whether
AA-r-SS is FPT if the sizes of hyperedges is at most r(n) for some function of
n. If yes, how far can we push the function r(n)? On the algorithmic side, using
Theorem 1 we get the following result.

Theorem 2. For every fixed constant α < 1, AA-α logn-SS is FPT.

We complement the algorithmic result by a matching lower bound result which
states the following.

Theorem 3. Unless NP ⊆ DTIME(nlog log n), AA-�logn�-SS is not in XP.

Theorems 2 and 3 are in sharp contrast to a similar question about AA-Max-r-
SAT. Let F be a CNF formula on n variables and m clauses and let r1, . . . , rm
be the number of literals in the clauses of F . Then asat(F ) =

∑m
i=1(1 − 2−ri)
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is the expected number of clauses satisfied by a random truth assignment (the
truth values to the variables are distributed uniformly and independently). In
AA-Max-r-SAT we are given a r-CNF formula F (all clauses are of size at most
r) and a positive integer k and the question is whether there is an assignment
that satisfies at least asat(F ) + k clauses. Here k is the parameter. In [5], it is
shown thatAA-Max-r(n)-SAT is not FPT unless Exponential Time Hypothesis
fails [14], where r(n) ≥ log logn + φ(n) and φ(n) is any unbounded strictly
increasing function. However, they also show that Max-r(n)-Sat-AA is FPT
for any r(n) ≤ log logn − log log logn − φ(n), where φ(n) is any unbounded
strictly increasing function.

The proof of Theorem 2 also shows that AA-r-SS admits a kernel with O(k)
vertices for fixed r. Earlier, as per our understanding, only a linear “bikernel”
was known [15]. The proofs of Theorem 1 and 2 combine the properties of Fourier
coefficients of pseudo-Boolean functions, observed by Crowston et al. [3], with
results on a certain kind of connectivity of hypergraphs. The proof of Theorem 3
is inspired by a similar proof given in [5].

2 New Lower Bound on ζ(H) and Proof of Theorem 1

In this section we obtain the new lower bound on ζ(H), the maximum number of
hyperedges that can be split in an r-hypergraph H by a hypergraph 2-coloring.
Towards this we first define the notion of hypergraph connectivity and hyper-
graph spanning tree.

Hypergraph Connectivity and Hypergraph Spanning Tree. Firstly, for
every positive integer n, let [n] = {1, 2, . . . , n} and for every set S we denote
its powerset by 2S . With every hypergraph H we can associate the following
graph: The primal graph, also called the Gaifman graph, P (H) has the same
vertices V (H) as H and, two vertices u, v ∈ V (H) are connected by an edge in
P (H) if there is a hyperedge e ∈ E(H), such that {u, v} ⊆ V (e). We say that
H is connected or has r components if the corresponding primal graph P (H)
is connected or has r components. Now we define the notions of strong cut-sets
and forests in hypergraphs.

Definition 1 (Strong Cut-Set and Partition Connected). A subset X ⊆
E(H) is called a strong cut-set if the hypergraph H ′ = (V,E(H)\X) has at least
|X |+ 2 connected components. A hypergraph H is partition connected if it does
not have a strong cut-set.

Definition 2 (Hypergraph Forest). A forest F of a hypergraph H is a pair
(F, g) where F is a forest, in the normal graph theoretic sense, with vertex set
V (H) and edge set E(F ), and g : E(F ) → E(H) is an injective map such that
for every uv ∈ E(F ) we have {u, v} ⊆ V (g(uv)). The number of edges in F is
|E(F )|.
Observe that if a forest F has |V (H)| − 1 edges then F is a spanning tree on
V (H). In this case we say that F is a hypertree of H . Frank, Király, and Kriesell
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proved the following duality result relating spanning trees and strong cut-set in
hypergraphs [11, Corollary 2.6].

Proposition 1 ([11]). A hypergraph H contains a hypertree if and only if H
does not have a strong cut-set.

A 2-coloring of a hypergraph H is a function c : V (H) → {−1, 1}. We say that a
hyperedge e ofH is split by c if some vertex in V (e) is assigned 1 and some vertex
is assigned −1. We denote by split(c,H) the number of hyperedges split by c.
The maximum number of hyperedges split over all such 2-colorings is denoted
by split(H).

Observation 1. Let H be a hypergraph, e be a hyperedge of H and v ∈ V (e)
be a vertex of H. If c is a 2-coloring of H then e is not split if and only if
c(v) · c(u) = 1 for every u ∈ V (e) \ {v}.

For every i ≥ 2, let mi be the number of hyperedges of H that have size i and
for every r-hypergraph H , we rewrite μH as follows, μH =

∑r
i=2(1−2−(i−1))mi.

Let H be a hypergraph that does not have a strong cut-set. Here, we will
show that for such hypergraphs, there exists a 2-coloring that splits far more
than the average. This will be crucial both for our kernelization (Theorem 6)
and algorithmic (Theorem 2) results. For this we will also need a result on
boolean functions.

Results from Boolean Functions. A function f that maps {−1, 1}n to R

is called a pseudo-boolean function. It is well known that every pseudo-boolean
function f can be uniquely written as

f(x1, . . . , xn) = f̂(∅) +
∑

I∈2[n]\∅
f̂(I)

∏
i∈I

xi,

where each f̂(I) is a real. This formula is called the Fourier expansion of f and

the f̂(I) are the Fourier coefficients of f . See [21] for more details. By x̄ we
represent (x1, . . . , xn).

Theorem 4 ([3]). Let f(x̄) = f̂(∅) +
∑
I∈F

f̂(I)
∏
i∈I

xi be a pseudo-boolean func-

tion of degree r > 0, where F is a family of non-empty subsets of [n] such that

I ∈ F if and only if f̂(I) 
= 0 and f̂(∅) is the constant term of f . Then

max
x∈{−1,1}n

f(x̄) ≥ f̂(∅) +
⌊
rankA− 1 + r

r

⌋
·min{|f̂(I)| | I ∈ F},

where A is a (0, 1)-matrix with entries αij such that αij = 1 if and only if term
j of the sum contains xi.

Now we are ready to give the proof of Theorem 1.
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Proof (of Theorem 1). Let H be an r-hypergraph and 1, . . . , n be an arbitrary
ordering of vertices in V (H). Let x1, . . . , xn be n variables corresponding to
1, . . . , n respectively. With every hyperedge e ∈ E(H) we associate a polynomial
fe(x̄). For a given e ∈ E(H), let j be the largest index inside V (e), then

fe(x̄) = 1− 1

2|e|−1

∏
i∈V (e)\{j}

(1 + xixj).

Notice that for every δ = (δ1, δ2, . . . , δn) ∈ {−1, 1}n, we may define a 2-coloring
cδ of V (H) such that cδ(i) = δi and, conversely, for every 2-coloring c we may
define a vector δc ∈ {−1, 1}n. Observe then that, given a 2-coloring c of H ,
fe(δc) = 1 if and only if e is split by c. Thus fe(δc) = 0 if and only if e is
not split by c. Hence, it is enough to prove that maxȳ f(ȳ) ≥ μH + n−2

r·2r−1 ,

where f(x̄) =
∑

e∈E(H)

fe(x̄) is a pseudo-boolean function of degree r > 0 and

ȳ ∈ {−1, 1}n. Next we show that it indeed holds.

Let,

f(x̄) =
∑

e∈E(H)

⎛
⎝1− 1

2|e|−1

∏
i∈V (e)\{j}

(1 + xixj)

⎞
⎠

=

r∑
i=2

mi −
∑

e∈E(H)

1

2|e|−1

∏
i∈V (e)\{j}

(1 + xixj).

Notice, for every e ∈ E(H),
1

2|e|−1
xpxj and

1

2|e|−1
x2
jxpxq appear in the terms

of
∏

i∈V (e)\{j}
(1 + xixj) for every {p, q} ⊆ V (e) \ {j}. We use this fact later. We

rewrite f(x̄) as,

f(x̄) =

r∑
i=2

mi −
r∑

i=2

1

2i−1
mi +

∑
I∈F

cI
∏
i∈I

x
λ(I,i)

i

=

r∑
i=2

(
1− 1

2i−1

)
mi +

∑
I∈F

cI
∏
i∈I

x
λ(I,i)

i ,

where F is a family of subsets of [n] such that for each set I ∈ F ,

1. 2 ≤ |I| ≤ r,

2. |cI | ≥ 1
2r−1 , and

3. for every i ∈ I, λ(I,i) is a positive integer.

Then, as above, for every e ∈ E(H),
1

2|e|−1
xpxj and

1

2|e|−1
x2
jxpxq appear in

f(x̄) for every {p, q} ⊆ V (e) \ {j}.
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Let,

fp(x̄) =

r∑
i=2

(
1− 1

2i−1

)
mi +

∑
I∈F

cI
∏
i∈I

x
λ(I,i) mod 2

i .

Clearly fp : {−1, 1}n → R is a pseudo-boolean function. Then, for every x̄ ∈
{−1, 1}n, f(x̄) = fp(x̄). Therefore, maxx̄ f(x̄) = maxx̄ fp(x̄). Notice that fp(x̄)
can also be written as

fp(x̄) =

r∑
i=2

(
1− 1

2i−1

)
mi +

∑
I∈F ′

c′I
∏
i∈I

xi,

where F ′ is a family of subsets of [n] such that

1. 2 ≤ |I| ≤ r and

2. |c′I | ≥ 1
2r−1 for every I ∈ F ′.

Then, for every hyperedge e ∈ E(H), the term xpxq, p, q ∈ V (e) with p 
= q

appears in
∑
I∈F ′

c′I
∏
i∈I

xi. Before we proceed we rewrite fp(x̄) as

fp(x̄) = f̂(∅) +
∑
I∈F ′

f̂(I)
∏
i∈I

xi,

where f̂(∅) = μH is the constant term of fp and f̂(I) = c′I , for every I ∈ F ′.
Note that fp(x̄) has degree rp with 2 ≤ rp ≤ r. From Theorem 4, it follows that

max
x̄

fp(x̄) ≥ f̂(∅) +
⌊
rankA− 1 + rp

rp

⌋
·min{|f̂(I)| : I ∈ F ′},

where A is a (0, 1)-matrix with entries αij such that αij = 1 if and only if term
j ∈ I contains xi. As H does not contain a strong cut-set, H has a hypertree
T (Hypothesis and Proposition 1). Moreover, recall that for every hyperedge
e ∈ E(H), the term xpxq, p, q ∈ V (e) with p 
= q appears in fp(x̄). Thus, the
edge-vertex incidence matrix of T is a submatrix of A. It is known that the edge
incidence matrix of a connected graph on n vertices has rank at least n− 1, thus
we have that the rankT is n− 1. We also know that the rank of a matrix is at
least as much as any of its submatrices. This implies that rankA ≥ n− 1 and,

max
x̄

fp(x̄) ≥ f̂(∅) +
⌊
n− 1− 1 + r

r

⌋
·min{|f̂(I)| | I ∈ F ′} ≥ μH +

n− 1

r · 2r−1
.

To see the last inequality let us assume that n = pr + q where 0 ≤ q ≤ r − 1.
Then if q ≥ 2 we have that

⌊
p+ q+r−2

r

⌋ ≥ p+1 and this gives the desired result.

In other cases we have q ≤ 1 and that gives us that
⌊
p+ q+r−2

r

⌋ ≥ p ≥ n−1
r . As

maxx̄ f(x̄) = maxx̄ fp(x̄), this completes the proof by applying Theorem 4. ��
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3 Linear Kernel for Fixed r and Proof of Theorem 2

In this section we combine our results from the previous section with known
reduction rules obtained in [16] for p-Set Splitting to obtain the desired kernel
for AA-r-SS when r = O(1). Finally, we give the proof of Theorem 2. Towards
this we need the notion of reduction rule. A reduction rule is a polynomial time
algorithm that takes an input instance (I, k) of a problem Π and outputs an
equivalent instance (I ′, k′) of Π .

When the hypergraph H is disconnected we can give a simple reduction rule.

Reduction Rule 1 ([16]) : Let (H, k) be an instance of AA-r-SS such that
P (H) has connected components P (H)[C1], . . . , P (H)[Ct]. Let v1, . . . , vt be ver-
tices such that vi ∈ Ci. Construct a hypergraph H ′ from H by unifying the
vertices v1, . . . , vt. In particular V (H ′) = V (H) \ {vi | 2 ≤ i ≤ t} and for every
hyperedge e ∈ E(H) make the edge e′ ∈ E(H ′) where e′ = e if vi /∈ e for every
i ∈ [t] and e′ = (V (e) \ {vi | 2 ≤ i ≤ t}) ∪ {v1} otherwise. We obtain (H ′, k).

For a hypergraph H and a coloring χ, let E(χ,H) denote the set of hyperedges
that are split by χ. Our next reduction rule takes care of the case when the
hypergraph has a strong cut-set. It is based on the following lemma.

Theorem 5 ([16]). There is a polynomial time algorithm that given a strong
cut-set X of a connected hypergraph H finds a cut-set X ′ ⊆ X such that X ′ 
= ∅
and there exists a coloring χ such that split(χ,H)=split(H) and χ splits all the
hyperedges in X ′. In fact, it shows that given any coloring c, there exists a
coloring χ such that E(χ,H) = E(c,H) ∪X ′.

This results in the following reduction rule.

Reduction Rule 2 : Let (H, k) be an instance of AA-r-SS and X ′ be a set
as defined in Theorem 5. Remove X ′ from the set of hyperedges and reduce k
to k − ∑

e∈X′
1

2|e|−1 , that is, obtain an instance (H ′, k − ∑
e∈X′

1
2|e|−1 ). Here

E(H ′) = E(H) \X ′.

Now we argue the correctness of Reduction Rule 2. Let (H, k) be an instance of
AA-r-SS and X ′ be as in the Theorem 5. By Theorem 5 we know that there
exists a coloring χ such that split(χ,H)=split(H) and χ splits all the hyperedges
in X ′. This implies that in H ′ at least

μH + k − |X ′| ≥ μH′ +
∑
e∈X′

(
1− 1

2|e|−1

)
+ k − |X ′| ≥ μH′ + k −

∑
e∈X′

1

2|e|−1

hyperedges are split. For the other direction observe that if in H ′ we have μH′ +

k−
∑
e∈X′

1

2|e|−1
hyperedges split then in H we have μH′ + k−

∑
e∈X′

1

2|e|−1
+ |X ′|

hyperedges split. The last inequality implies that in H , we have μH + k split
hyperedges. This proves the correctness of the Reduction Rule 2.
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Theorem 6. For a fixed r, AA-r-SS admits a kernel with O(k) vertices.

Proof. Let (H, k) be a reduced instance of AA-r-SS, that is we cannot apply
Reduction Rules 1 and 2. It is important to note that we can find a strong
cut-set X of a hypergraph H , if it exits, in polynomial time [16]. Thus, we can
apply the Reduction Rule 2 in polynomial time. As Reduction Rule 1 does not
apply, H is connected. Moreover, as Reduction Rule 2 does not apply H does
not have a strong cut-set. From Theorem 1, it follows that if k ≤ n−1

r·2r−1 then it
is a YES-instance. Otherwise, n−1

r·2r−1 ≤ k, thus n ≤ r · 2r−1k + 1 = O(k). ��

Proof (Proof of Theorem 2). As in the proof of Theorem 6 we assume that (H, k)
is a reduced instance and hence H is partition connected. For the simplicity of an
argument choose α = 1/2 and thus r = log

√
n. From Theorem 1, it follows that if

k ≤ n−1
r·2r−1 then it is a YES-instance. Otherwise, n−1

r·2r−1 ≤ k, thus n ≤ r·2r−1k+1.
Substituting r = log

√
n, we get that 2n ≤ (log

√
n)
√
nk + 1. This implies that

k ≥ n
1
2−ε for every fixed ε > 0. Since we can always solve AA-r-SS for any

r in time 2n, we get that AA-α logn-SS can be solved in time O∗(2k
2

1−ε
). We

remark that we could have chosen α = 1− δ for any fixed constant δ. ��

4 Lower Bound Result and Proof of Theorem 3

In this Section we will show that AA-�logn�-SS is not in XP unless NP⊆
DTIME[nlog logn]. Towards this we will give a suitable reduction from r-NAE-

SAT. A r-CNF formula φ = C1 ∧ · · · ∧ Cm is a boolean formula where each
clause has size at least 2 and at most r and each clause is a disjunction of
literals. r-NAE-SAT is a variation of r-SAT, where given a r-CNF formula
φ = c1∧· · ·∧cm on n variables, say V (φ) = {x1, . . . , xn}, the objective is to find
a {0, 1} assignment to V (φ) such that all the clauses get split. An assignment
splits a clause if at least one of its literals gets the value 1 and at least one of its
literals gets the value 0. We call an assignment that splits every clause a splitting
assignment.

Proof (of Theorem 3 (Sketch)). Set r = �logn� + 1 for the proof. We prove
the theorem in three steps. First, we prove that r-Nae-Sat is NP-complete for
r = �logn� + 1. It is known that �logn�-Sat is NP-complete even when the
input has at most cn clauses [5]. We combine this fact to give a reduction from
�logn�-Sat to r-Nae-Sat that shows NP-completeness of the latter when the
input formula to it contains at most cn clauses.

Our second step is to show a many one reduction from r-Nae-Sat to r-Set-
Splitting running in time O(nlog logn).

For the third step we show that if we have an algorithm for AA-(�logn� +
1)-SS running in time ng(k) then we can solve (�logn� + 1)-Nae-Sat with n
variables and γn clauses (the number of clauses is linear in number of variables)
in nO(log log n) time. Notice that if we consider an instance of AA-(�logn�+ 1)-
SS with γn hyperedges, where n is the number of vertices, then for any random
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colouring the number of split hyperedges is at least

(
1− 1

2logn

)
· γn = γn− γ.

Therefore, if AA-(�logn� + 1)-SS was in XP then by setting k = γ we would
be able to solve (�logn� + 1)-Set-Splitting in polynomial time. Hence we
would obtain that �logn�+ 1-Nae-Sat can be solved in nO(log logn) time. This
is contradictory unless NP ⊆ DTIME(nlog logn). ��

5 Conclusion

In this paper we generalized an old result by Edwards on the size of max-cut
on connected graphs to partition connected r-hypergraphs. We then used this
result to show an above guarantee version of Max r-Set Splitting FPT. Our
algorithmic results fit well with the current trend of studying problems above
guaranteed lower bounds. There are several interesting problems that are still
open in parameterized study of problems above guaranteed lower bounds, as well
as in the specific directions pursued in this paper. Most notable ones are:

– Does the lower bound of μH + n−1
r2r−1 on ζ(H) for partition connected r-

hypergraphs tight? That is, is there an infinite family of partition connected
r-hypergraphs where ζ(H) = μH + n−1

r2r−1 .
– Is �logn�-Set-Splitting with linear number of clauses NP-complete?
– Does the question of finding an independent set of size n

4 + k on planar
graphs FPT? Even obtaining an algorithm in XP remains elusive.
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