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Abstract We investigate the parameterized complexity of Generalized Red Blue
Set Cover (Gen- RBSC), a generalization of the classic Set Cover problem and
the more recently studied Red Blue Set Cover problem. Given a universe U
containing b blue elements and r red elements, positive integers k� and kr , and a
family F of � sets over U , the Gen- RBSC problem is to decide whether there is
a subfamily F ′ ⊆ F of size at most k� that covers all blue elements, but at most
kr of the red elements. This generalizes Set Cover and thus in full generality it is
intractable in the parameterized setting. In this paper, we study a geometric version
of this problem, called Gen- RBSC- lines, where the elements are points in the plane
and sets are defined by lines.We study this problem for an array of parameters, namely,
k�, kr , r, b, and �, and all possible combinations of them. For all these cases, we either
prove that the problem isW-hard or show that the problem is fixed parameter tractable
(FPT). In particular, on the algorithmic side, our study shows that a combination of
k� and kr gives rise to a nontrivial algorithm for Gen- RBSC- lines. On the hardness
side, we show that the problem is para-NP-hard when parameterized by kr , and W[1]-
hard when parameterized by k�. Finally, for the combination of parameters for which
Gen- RBSC- lines admits FPT algorithms, we ask for the existence of polynomial
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kernels. We are able to provide a complete kernelization dichotomy by either showing
that the problem admits a polynomial kernel or that it does not contain a polynomial
kernel unless co-NP ⊆ NP/poly.

Keywords RBSC · FPT · W-hardness · Point line cover

1 Introduction

The input to a covering problem consists of a universe U of size n, a family F of
m subsets of U and a positive integer k, and the objective is to check whether there
exists a subfamily F ′ ⊆ F of size at most k satisfying some desired properties. If
F ′ is required to contain all the elements of U , then it corresponds to the classical
Set Cover problem. The Set Cover problem is part of Karp’s 21 NP-complete
problems [14]. This, together with its numerous variants, is one of the most well-
studied problems in the area of algorithms and complexity. It is one of the central
problems in all the paradigms that have been established to cope with NP-hardness,
including approximation algorithms, randomized algorithms and parameterized
complexity.

1.1 Problems Studied, Context and Framework

The goal of this paper is to study a generalization of a variant of Set Cover namely,
the Red Blue Set Cover problem.

Red Blue Set Cover (RBSC)
Input: A universeU = (R, B) where R is a set of r red elements and B is a set of
b blue elements, a family F of � subsets of U , and a positive integer kr .
Question: Is there a subfamily F ′ of sets that covers all blue elements but at most
kr red elements?

Red Blue Set Cover was introduced in 2000 by Carr et al. [3]. The original
motivation for studying the problem arose in the context of a data mining project [1]
for detecting possible fraudulent data in Medicare claims. Red Blue Set Cover
can be thought of as a restricted version of the classification problem, which has
applications in Machine Learning and Image Processing. It is also closely related to
several combinatorial optimization problems such as the Group Steiner,Minimum
Label Path, Minimum Monotone Satisfying Assignment and Symmetric
Label Cover problems. See [3] for details.Red Blue Set Cover is NP-complete,
following from an easy reduction from Set Cover itself.

In this paper, we study the parameterized complexity, under various parameters,
of a common generalization of both Set Cover and Red Blue Set Cover, in a
geometric setting.
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Generalized Red Blue Set Cover (Gen- RBSC)
Input: A universeU = (R, B) where R is a set of r red elements and B is a set of
b blue elements, a family F of � subsets of U , and positive integers k�, kr .
Question: Is there a subfamily F ′ ⊆ F of size at most k� that covers all blue
elements but at most kr red elements?

It is easy to see that when k� = |F | then the problem instance is a Red Blue Set
Cover instance, while it is a Set Cover instance when k� = k, R = ∅, kr = 0. Next
we take a short detour and give a few essential definitions regarding parameterized
complexity.

Parameterized Complexity The goal of parameterized complexity is to find ways
of solving NP-hard problems more efficiently than brute force: here the aim is to
restrict the combinatorial explosion to a parameter that is hopefully much smaller
than the input size. Formally, a parameterization of a problem is assigning a positive
integer parameter k to each input instance and we say that a parameterized problem is
fixed-parameter tractable (FPT) if there is an algorithm that solves the problem in time
f (k)·|I |O(1), where |I | is the size of the input and f is an arbitrary computable function
depending only on the parameter k. Such an algorithm is called an FPT algorithm and
such a running time is called FPT running time. There is also an accompanying theory
of parameterized intractability using which one can identify parameterized problems
that are unlikely to admit FPT algorithms. These are essentially proved by showing
that the problem is hard for some class of the W-hierarchy. A parameterized problem
is said to admit a h(k)-kernel if there is a polynomial time algorithm (the degree of
the polynomial is independent of k), called a kernelization algorithm, that reduces the
input instance to an equivalent instance whose size is upper bounded by h(k). If the
function h(k) is polynomial in k, then we say that the problem admits a polynomial
kernel. While positive kernelization results have appeared regularly over the last two
decades, the first results establishing infeasibility of polynomial kernels for specific
problems have appeared only recently. In particular, Bodlaender et al. [2], and Fortnow
and Santhanam [12] have developed a framework for showing that a problem does not
admit a polynomial kernel unless co-NP ⊆ NP/poly, which is deemed unlikely. For
more background, the reader is referred to the following monograph [10].

In the parameterized setting, Set Cover, parameterized by k, is W[2]-hard [8]
and it is not expected to have an FPT algorithm. The NP-hardness reduction from Set
Cover to Red Blue Set Cover implies that Red Blue Set Cover is W[2]-hard
parameterized by the size k� of a solution subfamily. However, the hardness result is
not the end of the story for the Set Cover problem in parameterized complexity. In
literature, various special cases of Set Cover have been studied. A few examples
are instances with sets of bounded size [9], sets with bounded intersection [16,21],
and instances where the bipartite incidence graph corresponding to the set family has
bounded treewidth or excludes some graph H as a minor [5,11]. Apart from these
results, there has also been extended study on different parameterizations of Set
Cover. A special case of Set Cover which is central to the topic of this paper is the
one where the sets in the family correspond to some geometric object. In the simplest
geometric variant of Set Cover, called Point Line Cover, the elements of U are
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points inR2 and each set contains a maximal number of collinear points. This version
of the problem is FPT and in fact has a polynomial kernel [16] of quadratic size.
The size of these kernels have been proved to be tight, under standard assumptions,
in [15]. When we take the sets to be the space bounded by unit squares, Set Cover
is W[1]-hard [17]. On the other hand when surfaces of hyperspheres or hyperplanes
are sets then the problem is FPT [16]. These geometric results motivate a systematic
study of the parameterized complexity of geometric Gen- RBSC problems.

There is an array of natural parameters in hand for theGen- RBSC problem. Hence,
the problem promises an interesting dichotomy in parameterized complexity, under
the various parameters. In this paper, we concentrate on theGeneralized Red Blue
Set Cover with lines problem, parameterized under combinations of natural para-
meters.

Generalized Red Blue Set Cover with lines (Gen- RBSC- lines)
Input: A universe U = (R, B) where R is a set of r red points and B is a set of b
blue points, a familyF of � subsets ofU such that each subset contains a maximal
set of collinear points of U , and positive integers k�, kr .
Question: Is there a subfamilyF ′ ⊆ F of size at most k� that covers all blue points
but at most kr red points?

To be more specific, a set L ∈ F is assiciated with a line equation, and the points in the
set are all the points inU that satisfy the line equation. So, it is possible that a set inF
contains exactly one point from U . It is safe to assume that r ≥ kr , and � ≥ k�. Since
it is enough to consider minimal solution families, we can also assume that b ≥ k�.
This is because, by definition of minimality, each line in a minimal solution family
covers a blue point that is not covered by any other line of the solution family.

We finish this section with some related results.
As mentioned earlier, the Red Blue Set Cover problem in classical complexity

is NP-complete. Interestingly, if the incidence matrix, built over the sets and elements,
has the consecutive ones property then the problem is in P [6]. The problem has
been studied in approximation algorithms as well [3,20]. Specially, the geometric
variant, where every set is the space bounded by a unit square, has a polynomial time
approximation scheme (PTAS) [4].

1.2 Our Contributions

In this paper, we first show a complete dichotomy of the parameterized complexity
of Gen- RBSC- lines. For a list of parameters, namely, k�, kr , r, b, and �, and all
possible combinations of them, we show hardness or an FPT algorithm. Further, for
parameterizations where an FPT algorithm exists, we either show that the problem
admits a polynomial kernel or that it does not contain a polynomial kernel unless
co-NP ⊆ NP/poly.

To describe our results we first state a few definitions. For a set S ⊆ U , we denote
by 2S the family of all the subsets of S, and by US the family of all the subsets of
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Fig. 1 Illustration of our results
for Gen- RBSC- lines
described in Theorem 1.1 and
hierarchy of parameters
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U that contain S (that is, all supersets of S in U ). For a collection F of sets over a
universeU , by DownClosure(F) and UpClosure(F) we mean the families

⋃
S∈F2S

and
⋃

S∈FUS respectively. Next, we describe the meaning of a parameterized result
with respect to a set of parameters. If Gen- RBSC- lines is FPT parameterized by a
set Γ ′ of parameters this means that there exists an algorithm for Gen- RBSC- lines
parameterized by Γ ′ running in time f (Γ ′) · (|U | + |F |)O(1). That is, the running
time of the algorithm can depend in an arbitrary manner on the parameters present in
Γ ′. Equivalently, we have an algorithm running in time f (τ ) · (|U |+ |F |)O(1), where
τ = ∑

q∈Γ ′ q. Similarly, if the problem admits a polynomial kernel parameterized
by Γ ′ then in polynomial time we get an equivalent instance of the problem of size
τO(1). On the other hand when we say that the problem does not admit polynomial
kernel parameterized by Γ ′ then it means that there is no kernelization algorithm that
outputs a kernel of size τO(1) unless co-NP ⊆ NP/poly. Our first contribution is the
following parameterized and kernelization dichotomy result for Gen- RBSC- lines.

Theorem 1.1 Let Γ = {�, r, b, k�, kr }. Then, under the assumption that FPT ⊂ W[1]
⊂ W[2] ⊂ · · · ⊂ para- NP, Gen- RBSC- lines is FPT parameterized by Γ ′ ⊆ Γ

if and only if Γ ′ /∈ DownClosure({{k�, b}, {r, kr }}). Furthermore, unless co-NP ⊆
NP/poly, Gen- RBSC- lines admits a polynomial kernel parameterized by Γ ′ ⊆ Γ

if and only if Γ ′ ∈ UpClosure({{�}, {k�, r}, {b, r}}).
A schematic diagram explaining the results proved in Theorem 1.1 can be seen

in Fig. 1. Results for a Γ ′ ⊆ Γ which is not depicted in Fig. 1 can be derived by
checking whether Γ ′ is in DownClosure({{k�, b}, {r}}). Let Γ ′ and Γ ′′ be two sets
of parameters in Fig. 1. Let τ ′ = ∑

q∈Γ ′ q and τ ′′ = ∑
q∈Γ ′′ q. In Fig. 1, an arrow

is given from Γ ′ to Γ ′′ if τ ′ ≤ τ ′′ for all possible positive integral values that the
parameters in Γ can take. In the parameterized setting, the arrows exhibit a lot of
meaning regarding parameterized results. If Gen- RBSC- lines parameterized by Γ ′
has an FPT algorithm then the same algorithm is an FPT algorithm for Gen- RBSC-
lines parameterized by Γ ′′. On the other hand, if Gen- RBSC- lines parameterized
by Γ ′′ does not have a polynomial kernel, under standard assumptions, then Gen-
RBSC- lines parameterized by Γ ′ also does not have a polynomial kernel under those
assumptions. Similarly, if Gen- RBSC- lines parameterized by Γ ′′ does not belong
to the FPT class, under standard assumptions, then Gen- RBSC- lines parameterized
by Γ ′ also does not belong to the FPT class under those assumptions.

Next we consider the RBSC- lines problem. Here we do not have any constraint
on how many sets we pick in the solution family but we are still allowed to cover at
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Fig. 2 Illustration of our results
for Red Blue Set Cover
with lines under various
parameters
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most kr red points. This brings twomain changes in Fig. 1. For Gen- RBSC- lineswe
show that the problem is NP-hard even when there is a constant number of red points.
However, RBSC- lines becomes FPT parameterized by r . In contrast, RBSC- lines
is W[2]-hard parameterized by kr . This leads to the following dichotomy theorem for
RBSC- lines.

Theorem 1.2 Let Γ = {�, r, b, kr }. Then, under the assumption that FPT ⊂ W[1] ⊂
W[2]⊂ . . . ⊂ para- NP,RBSC- lines is FPT parameterized byΓ ′ ⊆ Γ if and only if
Γ ′ /∈ {{b}, {kr }}). Furthermore, unless co-NP ⊆ NP/poly, RBSC- lines admits poly-
nomial kernel parameterized byΓ ′ ⊆ Γ if and only ifΓ ′ ∈ UpClosure({{�}, {b, r}}).
A schematic diagram explaining the results proved in Theorem 1.2 is given in Fig. 2.

A quick look at Fig. 1 will show that the Gen- RBSC- lines problem is FPT para-
meterized by k� + kr or b+ kr . A natural question to ask is whether Gen- RBSC itself
(the problem where sets in the input family are arbitrary and do not correspond to
lines) is FPT when parameterized by b + kr . Regarding this, we show the following
results:

1. Gen- RBSC is W[1]-hard parameterized by k� + kr (or b+ kr ) when every set has
size at most three and contains at least two red points.

2. Gen- RBSC is W[2]-hard parameterized by k� +r when every set contains at most
one red point.

The first result essentially shows that Gen- RBSC is W[1]-hard even when the sets in
the family have size bounded by three. This is in sharp contrast to Set Cover, which
is known to be FPT parameterized by k� and d. Here, d is the size of the maximum
cardinality set in F . In fact, Set Cover admits a kernel of size kO(d)

� . This leads to
the following question:

Does the hardness of Gen- RBSC in item one arise from the presence of two
red points in the instance? Would the complexity change if we assume that each
set contains at most one red point?

In fact, even if we assume that each set contains at most one red point, we must
take d, the size of the maximum cardinality set in F , as a parameter. Else, this would
correspond to the hardness result presented in item two.As a final algorithmic result we
show thatGen- RBSC admits an algorithmwith running time 2O(dk�) ·(|U |+|F |)O(1),
when every set has at most one red point. Observe that in this setting kr can always be
assumed to be less than k�. Thus, this is also a FPT algorithm parameterized by k�+kr ,
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when sets in the input family have bounded size. However, we show that Gen- RBSC
(in fact Gen- RBSC- lines) does not admit a polynomial kernel parameterized by
k� + kr even when each set in the input family corresponds to a line and has size two
and contains at most one red point.

1.3 Our Methods and an Overview of Main Algorithmic Results

Let Γ = {�, r, b, k�, kr }. Most of our W-hardness results for a Gen- RBSC variant
parameterized by Γ ′ ⊆ Γ are obtained by giving a polynomial time reduction, from
Set Cover or Multicolored Clique that makes every q ∈ Γ ′ at most kO(1) (in
fact most of the time O(k)).

This allows us to transfer the known hardness results about Set Cover andMul-
ticolored Clique to our problem. Since in most cases the parameters are linear in
the input parameter, in fact we can rule out an algorithm of the form (|U | + |F |)o(τ ),
where τ = ∑

q∈Γ ′ q, under the Exponential Time Hypothesis (ETH) [13]. Similarly,
hardness results for kernels are derived from giving an appropriate polynomial time
reduction from parameterized variants of the Set Cover problem that only allows
each parameter q ∈ Γ ′ to grow polynomially in the input parameter.

Our main algorithmic highlights are parameterized algorithms for

(a) Gen- RBSC- lines running in time 2O(k� log k�+kr log kr ) ·(|U |+|F |)O(1) (showing
Gen- RBSC- lines is FPT parameterized by k� + kr ); and

(b) Gen- RBSCwith running time 2O(dk�) · (|U |+ |F |)O(1), when every set is of size
at most d and has at most one red point.

Observe that the first algorithm generalizes the known algorithm for Point Line
Cover which runs in time 2O(k� log k�) · (|U | + |F |)O(1) [16].

The parameterized algorithm for Gen- RBSC- lines mentioned in (a) starts by
bounding the number of blue points by k2� and guessing the lines that contain at least
two blue points. The number of lines containing at least two blue points can be shown
to be at most k4� . These guesses lead to an equivalent instance where each line contains
exactly one blue point and there are no lines that only contain red points (as these lines
can be deleted). However, we can not bound the number of red points at this stage. We
introduce a notion of “solution subfamily” and connected components of the solution
subfamilies. Interestingly, this equivalent instance has sufficient geometric structure
on the connected components. We exploit the structure of these components, gotten
mainly from simple properties of lines on a plane, to show that knowing one of the
lines in each component can, in FPT time, lead to finding the component itself! Thus,
to find a component all we need to do is to guess one of the lines in it. However, here
we face our second difficulty: the number of connected components can be as bad as
O(k�) and thus if we guess one line for each connected component then it would lead
to a factor of |F |O(k�) in the running time of the algorithm. However, our equivalent
instances are such that we are allowed to process each component independent of
other components. This brings the total running time of guessing the first line of each
component down to k� · |F |. The algorithmic ideas used here can be viewed as some
sort of “geometry preserving subgraph isomorphism”, which could be useful in other
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contexts also. This completes an overview of the FPT result for Gen- RBSC- lines
parameterized by k� + kr .

The algorithm for Gen- RBSC running in time 2O(dk�) · (|U | + |F |)O(1), where
every set is of size at most d and has at most one red point is purely based on a novel
reduction to Subgraph Isomorphismwhere the subgraph we are looking for has size
O(k�d) and treewidth 3. The host graph, where we are looking for a solution subgraph,
is obtained by starting with the bipartite incidence graph and making modifications
to it. The bipartite incidence graph we start with has in one side vertices for sets
and in the other side vertices corresponding to blue and red points and there is an
edge between vertices corresponding to a set and a blue (red) point if this blue (red)
point is contained in the set. Our main observation is that a solution subfamily can
be captured by a subgraph of size O(k�d) and treewidth 3. Thus, for our algorithm
we enumerate all such subgraphs in time 2O(dk�) · (|U | + |F |)O(1) and for each such
subgraph we check whether it exists in the host graph using known algorithms for
Subgraph Isomorphism. This concludes the description of this algorithm.

2 Preliminaries

In this paper an undirected graph is denoted by a tuple G = (V, E), where V denotes
the set of vertices and E the set of edges. For a set S ⊆ V , the subgraph of G
induced by S, denoted by G[S], is defined as the subgraph of G with vertex set S
and edge set {(u, v) ∈ E : u, v ∈ S}. The subgraph obtained after deleting S is
denoted as G \ S. All vertices adjacent to a vertex v are called neighbors of v and
the set of all such vertices is called the neighborhood of v. Similarly, a non-adjacent
vertex of v is called a non-neighbor and the set of all non-neighbors of v is called
the non-neighborhood of v. The neighborhood of v is denoted by N (v). A vertex in
a connected graph is called a cut vertex if its deletion results in the graph becoming
disconnected.

Recall that showing a problem W[1] or W[2] hard implies that the problem is
unlikely to be FPT. One can show that a problem is W[1]-hard (W[2]-hard) by pre-
senting a parameterized reduction from a known W[1]-hard problem (W[2]-hard)
such as Clique (Set Cover) to it. The most important property of a parameterized
reduction is that it corresponds to an FPT algorithm that bounds the parameter value
of the constructed instance by a function of the parameter of the source instance. A
parameterized problem is said to be in the class para-NP if it has a nondeterministic
algorithm with FPT running time. To show that a problem is para-NP-hard we need
to show that the problem is NP-hard for some constant value of the parameter. For
example, k- Coloring is para-NP-hard parameterized by the number of colors, since
the problem is NP-complete when k = 3. See [10] for more details.

Lower Bounds in Kernelization In recent years, several techniques have been devel-
oped to show that certain parameterized problems belonging to the FPT class cannot
have any polynomial sized kernel unless some classical complexity assumptions are
violated. One such technique that is widely used is the polynomial parameter trans-
formation technique.
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Definition 2.1 [2] LetΠ,Γ be two parameterized problems. A polynomial time algo-
rithm A is called a polynomial parameter transformation (or ppt) from Π to Γ if ,
given an instance (x, k) of Π ,A outputs in polynomial time an instance (x ′, k′) of Γ

such that (x, k) ∈ Π if and only if (x ′, k′) ∈ Γ and k′ ≤ p(k) for a polynomial p.

We use the following theorem together with ppt reductions to rule out polynomial
kernels.

Theorem 2.1 [2] Let Π,Γ be two parameterized problems such that Π is NP-hard
and Γ ∈ NP. Assume that there exists a polynomial parameter transformation from
Π to Γ . Then, if Π does not admit a polynomial kernel neither does Γ .

For further details on lower bound techniques in kernelization refer to [2,12].
GeneralizedRedBlue Set CoverA set S in aGeneralized Red Blue Set Cover
instance (U,F) is said to cover a point p ∈ U if p ∈ S. A solution family for the
instance is a family of sets of size at most k� that covers all the blue points and at
most kr red points. In case of Red Blue Set Cover, the solution family is simply
a family of sets that covers all the blue points but at most kr red points. Such a family
will also be referred to as a valid family. A minimal family of sets is a family of sets
such that every set contains a unique blue point. In other words, deleting any set from
the family implies that a strictly smaller set of blue points is covered by the remaining
sets. The sets of Generalized Red Blue Set Cover with lines are also called
lines in this paper. We also mention a key observation about lines in this section. This
observation is crucial in many arguments in this paper.

Observation 1 Given a set of points S, let F be a set of lines such that each line
contains at least 2 points from S. Then |F | ≤ (|S|

2

)
.

This observation comes from the fact that any two lines can intersect at exactly 1
point. Therefore, any subset consisting of 2 points from S is contained in at most one
line of F .

Gen- RBSCwith hyperplanes ofRd , for a fixed positive integer d, is a special case
of the problem. Here, the input universe U is a set of n points in Rd . A hyperplane in
R
d is the affine hull of a set of d affinely independent points [16]. In our special case

each set is a maximal set of points that lie on a hyperplane of Rd .

Definition 2.2 An intersection graph GF = (V, E) for an instance (U,F) of Gen-
eralized Red Blue Set Cover is a graph with vertices corresponding to the sets
in F . We give an edge between two vertices if the corresponding sets have non-empty
intersection.

The following proposition is a collection of results on the Set Cover problem,
that will be repeatedly used in the paper. The results are from [7,8]

Proposition 1 The Set Cover problem is:

(i) W[2] hard when parameterized by the solution family size k.
(ii) FPT when parameterized by the universe size n, but does not admit polynomial

kernels unless co-NP ⊆ NP/poly.
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(iii) FPT when parameterized by the number of sets m in the instance, but does not
admit polynomial kernels unless co-NP ⊆ NP/poly.

Tree Decompositions and TreewidthWe also need the concept of treewidth and tree
decompositions.

Definition 2.3 (Tree Decomposition [22]) A tree decomposition of a (undirected or
directed) graph G = (V, E) is a tree T in which each vertex x ∈ T has an assigned set
of vertices Bx ⊆ V (called a bag) such that (T, {Bx }x∈T) has the following properties:

–
⋃

x∈T Bx = V
– For any (u, v) ∈ E , there exists an x ∈ T such that u, v ∈ Bx .
– If v ∈ Bx and v ∈ By , then v ∈ Bz for all z on the path from x to y in T.

In short, we denote (T, {Bx }x∈T) as T.

The treewidth tw(T) of a tree decomposition T is the size of the largest bag of
T minus one. A graph may have several distinct tree decompositions. The treewidth
tw(G) of a graph G is defined as the minimum of treewidths over all possible tree
decompositions of G.

3 Parameterizing by kr and r

In this section we first show that Gen- RBSC- lines parameterized by r is para-NP-
complete. Since kr ≤ r , it follows that Gen- RBSC- lines parameterized by kr is also
para-NP-complete.

Theorem 3.1 Gen- RBSC- lines is para-NP-complete parameterized by either r or
kr .

Proof If we are given a solution family for an instance of Gen- RBSC- lines we can
check in polynomial time if it is valid.

Hence,Gen- RBSC- lines has a nondeterministic algorithmwith FPT running time
(in fact polynomial) and thus Gen- RBSC- lines parameterized by r is in para-NP.

For completeness, there is an easy polynomial-time many-one reduction from the
Point Line Cover problem, which is NP-complete. An instance ((U,F)) of Point
Line Cover parameterized by k, the size of the solution family, is reduced to an
instance ((R ∪ B,F)) of Gen- RBSC- lines parameterized by r or kr with the fol-
lowing properties:

– B = U
– The family of sets remains the same in both instances.
– R consists of 1 red vertex that does not belong to any of the lines of F .
– k� = k and kr = 0.

It is easy to see that ((U,F)) is a YES instance of Point Line Cover if and only
if (R ∪ B,F) is a YES instance of Gen- RBSC- lines. Since the reduced instances
belong to Gen- RBSC- lines parameterized by r = 1 or kr = 0, this proves that
Gen- RBSC- lines parameterized by r or kr is para-NP-complete. 
�
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4 Parameterizing by �

In this section we design a parameterized algorithm as well as a kernel for Gen-
RBSC- lineswhen parameterized by the size � of the family. The algorithm for this is
simple. We enumerate all possible k�-sized subsets of input lines and for each subset,
we check in polynomial time whether it covers all blue points and at most kr red
points. The algorithm runs in timeO(2� · (|U | + |F |). The main result of this section
is a polynomial kernel for Gen- RBSC- lines when parameterized by �.

We start by a few reduction rules which will be used not only in the kernelization
algorithm given below but also in other parameterized and kernelization algorithms
in subsequent sections.

Reduction Rule 1 If there is a set S ∈ F with only red points then delete S from F .

Lemma 4.1 Reduction Rule 1 is safe.

Proof Let F ′ be a family of at most k� lines of the given instance that cover all blue
points and at most kr red points. If F ′ contains S, then F ′ \ {S} is also a family of at
most k� lines that cover all blue points and at most kr red points. Hence, we can safely
delete S. This shows that Reduction Rule 1 is safe. 
�
Reduction Rule 2 If there is a set S ∈ F with more than kr red points in it then delete
S from F .

Lemma 4.2 Reduction Rule 2 is safe.

Proof If S has more than kr red points then S alone exceeds the budget given for the
permissible number of covered red points. Hence, S cannot be part of any solution
family and can be safely deleted from the instance. This shows that Reduction Rule 2
is safe. 
�

Our final rule is as follows. A similar Reduction Rule was used in [16], for the
Point Line Cover problem.

Reduction Rule 3 If there is a set S ∈ F with at least k� + 1 blue points then reduce
the budget of k� by 1 and the budget of kr by |R ∩ S|. The new instance is (U \ S, F̃),
where F̃ = {F \ S | F ∈ F and F = S}.
Lemma 4.3 Reduction Rule 3 is safe.

Proof If S is not part of the solution family then we need at least k� + 1 lines in the
solution family to cover the blue points in S, which is not possible. Hence any solution
family must contain S.

Suppose the reduced instance has a solution family F ′ covering B \ S blue points
and at most kr − |R ∩ S| red points from R \ S. Then F ′ ∪ {S} is a solution for
the original instance. On the other hand, suppose the original instance has a solution
family F̂ . As argued above, S ∈ F̂ . F̂ \ S covers all blue points of B \ S and at most
kr − |R ∩ S| red points from R \ S, and is a candidate solution family for the reduced
instance. Thus, Reduction Rule 3 is safe. 
�
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The following simple observation can be made after exhaustive application of
Reduction Rule 3. This is similar to the construction of the quadratic kernel for Point
Line Cover [16].

Observation 2 If the budget for the subfamily F ′ to cover all blue and at most kr
red points is k� then after exhaustive applications of Reduction Rule 3 there can be
at most k2� blue points remaining in a YES instance. If there are more than k2� blue
points remaining to be covered then we correctly say NO.

It is worth mentioning that even if we had integer weights on the red points in R
and asked for a solution family of size at most k� that covered all blue points but
red points of total weight at most kr , then this weighted version, called Weighted
Gen- RBSC- lines parameterized by � is FPT. The Weighted Gen- RBSC- lines
problem will be useful in the theorem below. Finally, we get the following result.

Theorem K.1 There exists a polynomial kernel forGen- RBSC- linesparameterized
by �. Also, there is an algorithm for Gen- RBSC- lines running in timeO(2� · (|U |+
|F |)).
Proof We have already described the enumeration based algorithm at the beginning
of this section. Here, we only give a non-constructive proof that a polynomial kernel
exists. Given an instance of Gen- RBSC- lines we exhaustively apply Reduction
Rules 1, 2 and 3 to obtain an equivalent instance. By Observation 2 and the fact that
k� ≤ �, the current instance must have at most �2 blue points, or we can safely say
NO. Also, the number of red points that belong to 2 or more lines is bounded by
the number of intersection points of the � lines, i.e., �2. Any remaining red points
belong to exactly 1 line. We reduce our Gen- RBSC- lines instance to a Weighted
Gen- RBSC- lines instance as follows:

– The family of lines and the set of blue points remain the same in the reduced
instance. The red points appearing in the intersection of two lines also remain the
same. Give a weight of 1 to these red points.

– For each line L , let c(L) indicate the number of red points that belong exclusively
to L . Remove all but one of these red points and give weight c(L) to the remaining
exclusive red point.

In the Weighted Gen- RBSC- lines instance, there are � lines, at most �2 blue
points and atmost �2+� red points. For each line L , the value of c(L) is atmost kr , after
Reduction Rule 2. Suppose kr > 2�. Then r > 2� and the parameterized algorithm
for Gen- RBSC- lines running in time O(2� · (|U | + |F |)) runs in polynomial time.
Thus we can assume that kr ≤ 2�. Then we can represent kr and therefore the weights
c(L) by at most � bits. Thus, the reduced instance has size bounded by O(�2).

Observe that we got an instance of Weighted Gen- RBSC- lines and not of
Gen- RBSC- lines which is the requirement for the kernelization procedure. All this
shows is that the reduction is a “compression” fromGen- RBSC- lines parameterized
by � to Weighted Gen- RBSC- lines parameterized by �. This is rectified by the
following standard procedure. Since both problems belong toNP, there is a polynomial
timemany-one reduction fromWeighted Gen- RBSC- lines toGen- RBSC- lines.
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Finally, using this polynomial time reduction, we obtain a polynomial size kernel for
Gen- RBSC- lines parameterized by �. This completes a non-constructive proof of
the existence of a polynomial kernel for Gen- RBSC- lines. 
�

Observe that the algorithm referred to in Theorem K.1 does not use the fact that
sets are lines and thus it also works for Gen- RBSC parameterized by �. However, it
follows from Proposition 1(iii) that Gen- RBSC parameterized by � does not admit a
polynomial kernel.

5 Parameterizing by k�, b and k� + b

In this section we look atGen- RBSC- lines parameterized by k�, b, and k�+b. There
is an interesting connection between b and k�. As we are looking for minimal solution
families, we can alway assume that b ≥ k�. On the other hand, Reduction Rule 3
showed us that for all practical purposes b ≤ k2� . Thus, in the realm of parameterized
complexity k�, b and k� + b are the same parameters. That is, Gen- RBSC- lines
is FPT parameterized by k� if and only if it is FPT parameterized by b if and only
if it is FPT parameterized by k� + b. The same holds in the context of kernelization
complexity.

First, we show thatGen- RBSC- lines parameterised by k� or b isW[1]-hard. Then
we look at some special cases that turn out to be FPT.

5.1 Parameter k� + b

We look at Gen- RBSC- lines parameterized by k� +b. This problem is not expected
to have a FPT algorithm as it is W[1]-hard. We give a reduction to this problem from
theMulticolored Clique problem,which is known to beW[1] hard even on regular
graphs [19].

Multicolored Clique Parameter: k
Input: A graph G = (V, E) where V = V1 � V2 � . . . � Vk , and an integer k.
Question: Is there a clique C ⊆ G of size k such that ∀1 ≤ i ≤ k,C ∩ Vi = ∅.

The partition of the vertex set can be considered as a coloring on the vertex set and
a clique containing one vertex from each part is called a multi-colored clique.

Theorem 5.1 Gen- RBSC- lines parameterized by k� or b or k� + b is W[1]-hard.

Proof We will give a reduction from Multicolored Clique on regular graphs.
Let (G = (V, E), k) be an instance of Multicolored Clique, where G is a
d-regular graph with n vertices and m edges. We construct an instance of Gen-
RBSC- lines (R ∪ B,F), as follows. Let V = V1 � V2 � · · · � Vk . A multi-colored
clique cannot contain an edge whose both end points are in the same vertex partition.
Therefore, without loss of generality, assume that each Vi , 1 ≤ i ≤ k is an independent
set.
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1. For each vertex class Vi , 1 ≤ i ≤ k, add two blue points bi at (0, i) and b′
i at (i, 0).

2. Informally, for each vertex class Vi , 1 ≤ i ≤ k we do as follows. Let Lk be the
line that is parallel to y axis and passes through the point (k, 0). Suppose there are
ni vertices in Vi . We select ni distinct points, say P , in R

2 on the line Lk , such
that for all p ∈ P with coordinates (a1, a2), a1 = k (as these are points on Lk)
and a2 lies in the interval (i − 1, i − 1

2 ). Now for every point p ∈ P we draw the
unique line between (0, i) and the point p. Finally, we assign each line to a unique
vertex in Vi . Formally, we do as follows. For each vertex class Vi , 1 ≤ i ≤ k
and each vertex u ∈ Vi , we choose a point p1u ∈ R

2 with coordinates (k, yu),
i − 1 < yu < i − 1

2 . Also, for each pair u = v ∈ Vi , yu = yv . For each u ∈ Vi ,
we add the line l1u , defined by bi and p1u , toF . We call these near-horizontal lines.
Observe that all the near-horizontal lines corresponding to vertices in Vi intersect
at bi . Furthermore, for any two vertices u ∈ Vi and v ∈ Vj , with i = j , the lines l1u
and l1v do not intersect on a point with x-coordinate from the closed interval [0, k].

3. Similarly, for each vertex class Vi , 1 ≤ i ≤ k and each vertex u ∈ Vi , we choose a
point p2u ∈ R

2 with coordinates (xu, k), i − 1 < xu < i − 1
2 . Again, for each pair

u = v ∈ Vi , xu = xv . For each u ∈ Vi , we add the line l2u , defined by b
′
i and p2u , to

F . Notice that for any u, v ∈ V , l1u and l2v have a non-empty intersection. We call
these near-vertical lines. Observe that all the near-vertical lines corresponding to
vertices in Vi intersect at b′

i . Furthermore, for any two vertices u ∈ Vi and v ∈ Vj ,
with i = j , the lines l2u and l

2
v do not intersect on a point with y-coordinate from the

closed interval [0, k]. However, a near-horizontal line and a near-vertical line will
intersect at a point with both x and y-coordinate from the closed interval [0, k].
The construction ensures that no 3 lines in F have a common intersection.

4. For each edge e = (u, v) ∈ E , add two red points, ruv at the intersection of lines
l1u and l2v , and rvu at the intersection of lines l1v and l2u .

5. For each vertex v ∈ V , add a red point at the intersection of the lines l1v and l2v .

This concludes the description of the reduced instance. Thus we have an instance
(R∪ B,F) of Gen- RBSC- lineswith 2n lines, 2k blue points and 2m+n red points.


�
Claim G = (V, E) has a multi-colored clique of size k if and only if (R ∪ B,F) has
a solution family of 2k lines, covering the 2k blue points and at most 2(d + 1)k − k2

red points.

Proof Assume there exists a multi-colored clique C of size k in G. Select the 2k
lines corresponding to the vertices in the clique. That is, select the subset of lines
F ′ = {l ju | 1 ≤ j ≤ 2, u ∈ C} in the Gen- RBSC- lines instance. Since the clique
is multi-colored, these lines cover all the blue points. Each line (near-horizontal or
near-vertical) covers exactly d + 1 red points. Thus, the number of red points covered
by F ′ is at most (d + 1)2k. However, each red point corresponding to vertices in C
and the two red points corresponding to each edge in C are counted twice. Thus, the
number of red points covered byF ′ is at most (d +1)2k− k−2

(k
2

) = 2(d +1)k− k2.
This completes the proof in the forward direction.

Now, assume there is a minimal solution family of size at most 2k, containing at
most 2(d + 1)k − k2 red points. As no two blue points are on the same line and
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there are 2k blue points, there exists a unique line covering each blue point. Let L1

and L2 represent the sets of near-horizontal and near-vertical lines respectively in
the solution family. Observe that L1 covers {b1, . . . , bk} and L2 covers {b′

1, . . . , b
′
k}.

Let C = {v1, . . . , vk} be the set of vertices in G corresponding to the lines in L1.
We claim that C forms a multicolored k-clique in G. Since bi can only be covered
by lines corresponding to the vertices in Vi and L1 covers {b1, . . . , bk} we have that
C ∩Vi = ∅. It remains to show that for every pair of vertices in C there exists an edge
between them in G. Let vi denote the vertex in C ∩ Vi .

Consider all the lines in L1. Each of these lines are near-horizontal and covers
exactly d + 1 red points. Furthermore, no two of them intersect at a red point. Since
L1 and L2 together can cover at most 2k(d + 1) − k2 red points in total, at least k2

of them must be covered by both sets. Since each set has exactly k lines (and the lines
are distinct), any two lines l1 and l2 such that l1 ∈ L1 and l2 ∈ L2 must intersect at a
red point. This implies that either l1 and l2 correspond to the same vertex in V or there
exists an edge between the vertices corresponding to them. Let C ′ = {w1, . . . , wk} be
the set of vertices in G corresponding to the lines in L2. Since b′

i can only be covered
by lines corresponding to the vertices in Vi and L2 covers {b′

1, . . . , b
′
k} we have that

C ′ ∩ Vi = ∅. Let wi denote the vertex in Vi such that l2wi
∈ L2 covers b′

i . We know
that l1vi and l

2
wi

must intersect on a red point. However, by construction no two distinct
vertices vi and wi belonging to the same vertex class Vi intersect at red point. Thus
vi = wi . This means C = C ′. This, together with the fact that two lines l1 and l2 such
that l1 ∈ L1 and l2 ∈ L2 (now lines corresponding to C) must intersect at a red point,
implies that C is a multicolored k-clique in G. 
�
Since b = k� = 2k, we have that Gen- RBSC- lines is W[1]-hard parameterized by
k� or b or k� + b. This concludes the proof.

A closer look at the reduction shows that every set contains exactly one blue point.
A natural question to ask is whether the complexity would change if we take the
complement of this scenario, that is, each set contains either no blue points or at least
two blue points. Shortly, we will see that this implies that the problem becomes FPT.
Also, notice that each set in the reduction contains unbounded number of red elements.
What about the parameterized complexity if every set in the input contained at most a
bounded number, say d, of red elements. Even then the complexity would change but
for this we need an algorithm for Gen- RBSC- lines parameterized by k� + kr that
will be presented in Sect. 6.

5.2 Special Case Under the Parameter k�

In this section, we look at the special case when every line in the Gen- RBSC- lines
instance contains at least 2 blue points or no blue points at all. We show that in this
restricted case Gen- RBSC- lines is FPT.

Theorem K.2 Gen- RBSC- lines parameterized by k�, where input instances have
each set containing either at least 2 blue points or no blue points, has a polynomial
kernel. There is also an FPT algorithm running in O(k4k�

� · (|U | + |F |)O(1)) time.
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Proof We exhaustively apply Reduction Rules 1, 2 and 3 to our input instance. In
the end, we obtain an equivalent instance that has at least 1 blue point per line. The
equivalent instance also has each line containing at least 2 blue points or no blue points.
The instance has at most b = k2� blue points, or else we can correctly say NO. By

Observation 1 and the assumption on the instance, we can bound � by
(b
2

) ≤ k4� . Now
from Theorem K.1 we get a polynomial kernel for this special case of Gen- RBSC-
lines parameterized by k�.

Regarding the FPT algorithm, we are allowed to choose at most k� solution lines
from a total of � ≤ k4� lines in the instance (of course after we have applied Reduction
Rules 1, 2 and 3 exhaustively). For every possible k�-sized set of lines we check
whether the set covers all blue vertices and at most kr red vertices. If the instance
is a YES instance, one such k�-sized set is a solution family. This algorithm runs in

O(
(k4�
k�

) · (|U | + |F |)O(1)) = O(k4k�

� · (|U | + |F |)O(1)) time. 
�

6 Parameterizing by kr + k� and b+ kr

In the previous sections we saw that Gen- RBSC- lines parameterized by r is para-
NP-complete and is W[1]-hard parameterized by k�. So there is no hope of an FPT
algorithm unless P = NPor FPT=W[1], when parameterized by r and k� respectively.
As a consequence, we consider combining different natural parameters with r to
see if this helps to find FPT algorithms. In fact, in this section, we describe a FPT
algorithm for Gen- RBSC- lines parameterized by k� +kr . Since kr ≤ r , this implies
that Gen- RBSC- lines parameterized by k� + r is FPT. This is one of our main
technical/algorithmic contribution. Also, since k� ≤ b for anyminimal solution family
of an instance, it follows that Gen- RBSC- lines parameterized by b + kr belongs to
FPT. It is natural to ask whether the Gen- RBSC problem, that is, where sets in the
family are arbitrary subsets of the universe and need not correspond to lines, is FPT
parameterized by k� + kr . In fact, Theorem 10.1 states that the problem is W[1]-hard
even when each set is of size three and contains at least two red points. This shows that
indeed restricting ourselves to sets corresponding to linesmakes the problem tractable.

We start by considering a simpler case, where the input instance is such that every
line contains exactly 1 blue point. Later we will show how we can reduce our main
problem to such instances. By the restrictions assumed on the input, no two blue points
can be covered by the same line and any solution family must contain at least b lines.
Thus, b ≤ k� or else, it is a NO instance. Also, a minimal solution family will contain
at most b lines as every line covers a blue point not covered by any other line in the
solution.Thus a minimal solution family, in this special case, contains exactly b lines.
Let GF ′ be the intersection graph that corresponds to a minimal solution F ′. Recall,
that inGF ′ vertices correspond to lines inF ′ and there is an edge between two vertices
in GF ′ if the corresponding lines intersect either at a blue point or a red point. Next,
we define notions of good tuple and conformity which will be useful in designing the
FPT algorithm for the special case. Essentially, a good tuple provides a numerical
representation of connected components of GF ′ .
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Definition 6.1 Given an instance (R, B,F) of Gen- RBSC- lines we call a tuple

(
b, p, s, P, {I ′

1, . . . , I
′
s}, (k1r , k2r , . . . , ksr )

)

good if the following hold.

(a) Integers p ≤ kr and s ≤ b ≤ k�; Here b is the number of blue vertices in the
instance.

(b) P = P1 ∪ · · · ∪ Ps is an s-partition of B;
(c) For each 1 ≤ i ≤ s, I ′

i is an ordering for the blue points in part Pi ;
(d) Integers kir , 1 ≤ i ≤ s, are such that �1≤i≤skir = p.

Below, we define the relevance of good tuples in the context of our problem.

Definition 6.2 We say that theminimal solution familyF ′ conformswith a good tuple(
b, p, s, P, {I ′

1, . . . , I
′
s}, (k1r , k2r , . . . , ksr )

)
if the following properties hold:

1. The componentsC1, . . . ,Cs ofGF ′ give the partition P = P1, . . . , Ps on the blue
points.

2. For each component Ci , 1 ≤ i ≤ s, let ti = |Pi |. Let I ′
i = bi1, . . . , b

i
ti be an

ordering of blue points in Pi . Furthermore assume that Li
j ∈ F ′ covers the blue

point bij . I
′
i has the property that for all j ≤ ti GF ′ [{Li

1, . . . , L
i
j }] is connected.

In other words for all j ≤ ti , Li
j intersects with at least one of the lines from the

set {Li
1, . . . , L

i
j−1}. Notice that, by minimality of F ′, the point of intersection for

such a pair of lines is a red point.
3. F ′ covers p ≤ kr red points.
4. In each component Ci , kir is the number of red points covered by the lines in that

component. It follows that �1≤i≤skir = p. In other words, the integers kir are a
composition of p.

The next lemma says that the existence of a minimal solution subfamily F ′ results
in a conforming good tuple.

Lemma 6.1 Let (U,F) be an input to Gen- RBSC- lines parameterized by k� + kr ,
such that every line contains exactly 1 blue point. If there exists a solution subfamily
F ′ then there is a conforming good tuple.

Proof Let F ′ be a minimal solution family of size b ≤ k� that covers p ≤ kr red
points. Let GF ′ have s components, C1,C2, . . . ,Cs , where s ≤ k�. For each i ≤ s,
let FCi denote the set of lines corresponding to the vertices of Ci . Pi = B ∩ FCi ,
ti = |Pi | and kir = |R∩FCi |. In this special case and by minimality ofF ′, |FCi | = ti .
As Ci is connected, there is a sequence {Li

1, L
i
2, . . . L

i
ti } for the lines in FCi such

that for all j ≤ ti we have that GF ′ [{Li
1, . . . , L

i
j }] is connected. This means that, for

all j ≤ ti Li
j intersects with at least one of the lines from the set {Li

1, . . . , L
i
j−1}.

By minimality of F ′, the point of intersection for such a pair of lines is a red point.
For all j ≤ ti , let Li

j cover the blue point bij . Let I
′
i = bi1, b

i
2, . . . , b

i
ti . The tuple
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(
b, p, s, P = P1 ∪ P2 . . . ∪ Ps, {I ′

1, . . . , I
′
s}, (k1r , k2r , . . . , ksr )

)
is a good tuple and it

also conforms with F ′. This completes the proof. 
�
The idea of the algorithm is to generate all good tuples and then check whether

there is a solution subfamilyF ′ that conforms to it. The next lemma states that we can
check for a conforming minimal solution family when we are given a good tuple.

Lemma 6.2 For a good tuple (b, p, s, P, {I ′
1, . . . , I

′
s}, (k1r , k2r , . . . , ksr )), there is an

algorithm running in O(b�pbkr ) time, that either says that there is no conforming
minimal solution family F ′ or says that there is a minimal solution family F ′ that
conforms with a good tuple (b, p̂, ŝ, P̂, { Î1, Î2, . . . Îŝ}, (k̂r 1, k̂r 2, . . . , k̂r ŝ)) such that:
1. p̂ ≤ p,
2. ŝ ≤ s,
3. The partition P is a refinement of the partition P̂.

Proof The first step of the algorithm is a preprocessing step, where for each line we
store the set of red vertices that are covered by the line. After that, the algorithm
essentially builds a search tree for each partition Pi , 1 ≤ i ≤ s. For each part Pi , we
define a set of points R′

i which is initially an empty set.
For each 1 ≤ i ≤ s, let ti = |Pi | and let I ′

i = bi1, . . . , b
i
ti be the ordering of blue

points in Pi . Our objective is to check whether there is a subfamily F ′
i ⊆ F such that

it covers bi1, . . . , b
i
ti , and at most kir red point. At any stage of the algorithm, we have a

subfamily F ′
i covering b

i
1, . . . , b

i
j and at most kir red points. In the next step we try to

enlarge F ′
i in such a way that it also covers b

i
j+1, but still covers at most kir red points

and stay connected. In some sense we follow the ordering given by I ′
i to build F ′

i .
Initially, F ′

i = ∅. At any point of the recursive algorithm we represent the problem
to be solved by the following tuple: (F ′

i , R
′
i , (b

i
j , . . . , b

i
ti ), k

i
r − |R′

i |). We start the

process by guessing the line inF that covers bi1, say Li
1. That is, for every L ∈ F such

that bi1 is contained in L we recursively check whether there is a solution to the tuple
(F ′

i :=F ′
i ∪ {L}, R′

i :=R′
i ∪ (R ∩ L), (bi2, . . . , b

i
ti ),k

i
r :=kir − |R′

i |). If any tuple returns
YES then we return that there is a subset F ′

i ⊆ F which covers bi1, . . . , b
i
ti , and at

most kir red points.
Now suppose we are at an intermediate stage of the algorithm and the tuple we

have is (F ′
i , R

′
i , (b

i
j , . . . , b

i
ti ), k

i
r ). Let L be the set of lines such that each line contains

bij and a red point from R′
i (The second condition is to ensure that the lines form a

connected component). Clearly, |L| ≤ |R′
i | ≤ kir . For every line L ∈ L, we recursively

check whether there is a solution to the tuple (F ′
i :=F ′

i ∪ {L}, R′
i :=R′

i ∪ (R ∩ L),
(bij+1, . . . , b

i
ti ),k

i
r :=kir − |R′

i |). If any tuple returns YES then we return that there is a

subset F ′
i ⊆ F which covers bi1, . . . , b

i
ti , and at most kir red points.

Let μ represent the number of uncovered blue points in the algorithm. Note that
μ ≤ ti . At each stage, the value of μ drops by one and, except for the first step,
the algorithm recursively solves at most kir ≤ p subproblems. In each step of the
algorithm, a line is chosen and updates are made according to the set of red points
covered by that line. In other words, the set of red points that are covered by the line but

123



Algorithmica (2017) 79:667–697 685

not in R′
i before, are included in R′

i . Also, the budget for the remaining red points that
may be included in R′

i is modified. The adjustments with respect to the new red points
covered by the chosen line can be done in time linear to the size of the set of these red
points. As argued earlier, each chosen line has at most kr points covered by it. Let T ()

be the running time function for the algorithm once a line is chosen. Recursively, for
the choice of one line in the first step, T (μ) ≤ pT (μ − 1) + kr . Thus, for the choice
of one line in the first step, the recursive algorithm runs in timeO(ti pti kr ). In the first
step, there are � guesses for the line covering b1. This implies that for each partition
the algorithm takes at most O(|F |ti (pti kr )) = O(�ti pti kr ) time.

By definition of the good tuple corresponding to the potential minimal solution F ′,
it is possible that some of the parts in P will merge to form the set of blue points in
a component of F ′. In particular, in our procedure, a red point could be included in
more than one set R′

i (the set of covered red points corresponding to a part Pi ∈ P).
Moreover, notice that the lines in the input instance are partitioned according to the blue
points contained in it. Thus, the search corresponding to each part Pi is independent
of those in other parts. In effect, we are searching for the components for GF ′ in the
input instance, in parallel.

Suppose for each Pi we are successful in finding a minimal set of lines cov-
ering exactly the blue points of Pi while covering at most kir red points. Let the
union of these minimal sets result in a solution F ′. Since each line in F ′ covers
a unique blue point, this solution is minimal. This also means that all blue points
have been covered, possibly with the merging of some of the parts of P through
red points, that at most p ≤ kr red points have been covered and at most b ≤ k�

lines belong to F ′. Let (b, p̂, ŝ, P̂, { Î1, Î2, . . . Îŝ}, (k̂r 1, k̂r 2, . . . , k̂r ŝ)) be the con-
forming tuple for F ′ as described in the proof of Lemma 6.1. By construction, P
is a refinement of P̂ , ŝ ≤ s and p̂ ≤ p. Thus, we conclude that a solution family

F ′ that conforms to a good tuple (b, p̂, ŝ, P̂, { Î1, Î2, . . . Îŝ}, (k̂r 1, k̂r 2, . . . , k̂r ŝ)), with
the properties mentioned in the Lemma statement, exists and hence the input instance
is a YES instance. If the algorithm outputs NO after the exhaustive search, then we
conclude that there is nominimal solution family that conforms to the input good tuple
(b, p, s, P, {I ′

1, . . . , I
′
s}, (k1r , k2r , . . . , ksr )).

The time taken for the described procedure in each part is at most O(�ti pti kr ).
Hence, the total time taken to check if there is a conforming minimal solution family
F ′ is at most

O
(

� ·
s∑

i=1

ti p
ti kr

)

= O(b�pbkr ).

The equation follows from the fact that
∑s

i=1 ti = b. This concludes the proof. 
�
We are ready to describe our FPT algorithm for this special case of Gen- RBSC-

lines parameterized by k� + kr .

Lemma 6.3 Let (U,F , k�, kr ) be an input to Gen- RBSC- lines such that every line
contains exactly 1 blue point. Then we can check whether there is a solution subfamily
F ′ to this instance in time kO(k�)

� · kO(kr )
r · (|U | + |F |)O(1) time.
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Proof Lemma 6.1 implies that for the algorithm all we need to do is to enumerate
all possible good tuples (b, p, s, P, {I ′

1, . . . , I
′
s}, (k1r , k2r , . . . , ksr )), and for each tuple,

check whether there is a conforming minimal solution family. Later, we use the algo-
rithm described in Lemma 6.2.

We first give an upper bound on the number of tuples and how to enumerate them.

1. There are at most k� choices for s and kr choices for p.
2. There can be at most bk� choices for P which can be enumerated in O(bk� · k�)

time.
3. For each j ≤ s, I ′

j is ordering for blue points in Pi . Thus, if |Pi | = ti , then the

number of ordering tuples {I ′
1, . . . , I

′
s} is upper bounded by

∏s
i=1 ti ! ≤ ∏s

i=1 t
ti
i ≤

∏s
i=1 b

ti = bb. Such orderings can be enumerated in O(bb) time.
4. For a fixed p ≤ kr , s ≤ k�, there are at most

(p+s−1
s−1

)
solutions for k1r + k2r +· · ·+

ksr = p and this set of solutions can be enumerated inO(
(p+s−1

s−1

) · ps) time. Notice
that if p ≥ s then the time required for enumeration isO((2p)p · ps). Otherwise,
the required time is O((2s)s · ps). As p ≤ kr and s ≤ k�, the time required to
enumerate the set of solutions is O(kO(k�)

� kO(kr )
r · k�kr ).

Thus we can generate the set of tuples in time kO(k�)
� · kO(kr )

r .Using Lemma 6.2, for

each tuple we check in at most O(kk�
r · k��kr ) time whether a solution family can be

constructed. If there is no tuple that leads to a solution family, we know that the input
instance is a NO instance. The total time for this algorithm is kO(k�)

� kO(kr )
r kO(k�)

r ·
(|U | + |F |)O(1). Again, if kr ≤ kl then k

O(k�)
r = kO(k�)

� . Otherwise, kO(k�)
r = kO(kr )

r .

Either way, it is always true that kO(k�)
r = kO(k�)

� kO(kr )
r . Thus, we can simply state the

running time to be kO(k�)
� · kO(kr )

r · (|U | + |F |)O(1). 
�
We return to the general problem of Gen- RBSC- lines parameterized by k� + kr .

Instances in this problem may have lines containing 2 or more blue points.
We use the results and observations described above to arrive at an FPT algorithm

for Gen- RBSC- lines parameterized by k� + kr .

Theorem 6.1 Gen- RBSC- lines parameterized by k�+kr is FPT, with an algorithm
that runs in kO(k�)

� · kO(kr )
r · (|U | + |F |)O(1) time.

Proof Given an input (U,F , k�, kr ) for Gen- RBSC- lines parameterized by k� +
kr , we do some preprocessing to make the instance simpler. We exhaustively apply
Reduction Rules 1, 2 and 3. After this, by Observation 2, the reduced equivalent
instance has at most

(k�

2

)
blue points if it is a YES instance.

A minimal solution family can be broken down into two parts: the set of lines
containing at least 2 blue points, and the remaining set of lines which contain exactly
1 blue point. Let us call these sets F2 and F1 respectively. We start with the following
observation. 
�
Observation 3 Let F ′′ ⊆ F be the set of lines that contain at least 2 blue points.

There are at most
(k4�
k�

)
ways in which a solution family can intersect with F ′′.
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Proof Since b ≤ (k�

2

)
, it follows from Observation 1 that |F ′′| ≤ k4� . For any solution

family, there can be at most k� lines containing at least 2 blue points. Since the number
of subsets of F ′′ of size at most k� is bounded by k4k�

� , the observation is true. 
�
From Observation 3, there are k4k�

� choices for the set of lines in F2. We branch on
all these choices of F2. On each branch, we reduce the budget of k� by the number of
lines in F2 and the budget of kr by |R ∩ F2|. Also, we make some modifications on
the input instance: we delete all other lines containing at least 2 blue points from the
input instance. We delete all points of U covered by F2 and all lines passing through
blue points covered byF2. Our modified input instance in this branch now satisfies the
assumption of Lemma 6.3 and we can find out in kO(k�)

� kO(kr )
r · (|U | + |F |)O(1) time

whether there is a minimal solution family F1 for this reduced instance. If there is,
thenF2∪F1 is a minimal solution for our original input instance and we correctly say
YES. Thus the total running time of this algorithm is kO(k�)

� · kO(kr )
r · (|U | + |F |)O(1).

It may be noted here that for a special case where we can use any line in the plane
as part of the solution, the second part of the algorithm becomes considerably simpler.
Here for each blue point b, we can use an arbitrary line containing only b and no red
point.

Corollary 6.1 Gen- RBSC- lines parameterized by k�+d, where every line contains
at most d red points, is FPT. The running time of the FPT algorithm is (dk�)

O(dk�) ·
(|U | + |F |)O(1). The problem remains FPT for all parameter sets Γ ′ that contain
{k�, d} or {b, d}.
Proof In this special case, any solution family can contain at most dk� red points.
Hence we can safely assume that kr ≤ dk� and apply Theorem 6.1. 
�

6.1 Kernelization for GEN-RBSC-LINES Parameterized by k� + kr and b+ kr

We give a polynomial parameter transformation from Set Cover parameterized by
universe size n, toGen- RBSC- lines parameterized by k� + kr + b. Proposition 1(ii)
implies that on parameterizing by any subset of the parameters {k�, kr , b}, we will also
obtain a negative result for polynomial kernels.

Theorem K.3 Gen- RBSC- lines parameterized by k� + kr + b does not allow a
polynomial kernel unless co-NP ⊆ NP/poly.

Proof Let (U,S) be a given instance of Set Cover. Let |U | = n, |S| = m. We
construct an instance (R ∪ B,F) of Gen- RBSC- lines as follows. We assign a blue
point bu ∈ B for each element u ∈ U and a red point rS ∈ R for each set S ∈ S. The
red and blue points are placed such that no three points are collinear. We add a line
between bu and rS if u ∈ S in the Set Cover instance. Thus the Gen- RBSC- lines
instance (R ∪ B,F) that we have constructed has b = n, r = m and � = ∑

S∈S |S|.
We set kr = k and k� = n. 
�
Claim All the elements in (U,S) can be covered by k sets if and only if there exist n
lines in (R ∪ B,F) that contain all blue points but only k red points.
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Proof Suppose (U,S) has a solution of size k, say {S1, S2, · · · Sk}. The red points
in the solution family for Gen- RBSC- lines are {rS1, rS2 , · · · rSk } corresponding to
{S1, S2, · · · Sk}. For each element u ∈ U , we arbitrarily assign a covering set Su
from {S1, S2, · · · Sk}. The solution family is the set of lines defined by the pairs
{(bu, rSu ) | u ∈ U }. This covers all blue points.

Conversely, if (R∪B,F) has a solution familyF ′ covering k red points and using at
most n lines, the sets in S corresponding to the red points in F ′ cover all the elements
in (U,S). 
�
If k > n, then the Set Cover instance is a trivialYES instance. Hence, we can always
assume that k ≤ n. This completes the proof that Gen- RBSC- lines parameterized
by k� + kr + b cannot have a polynomial sized kernel unless co-NP ⊆ NP/poly.

7 Hyperplanes: Parameterized by k� + kr

Theorem 7.1 Gen- RBSC for hyperplanes in R
d , for a fixed positive integer d, is

W[1]-hard when parameterized by k� + kr .

Proof The proof of hardness follows from a reduction from k-CLIQUE problem. The
proof follows a framework given in [18]. 
�
Let (G(V, E), k) be an instance of k-CLIQUE problem. Our construction consists
of a k × k matrix of gadgets Gi j , 1 ≤ i, j,≤ k. Consecutive gadgets in a row are
connected by horizontal connectors and consecutive gadgets in a column are connected
by vertical connectors. Let us denote the horizontal connector connecting the gadgets
Gi j and Gih as Hi( jh) and the vertical connector connecting the gadgets Gi j and Ghj

as V(ih) j , 1 ≤ i, j, h ≤ k.

Gadgets: The gadget Gi j contains a blue point bi j and a set Ri j of d − 2 red points.
In addition there are n2 sets R′

i j (a, b), 1 ≤ a, b ≤ n, each having two red points each.

Connectors: The horizontal connector Hi( jh) has a blue point bi( jh) and a set Ri( jh)

of d − 2 red points. Similarly, the vertical connector V(ih) j a blue point b(ih) j) and a
set R(ih) j of d − 2 red points.
The points are arranged in general position i.e., no set of d + 2 points lie on the same
d-dimensional hyperplane. In other words, any set of d + 1 points define a distinct
hyperplane.

Hyperplanes: Assume 1 ≤ i, j, h ≤ k and 1 ≤ a, b, c ≤ n. Let Pi j (a, b) be the
hyperplane defined by the d + 1 points of bi j ∪ Ri j ∪ R′

i j (a, b). Let Ph
i( jh)(a, b, c) be

the hyperplane defined by d+1 points of bi( jh) ∪ Ri( jh) ∪r1∪r2 where r1 ∈ R′
i j (a, b)

and r2 ∈ R′
ih(a, c). Let Pv

(i j)h(a, b, c) be the hyperplane defined by d + 1 points of
b(i j)h) ∪ R(i j)h ∪ r1 ∪ r2 where r1 ∈ R′

ih(a, c) and r2 ∈ R′
jh(b, c).

For each edge (a, b) ∈ E(G), we add k(k−1) hyperplanes of the type Pi j (a, b), i = j .
Further, for all 1 ≤ a ≤ n, we add k hyperplanes of the type Pii (a, a), 1 ≤ i ≤ k. The
hyperplane Ph

i( jh)(a, b, c) containing the blue point bi( jh) in a horizontal connector,
is added to the construction if Pi j (a, b) and Pih(a, c) are present in the construction.
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Similarly, the hyperplane Pv
(i j)h(a, b, c) containing the blue point b(i j)h in a vertical

connector, is added to the construction if Pih(a, c) and Pjh(b, c) are present in the
construction.

Thus our construction has k2+2k(k−1) blue points, (k2+2k(k−1))(d−2)+2n2k2

red points and O((m2k2) hyperplanes.

Claim G has a k-clique if and only if all the blue points in the constructed instance
can be covered by k2+2k(k−1) hyperplanes covering at most k2d+2k(k−1)(d−2)
red points.

Proof Assume G has a clique of size k and let {a1, a2, · · · , ak} be the vertices of
the clique. Now we show a set cover of the desired size exists. Choose k hyper-
planes, Pii (ai , ai ), 1 ≤ i ≤ k, to cover the diagonal gadgets. To cover other
gadgets,Gi j , choose the hyperplanes Pi j (aia j ) and to cover the connectors, Hi( jh)

and V(ih) j , choose the hyperplanes Ph
i( jh)(ai , a j , ah) and Pv

(i j)h(ai , a j , ah). The fact
that {a1, a2, · · · , ak} forms a clique implies that these hyperplanes do exist in the
construction.

Now assume a set cover of the given size exists. To cover the blue point bi j in the
gadget Gi j , any hyperplane adds d red points. Also to cover the blue point in each
connector, we need to add d − 2 extra red points. Since each hyperplane contains d
red points and we have already used up our budget of red points, each hyperplane cov-
ering the connector points should reuse two red points that have been used in covering
gadgets. By construction, this is possible only when all gadgets in a row(column) are
covered byhyperplanes corresponding to edges incident on the samevertex viz. the ver-
tex corresponding to the hyperplane covering the diagonal gadget in the row(column).
This implies that G has a clique. 
�

8 Multivariate Complexity of GEN-RBSC-LINES: Proof of Theorem 1.1

The first part of Theorem 1.1 (parameterized complexity dichotomy) follows from
Theorems 3.1, K.1, 5.1 and 6.1. Recall that Γ = {�, r, b, k�, kr }. To show the ker-
nelization dichotomy of the parameterizations of Gen- RBSC- lines that admit FPT
kernels we proceed as follows:

– Show that the problem admits a polynomial kernel parameterized by � (Theo-
rem K.1). This implies that for all Γ ′ that contains �, the parameterization admits
a polynomial kernel.

– Show that the problem does not admit a polynomial kernel when parameterized
by k� + kr + b (Theorem K.3). This implies that for all subsets of {k�, kr , b}, the
parameterization does not allow a polynomial kernel.

– The remaining FPT variants of Gen- RBSC- lines correspond to parameter sets
Γ ′ that contain either r or {r, b} together. Recall that, kr ≤ r and k� ≤ b. The
two smallest combined parameters for which we can not infer the kernelization
complexity fromTheoremK.3 are r+k� and r+b. We show below (TheoremK.4)
that Gen- RBSC admits a quadratic kernel parameterized by r + k�. Since in
any minimal solution family k� ≤ b, this also implies a quadratic kernel for the
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parameterization r+b. Thus, if parameterization by a setΓ ′, which contains either
r or {r, b}, allows an FPT algorithm then it also allows a polynomial kernel.

Theorem K.4 Gen- RBSC- lines parameterized by k� + r admits a polynomial ker-
nel.

Proof Given an instance of Gen- RBSC- lineswe first exhaustively apply Reduction
Rules 1, 2 and 3 and obtain an equivalent instance. By Observation 2, the reduced
instance has at most b ≤ k2� blue points. By Observation 1, the number of lines

containing at least two points is
(r+b

2

)
. After applying Reduction Rule 1, there are no

lines with only one red point. Also, for a blue point bi , if there are many lines that
contain only bi , then we can delete all but one of those lines. Therefore, the number
of lines that contain exactly one point is bounded by b. Thus, we get a kernel of k2�
blue points,

(r+k2�
2

) + k2� lines and r red points. This concludes the proof. 
�
Combining Theorems K.1, K.3 and K.4 and the discussion above we prove the

second part of Theorem 1.1 (kernelization dichotomy).

9 Parameterized Landscape for Red Blue Set Cover with lines

Until now our main focus was the Gen- RBSC- lines problem. In this section, we
study the original RBSC- lines problem. Recall that the original RBSC- lines prob-
lem differs from the Gen- RBSC- lines problem in the following way—here our
objective is only to minimize the number of red points that are contained in a solution
subfamily, and not the size of the subfamily itself. That is, k� = |F |. This change
results in a slightly different landscape for RBSC- lines compared to Gen- RBSC-
lines. As before let Γ = {�, r, b, k�, kr }. We first observe that for all those Γ ′ ⊆ Γ

that do not contain k� as a parameter and Gen- RBSC- lines is FPT parameterized
by Γ ′, RBSC- lines is also FPT parameterized by Γ ′. Next we list out the subsets of
parameters for which the results do not follow from the result on Gen- RBSC- lines.

– RBSC- lines becomes FPT parameterized by r .
– W[2]-hard parameterized by kr .

9.1 RBSC-LINES Parameterized by r

Theorem K.5 RBSC- lines parameterized by r is FPT. Furthermore, RBSC- lines
parameterized by r does not allow a polynomial kernel unless co-NP ⊆ NP/poly.

Proof We proceed by enumerating all possible kr -sized subsets of R. For each subset,
we can check in polynomial time whether the lines spanned by exactly those points
cover all blue points. This is our FPT algorithm, which runs inO(2r ·(|U |+|F |)O(1)).

Using Proposition 1, it is enough to show a polynomial parameter transformation
from Set Cover parameterized by size m of the set family, to RBSC- lines para-
meterized by r . The reduction is exactly the same as the one given in the proof of
Theorem K.3. This gives the desired second part of the theorem. 
�
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9.2 RBSC-LINES Parameterized by kr

In this section we study parameterization by kr and some special cases which leads to
FPT algorithm. We prove that RBSC- lines parameterized by kr is W[2]-hard. From
Proposition 1, Set Cover parameterized by solution family size k is W[2]-hard. The
W[2]-hardness of RBSC- lines parameterized by kr can be proved by a many-one
reduction from Set Cover parameterized by k. The reduction is exactly the one that
is given in Theorem K.3.

Theorem 9.1 RBSC- lines parameterized by kr is W[2]-hard.

9.2.1 FPT Result Under Special Assumptions

In this section we consider a special case, where in the given instance every line con-
tains either no red points or at least 2 red points. There are two reasons motivating
the study of this special case. Firstly, in the W[2]-hardness proof we crucially used
the fact that the constructed RBSC- lines instance has a set of lines with exactly 1
red point. Thus, it is necessary to check if this is the reason leading to the hardness
of the problem. Secondly, if we look at RBSC (sets in the family can be arbitrary)
parameterized by kr and assumed that in the given instance every line contains either
no red points or at least 2 red points, even then the problem is W[1]-hard (see Theo-
rem 10.1). However, when we consider RBSC- lines parameterized by kr and where
in the given instance every set contains either no red points or at least 2 red points, the
problem is FPT.

For our algorithm we also need the following new reduction rule.

Reduction Rule 4 If there is a set S ∈ F with only blue points then delete that set
from F and include the set in the solution.

Lemma 9.1 Reduction Rule 4 is safe.

Proof Since the parameter is kr , there is no size restriction on the number of lines in
the solution subfamily F ′. If F ′ is a solution subfamily and S ∈ F then under this
parameterization, F ′ ∪ {S} is also a solution family covering all blue points and at
most kr red points. This shows that Reduction Rule 4 is valid. 
�
Theorem 9.2 RBSC- lines parameterized by kr , where the input instance has every
set containing at least 2 red points or no red points at all, has an algorithm with

running time k
O(k2r )
r · (|U | + |F |)O(1).

Proof Given an instance of RBSC- lines, we first exhaustively apply Reduction
Rules 1, 2 and 4 and obtain an equivalent instance. At the end of these reductions
we obtain an equivalent instance where every line has at least 1 blue point and at least
2 red points, but at most kr red points.

SupposeF ′ is a solution family. Since a linewith a red point has at least 2 red points,
by Observation 1, the total number of sets that can contain the red points covered by
F ′ is at most

(kr
2

)
. This means that, if the input instance is a YES instance, there exists
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a solution family with at most k� = (kr
2

)
lines. Now we can apply the algorithm for

Gen- RBSC- lines parameterized by k� + kr described in Theorem 6.1 to obtain an
algorithm for RBSC- lines parameterized by kr . 
�

Theorem 9.2 gives an FPT algorithm for RBSC- lines parameterized by kr . In what
follows we show that the same parameterization does not yield a polynomial kernel
for this special case of RBSC- lines. Towards this we give a polynomial parameter
transformation from Set Cover parameterized by universe size n, to RBSC- lines
parameterized by kr and under the assumption that all sets in the input instance have
at least 2 red points.

Theorem K.6 RBSC- lines parameterized by kr , and under the assumption that all
lines in the input have at least 2 red points, does not allow a polynomial kernel unless
co-NP ⊆ NP/poly.

Proof Let (U,S) be a given instance of the Set Cover problem. We construct an
instance (R ∪ B,F) of RBSC- lines as follows. We assign a blue point bu ∈ B for
each element u ∈ U and a red point rS ∈ R for each set S ∈ S. The red and blue
points are placed such that no three points are collinear. We add a line between bu
and rS if u ∈ S in the Set Cover instance. To every line L , defined by a blue point
bu and a red points rS , we add a unique red point rL ∈ R. Thus the RBSC- lines
instance (R ∪ B,F) that we have constructed has n blue points,

∑
s∈S |S| lines and

m + ∑
s∈S |S| red points. We set kr = k + n. 
�

Claim All the elements in (U,S) can be covered by k sets if and only if there exist
lines in (R ∪ B,F) that contain all blue points but only k + n red points.

Proof Suppose (U,S) has a solution of size k, say {S1, S2, . . . Sk}. To each element
u ∈ U , we arbitrarily associate a covering set Su from {S1, S2, . . . Sk}. Our solution
family F ′ of lines are the lines defined by the pairs of points {(bu, rSu ) | u ∈ U }.
These lines cover all blue points. The number of red points contained in these lines are
the k red points {rS1, rS2 , . . . rSk } associated with {S1, S2, . . . Sk}, and the n red points
{rL | L ∈ F ′}. Therefore, in total there are k + n red points in the solution.

Conversely, suppose (R ∪ B,F) has a family F ′ covering all blue points and at
most k + n red points. The construction ensures that at least n lines are required to
cover the n blue points. This also implies that the unique red points belonging to each
of these lines add to the number of red points contained in the solution family. The
remaining k red points, that are contained in the solution family, correspond to sets in
S that cover all the elements in (U,S). 
�
If k > n, then the Set Cover instance is a trivialYES instance. Hence, we can always
assume that k ≤ n. This completes the proof that RBSC- lines parameterized by kr ,
and under the assumption that every line in the input instance has at least 2 red points,
cannot have a polynomial sized kernel unless co-NP ⊆ NP/poly.

9.3 Proof of Theorem 1.2

Proof of Theorem 1.2 follows from Theorems 1.1, K.5 and 9.1.
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10 Generalized Red Blue Set Cover

In this section we show that for several parameterizations, under which Gen- RBSC-
lines is FPT, the Gen- RBSC problem is not. In this section we give the following
three results which complement the corresponding results in the geometric setting.

1. Gen- RBSC is W[1]-hard parameterized by k� + kr when every set has size at
most three and contains at least two red elements.

2. Gen- RBSC is W[2]-hard parameterized by k� +r when every set contains at most
one red element.

3. Gen- RBSC is FPT, parameterized by k� and d, when every set has at most one
red element. Here, d is the size of the maximum cardinality set in F .

10.1 GEN-RBSC Parameterized by k� + kr and k� + r

Theorem 10.1 Gen- RBSC is W-hard in the following cases:

(i) When every set contains at least two red elements but at most three elements, and
the parameters are {k�, kr }, the problem is W[1]-hard.

(ii) When every set contains at most one red element and the parameters are {k�, r},
then the problem is W[2]-hard.

Proof We start by proving the first result. From an instance (G = (V, E), k) of Mul-
ticolored Clique parameterized by k, we construct an instance (U = (R, B),F)

of Gen- RBSC parameterized by k� + kr with the restriction that the size of each set
is at most three and there are at least 2 red elements. The construction is as follows.

– Let the given vertex set be V = V1 � V2 � · · · � Vk . For every pair (i, j), 1 ≤ i <

j ≤ k, we introduce a new blue element bi j ∈ B. Thus we have
(k
2

)
blue elements.

– For each vertex v ∈ V we introduce a new red element rv ∈ R.
– U = R � B.
– For each e = (u, v) ∈ E such that u ∈ Vi , v ∈ Vj and i < j , we define a set

Se ∈ F which contains the elements {bi j , ru, rv}.
– We set kr = k and k� = (k

2

)
.

This completes our construction. Notice that every set in F has at least 2 red elements
and has size exactly three.

First, assume that (G, k) is a YES instance. Then there is a k-sized multi-colored
cliqueC inG. Let E(C) denote the set of edges ofC . Pick the subfamilyF ′ = {Se | e ∈
E(C)} of size (k

2

)
. Since C is a multi-colored clique, for all (i, j), 1 ≤ i < j ≤ k

there is an edge ei j ∈ E(C) whose endpoints belong to Vi and Vj . Consequently,
there is a set Sei j ∈ F ′ that contains bi j . The total number of red elements contained
in F ′ is equal to the size |V (C)| = k. This shows that (U,F , k) is a YES instance of
Gen- RBSC.

Conversely, suppose (U,F) is a YES instance of Gen- RBSC. LetF ′ be a minimal
subfamily of at most

(k
2

)
sets that covers at most k red elements. Let C be the vertices

in G corresponding to the red elements in F ′. Notice that there are
(k
2

)
blue elements,

123



694 Algorithmica (2017) 79:667–697

no two of which can be covered by the same set. Thus, for all (i, j), 1 ≤ i < j ≤ k,
F ′ must contain exactly one set Se = {bi j , r i j1 , r i j2 }. This implies that for every i ,
1 ≤ i ≤ k the sets in F ′ must contain a red element corresponding to a vertex in
Vi . Hence, for all i, 1 ≤ i ≤ k, C ∩ Vi = ∅. Also, C forms a clique since the set
Se = {bi j , r i j1 , r i j2 } corresponds to the edge between the vertices selected from Vi and
Vj . Therefore, (G, k) is a YES instance of Multicolored Clique. This proves that
Gen- RBSC, parameterized by k� + kr , is W[1]-hard under the said assumption.

For the second part of the statement, observe that Set Cover is a special case of
this problem and therefore, the problem is W[2]-hard. 
�

10.2 A Special Case of GEN-RBSC Parameterized by k�

In this section, we restrict the input instances to those where every set has at most 1
red element and at most d blue elements. We design an FPT algorithm for this special
case of Gen- RBSC parameterized by k� + d. It is reasonable to assume that there
is no set in the given instance with only red elements, since Reduction Rule 1 can
be applied to obtain an equivalent instance of Gen- RBSC, under the parameters of
{k�, d}.

We were able to show that this problem has an FPT algorithm. However, it was
pointed out to us by an anonymous reviewer that there is a simple algorithm based on
Dynamic Programming technique. Thus, we present the simpler algorithm.

10.2.1 A Dynamic Programming Algorithm

We give a Dynamic Programming algorithm to solve Gen- RBSC parameterized by
kl + d, for the case when all sets contain at most 1 red element and at most d blue
elements. Our algorithm guesses the red point that can be added to the solution one
by one and also guesses the sets that can cover it and covers the remaining blue points
optimally.

Lemma 10.1 There exists a FPT algorithm that solves Gen- RBSC when each set in
the input instance contains at most 1 red element and at most d blue elements. The
running time of this algorithm is O(22dkl (|U | + |F |)O(1)).

Proof Let B ′ ⊆ B, r ′ ∈ R ∪ nil, j ∈ N. Let W [B ′, r ′] represent the minimum
cardinality of a family F ′ ⊆ F that covers all elements in B ′ and does not cover any
red element except r ′ (no red element if r ′ is nil). The value of W [B ′, r ′] is +∞ if
no such F ′ ⊆ F exists. Let T [B ′, j] represent the minimum cardinality of a family
F ′ ⊆ F that covers all elements in B ′ and covers at most j red elements. Clearly the
instance is a YES instance if and only if T [B, kr ] ≤ kl .

We can compute the value of T [B, kr ] using the following recurrence.
T [B ′, 0] = W [B ′, nil]
T [B ′, j] = minr ′∈(R ∪ nil) minB′′⊆B′(W [B ′′, r ′] + T [B ′ \ B ′′, j − 1])

Similarly we can compute the value of W [B ′, r ′] using the following recurrence.
W [∅, r ′] = 0
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W [B ′, r ′] = 1 + minS∈F ,S∩R=∅ or S∩R={r ′},S∩B′ =∅ W [B ′ \ S, r ′]
Let us first show that the recurrence forW is correct. The proof is by induction on |B|.
When |B| = 0 the recurrence correctly returns zero. When |B| > 0, W [B ′ \ S, r ′]
returns the minimum cardinality of a familyF ′ ⊆ F that covers all elements in B ′ \F
and does not cover any red element except r ′ (By induction hypothesis). Therefore,
S ∪ F ′ covers all elements in B ′ and does not cover any red element except r ′. Since
we are doing this for every S ∈ F and take the minimum value, the recurrence indeed
returns the minimum cardinality of a family F ′ ⊆ F that covers all elements in B ′
and does not cover any red element except r ′.

Now we show that the recurrence for T is correct by induction on j . When j = 0,
the recurrence returns the value of W [B, nil] which returns the minimum cardinality
of a family F ′ ⊆ F that covers all elements in B ′ and does not cover any red element.
When j > 0, we consider a number of sets containing the same red element r ′, paying
for the blue elements B ′′ ⊆ B ′ they cover, and cover the remaining blue elements
B ′ \ B ′′ optimally by induction hypothesis. Since we do this for all red points and
return the minimum value, the recurrence is correct.
Running time: To compute the value of T [B, kr ] using the above recurrence, we
have to compute at most 2|B||U | values of W and T , which is at most 2dkl |U | in
YES-instances. Every value of W can be computed in O(|U |) time using previously
computed values. To compute a value of T , we take the minimum over all choices of
r ′ in R, over at most 2|B| ≤ 2dkl choices of B ′′, and look up earlier values. Thus the
running time is bounded by O(22dkl (|U | + |F |)O(1)). 
�

When it comes to kernelization for this special case, we show that even for Gen-
RBSC- lines parameterized by k� + d there cannot be a polynomial kernel unless
co-NP ⊆ NP/poly. For this we will give a polynomial parameter transformation from
Set Cover parameterized by universe size n. The ppt reduction is exactly the one
given in Theorem K.3.

Theorem K.7 Gen- RBSC- lines parameterized by k� +d, and where every line has
at most 1 red element and at most d blue elements, does not allow a polynomial kernel
unless co-NP ⊆ NP/poly.

11 Conclusion

In this paper, we provided a complete parameterized and kernelization dichotomy of
the Gen- RBSC- lines and RBSC- lines problems, under all possible combinations
of relevant natural parameters. The results are captured in Table 1. We also studied
Gen- RBSC under different parameterizations. The next natural step seems to be a
study of the Gen- RBSC problem, when the sets are hyperplanes. Another interesting
variant is when the set system has bounded intersection.

We believe that the running time of the FPT algorithm for Gen- RBSC- lines
parameterized by k�, kr is tight, up to the constants appearing in the exponents. It
would be interesting to show that the problems cannot have algorithms with running
time dependence on parameters as ko(k�)

� · kO(kr )
r or kO(k�)

� · ko(kr )r , under standard
complexity theoretic assumptions (like the Exponential Time Hypothesis).
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Table 1 A summary of our algorithmic results

Parameters Gen- RBSC- lines RBSC- lines

� FPT, polynomial kernel FPT, polynomial kernel

r para-NP-complete FPT, no polynomial kernel

b W[1]-hard W[1]-hard

k� W[1]-hard –

kr para-NP-complete W[2]-hard

� + r FPT, polynomial kernel FPT, polynomial kernel

� + b FPT, polynomial kernel FPT, polynomial kernel

� + k� FPT, polynomial kernel –

� + kr FPT, polynomial kernel FPT, polynomial kernel

r + b FPT, polynomial kernel FPT, polynomial kernel

r + k� FPT, polynomial kernel –

r + kr para-NP-hard FPT, no polynomial kernel

b + k� W[1]-hard –

b + kr FPT, no polynomial kernel FPT, no polynomial kernel

k� + kr FPT, no polynomial kernel –

� + r + b FPT, polynomial kernel FPT, polynomial kernel

� + r + k� FPT, polynomial kernel –

� + r + kr FPT, polynomial kernel FPT, polynomial kernel

� + b + k� FPT, polynomial kernel –

� + b + kr FPT, polynomial kernel FPT, polynomial kernel

� + k� + kr FPT, polynomial kernel –

r + b + k� FPT, polynomial kernel –

r + b + kr FPT, polynomial kernel FPT, polynomial kernel

r + k� + kr FPT, polynomial kernel –

b + k� + kr FPT, no polynomial kernel –

� + r + b + k� FPT, polynomial kernel –

� + r + b + kr FPT, polynomial kernel FPT, polynomial kernel

� + r + k� + kr FPT, polynomial kernel –

� + b + k� + kr FPT, polynomial kernel –

r + b + k� + kr FPT, polynomial kernel –

� + r + b + k� + kr FPT, polynomial kernel –

The kernelization results hold unless co-NP ⊆ NP/poly
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