
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. DISCRETE MATH. c© 2018 Society for Industrial and Applied Mathematics
Vol. 32, No. 2, pp. 1189–1208

EXACT AND FIXED PARAMETER TRACTABLE ALGORITHMS
FOR MAX-CONFLICT-FREE COLORING IN HYPERGRAPHS∗

PRADEESHA ASHOK† , ADITI DUDEJA‡ , SUDESHNA KOLAY§ , AND SAKET SAURABH¶

Abstract. Conflict-free coloring of hypergraphs is a very well studied question of theoretical
and practical interest. For a hypergraph H = (U,F), a conflict-free coloring of H refers to a
vertex coloring where every hyperedge has a vertex with a unique color, distinct from all other
vertices in the hyperedge. In this paper, we initiate a study of a natural maximization version of
this problem, namely, Max-CFC: For a given hypergraph H and a fixed r ≥ 2, color the vertices
of U using r colors so that the number of hyperedges that are conflict-free colored is maximized.
By previously known hardness results for conflict-free coloring, this maximization version is NP-
hard. We study this problem in the context of both exact and parameterized algorithms. In the
parameterized setting, we study this problem with respect to a natural parameter—the solution
size. In particular, the question we study is the following: p-CFC: For a given hypergraph, can we
conflict-free color at least k hyperedges with at most r colors, the parameter being the solution size
k. We show that this problem is fixed parameter tractable by designing an algorithm with running
time 2O(k log log k+k log r)(n + m)O(1) using a novel connection to the Unique Coverage problem
and applying the method of color coding in a nontrivial manner. For the special case for hypergraphs
induced by graph neighborhoods we give a polynomial kernel. Finally, we give an exact algorithm
for Max-CFC running in O(2n+m) time. All our algorithms, with minor modifications, work for a
stronger version of conflict-free coloring, Unique Maximum Coloring.

Key words. conflict-free coloring, unique-maximum coloring, FPT algorithms, maximization
algorithms

AMS subject classifications. 68Q25, 68W40, 05C85, 65F30

DOI. 10.1137/16M1107462

1. Introduction. A hypergraphH is a pair (U,F), where U is a set of n vertices
and F contains m subsets of U . We call these subsets hyperedges. Thus a general
graph is a hypergraph where every hyperedge contains exactly two vertices. A k-
vertex-coloring of H for k ∈ N is a function c : U → {1, 2, . . . , k}. A coloring is called
a proper coloring if none of the hyperedges are monochromatic, i.e., all the vertices
of the hyperedge are not of the same color. We look at a stricter version of coloring
called conflict-free coloring.

Definition 1. A vertex coloring c : U → {1, 2, . . . , k} of a hypergraph H =
(U,F) is said to be conflict-free if for every F ∈ F , ∃v ∈ F such that ∀u ∈ F , u �= v
implies c(u) �= c(v). In other words, every hyperedge has a uniquely colored vertex.

The minimum number of colors required to conflict-free color the vertices of a
hypergraph H is called the conflict-free chromatic number of H and is represented

∗Received by the editors December 9, 2016; accepted for publication (in revised form) Febru-
ary 12, 2018; published electronically June 5, 2018. A preliminary version of this paper appeared in
Algorithms and Computation, Lecture Notes in Comput. Sci. 9472, Springer, Berlin, 2015, pp. 271–
282.

http://www.siam.org/journals/sidma/32-2/M110746.html
Funding: The research leading to these results has received partial funding from the European

Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement 306992.

†International Institute of Information Technology, Bangalore, India (pradeesha@iiitb.ac.in).
‡Rutgers University, New Brunswick, NJ 08901 (ad1222@rutgers.edu).
§Eindhoven University of Technology, Eindhoven, Netherlands (s.kolay@tue.nl).
¶The Institute of Mathematical Sciences, Taramani, India and Department of Informatics, Uni-

versity of Bergen, Bergen, Norway (saket@imsc.res.in).

1189

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sidma/32-2/M110746.html
mailto:pradeesha@iiitb.ac.in
mailto:ad1222@rutgers.edu
mailto:s.kolay@tue.nl
mailto:saket@imsc.res.in


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1190 P. ASHOK, A. DUDEJA, S. KOLAY, AND S. SAURABH

as χcf (H). For a given hypergraph H , the minimum conflict-free coloring problem
refers to computing the value of χcf(H).

The concept of conflict-free coloring was introduced for hypergraphs induced by
geometric regions, motivated by the frequency allocation problem in cellular networks
[5]. This problem also found applications in areas like radio frequency identification
and robotics. The conflict-free coloring question has been extensively studied for
hypergraphs induced by various geometric regions [1, 10, 16].

The study of conflict-free coloring in general hypergraphs was initiated in [5] and
in the Ph.D. thesis of Smorodinsky [15]. Pach and Tardos [14] gave an upper bound
of O(

√
m) on the conflict-free chromatic number. This proof is derived from the work

of Cheilaris [3] in his Ph.D. thesis. On the algorithmic side, the minimum conflict-free
coloring problem for a general hypergraph is NP-hard by results shown in [5, 8]. Pach
and Tardos [14] also studied the conflict-free coloring of hypergraphs induced by graph
neighborhoods. Here the vertex set of the hypergraph corresponds to the vertex set
of a general graph G = (V,E) and the hyperedges are defined by the neighborhoods
(open or closed) of the vertices in G. In the case of closed neighborhoods, [14] showed
an upperbound of O(log2 n) and a matching lower bound was shown in [9]. When
the hyperedges are defined with respect to open neighborhoods, a tight bound of
O(

√
(n)) was shown by Cheilaris [3]. Gargano and Rescigno [8] studied the minimum

conflict-free coloring of hypergraphs induced by graph neighborhoods (both open and
closed) and showed NP-completeness. Gargano and Rescigno [8] also showed that
the minimum conflict-free coloring problem for these graphs becomes tractable when
parameterized by the vertex cover or the neighborhood diversity number of the graph.
Specifically, they gave an algorithm that decides whether a hypergraph induced by
neighborhoods of a graph G can be conflict-free colored using k colors. This algo-
rithm runs in time 2O(kt log k), where t represents the neighborhood diversity number
of G. Note that this also implies an algorithm to solve the minimum conflict-free col-
oring problem in hypergraphs induced by graph neighborhoods, which runs in O(nn)
time.

In this paper, we study a maximization version of the Minimum Conflict-Free

Coloring problem.

Maximum Conflict-free Coloring(Max-CFC)

Input: A hypergraph (U,F) on n vertices and m hyperedges, and an integer r ≥ 2.
Output: A maximum-sized subfamily of hyperedges that can be conflict-free col-
ored with r colors.

The NP-hardness of this problem follows from the NP-hardness reductions shown
in [8]. We give an exact algorithm for this problem that runs in O(2m+n) · nO(1)

time. As a corollary, we obtain an exact algorithm, of running time O(4n) · nO(1), for
hypergraphs induced by neighborhoods in graphs. We also define a stronger variant
of conflict-free coloring (cfc), namely, unique-maximum coloring [4].

Definition 2. A vertex coloring c : U → {1, 2, . . . , k} is said to be unique-
maximum if for every F ∈ F , ∃v ∈ F such that ∀u ∈ F , u �= v implies c(u) < c(v).
In other words, the maximum color occuring in a hyperedge occurs uniquely. The
minimum number of colors required to unique-maximum color H is called the unique-
maximum chromatic number of H.

A vertex of a hyperedge h ∈ F is said to be unique-maximum colored if it is
the unique vertex that is colored with the maximum color occuring in the the hyper-
edge h. For a given hypergraph H , the minimum unique-maximum coloring problem

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MAX-CONFLICT-FREE COLORING IN HYPERGRAPHS 1191

refers to computing the minimum number of colors required to unique-maximum
color H .

Similar to Max-CFC, we can define Maximum Unique-Maximum Coloring

(Max-UMC) to take as input a hypergraph H and a positive integer r ≥ 2, and
output the largest subfamily of hyperedges that has a unique-maximum coloring with
r colors. Our algorithms for Max-CFC, with some modification, also works for Max-

UMC.
In the parameterized setting, we study Max-CFC parameterized by the solution

size.

p-CFC Parameter: k
Input: A hypergraph (U,F) on n vertices and m hyperedges, and positive integers
r ≥ 2 and k.
Question: Is there a subfamily of at least k hyperedges that can be conflict-free
colored using r colors?

We also study this problem when we restrict the input hypergraph to that induced
by the closed/open neighborhood of a graph G. Similarly, p-UMC is defined and
studied. Note that another natural parameter for the Minimum Conflict-Free

Coloring or the Max-CFC problems is the number of colors used for the conflict-
free coloring. However, due to the NP-hardness result of [8], such a parameterization
makes the parameterized problem para-NP-hard, which is not expected to be in fixed
parameter tractable (FPT).

Our results and methods. In the realm of parameterized algorithms, we obtain
the following result.

1. We show that the problem is FPT by designing a kernel with at most 4k

vertices and O(k log k) hyperedges. The kernel is obtained by finding a novel
connection to the Unique Coverage problem [12]. We use this one way
connection to either say that the given instance for p-CFC is a YES instance
or conclude that the number of hyperedges is upper bounded by O(k log k).
Finally, using extremal results on the set-family we bound the number of
vertices (elements) to 4k. Moreover, when we restrict the input hypergraph
to that induced by the closed/open neighborhood of a graph G, then the
above imply polynomial kernels for these variants.

2. A direct consequence of our kernel is an r4
k

(n+m)O(1) algorithm for p-CFC.
We exploit the fact that the number of hyperedges is at most O(k log k) in
the reduced instance to design an FPT algorithm where the running time
is 2O(k log log k+k log r)(n + m)O(1). We arrive at the required algorithm by
combining the fact that we have a small number of hyperedges and using the
technique of color coding introduced in [2] in a nontrivial manner.

3. All the above results, with minor modifications, hold for p-UMC.
Finally, we design an exact algorithm that solves the Max-CFC problem for general
hypergraphs. This algorithm exploits structural properties of a YES instance for
Max-CFC. Our algorithm runs in O(2m+n) time. The algorithm also works for the
Minimum Conflict-Free coloring problem. In particular, for hypergraphs induced
by graph neighborhoods, our algorithm runs in time O(4n) which is a nontrivial im-
provement over the best known exact algorithm that runs in O(nn) time [8]. The
algorithm is based on dynamic programming combined with an application of subset
convolution. We refer to [7] for a more detailed introduction to exact algorithms. Some
minor modifications to our algorithm give an exact algorithm for Unique Maximum

Coloring.

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1192 P. ASHOK, A. DUDEJA, S. KOLAY, AND S. SAURABH

2. Preliminaries. A set of consecutive integers {1, 2, . . . n} will be written as
[n] in short. We denote a hypergraph as H = (U,F). We refer to the objects in
the universe U as either vertices or elements, and each subset of F as a hyperedge.
For any subfamily F ′ ⊆ F , we denote the elements present in the subfamily as
U(F ′). Similarly, for a subset U ′ ⊆ U , F|U ′ denotes the family of hyperedges obtained
when we restrict each hyperedge of F to the subset U ′. Furthermore, for a vertex
v ∈ U , by degH(v) we denote the number of hyperedges the vertex v is part of. The
neighborhood of a vertex v ∈ U , denoted by NbdH(v), is the subfamily of hyperedges
in F that contain v.

Given a graph G = (V,E), for a vertex v ∈ V let N(v) be the set of neighboring
vertices of v in G. Let H = (V, E) be a hypergraph defined on the vertex set V such
that E = {N(v)|v ∈ V }. Then H is called the hypergraph induced by the neighborhoods
of the graph G.

Parameterized algorithms. The instance of a parameterized problem is a pair
containing the actual problem instance of size n and a positive integer called a pa-
rameter, usually represented as k. The problem is said to be in FPT if there exists
an algorithm that solves the problem in f(k)nO(1) time, where f is a computable
function. The problem is said to admit a g(k)-sized kernel if there exists a polynomial
time algorithm that converts the actual instance to a reduced instance of size g(k),
while preserving the answer. When g is a polynomial function, then the problem is
said to admit a polynomial kernel. A reduction rule is a polynomial time procedure
that changes a given instance I1 of a problem Π to another instance I2 of the same
problem Π. We say that the reduction rule is safe when I1 is a YES instance of Π if
and only if I2 is a YES instance. Readers are requested to refer to [6] for more details.

Fast subset convolution computation. Suppose we are given a universe U
with n elements. The subset convolution of two functions f, g : 2U → Z is a function
(f ∗ g) : 2U → Z such that for every Y ⊆ U , (f ∗ g)(Y ) = ΣX⊆Y f(X)g(Y −X). It is
equivalent to saying that (f ∗ g)(Y ) = ΣA�B=Y f(A)g(B).

Proposition 3 (see [7]). For two functions f, g : 2U → Z, given all the 2n

values of f and g in the input, all the 2n values of the subset convolution f ∗ g can be
computed in O(2n · n3) arithmetic operations.

In fact, the result can be extended to a subset convolution of functions that map
to any ring, instead of (Z,+,×). Consider the set Z ∪ {∞}, with the added relation
that ∀z ∈ Z, {∞} > z. The min operator takes two elements from this set and
outputs the minimum of the two elements. Notice that Z ∪ {∞}, along with min
as an additive operator and + as a multiplicative operator, forms a semiring. We
will call this semiring the integer min-sum semiring. The subset convolution of two
functions f, g : 2U → Z ∪ {∞}, with min and + as the additive and multiplicative
operators, becomes (f ∗ g)(Y ) = minA�B=Y f(A) + g(B).

Proposition 4 (see [7]). Given two functions f, g : 2U → {−M, . . . ,M}, all
the 2n values of f and g in the input, and all the 2n values of the subset convolu-
tion (f ∗ g) over the integer min-sum semiring can be computed in time 2nnO(1) ·
O(M logM log logM).

For more details about subset convolutions and fast calculations of subset convo-
lutions, please refer to [7].

Exact algorithms. Although all NP-complete problems can be solved by some
brute-force algorithm, the running time of these algorithms can be extremely large

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MAX-CONFLICT-FREE COLORING IN HYPERGRAPHS 1193

even for some small input. However, for some of these problems, we can design
superpolynomial algorithms which are considerably faster than brute force. Such
algorithms which solve NP-complete problems optimally are called exact algorithms.
At times, these may even be practical for moderate or small instance sizes.

3. FPT Algorithm for p-CFCp-CFCp-CFC. We are given a hypergraph H = (U,F) as
input and two positive integers, k and r. In this section, we give an FPT algorithm
for p-CFC on hypergraphs, parameterized by k. In other words, we wish to find out
if k hyperedges can be conflict-free colored using r colors. For simplicity, throughout
this section, we assume that we are given a simple hypergraph, that is, no hyperedges
are repeated. We first give a kernel and then use this kernel to get the desired FPT
algorithm.

3.1. Kernel for p-CFCp-CFCp-CFC. We begin with a simple observation that if r > 2
√
k,

then we can conflict-free color any subfamily of k hyperedges with r colors. This
follows directly from the upper bound ofO(

√
m) on the conflict-free chromatic number

obtained in [14]. Thus, for the remaining section, we assume that r ≤ 2
√
k.

We can also preprocess the input instance to detect simple YES instances of the
problem, by applying the following reductions to the instance.

Reduction 1. If there is a vertex v ∈ U such that degH(v) is at least k, output
a trivial YES instance.

Lemma 5. Reduction rule 1 is safe.

Proof. Reduction rule 1 is safe since we can obtain a 2 cfc for at least k hyperedges
in the following way: Assigning the first color to v and the second color to all the
other vertices gives us at least k conflict-free colored hyperedges.

Next, we draw a connection between p-CFC and the Unique Hitting Set

(UHS) problem. In UHS, we take a hypergraph H and a positive integer k as input.
The question is to decide whether there is a set S of vertices and a subfamily F ′ of
at least k hyperedges such that each hyperedge in F ′ contains exactly 1 vertex from
S. In other words, each hyperedge of F ′ needs to be uniquely hit by S.

Observation 1. Given a hypergraph H and a positive integer k, if (H, k) is a
YES instance for UHS, then (H, k, r = 2) is a YES instance for p-CFC.

Proof. Let S be a solution for (H, k) as an instance for UHS, and let F ′ be a
set of at least k hyperedges that are uniquely hit by S. We color the vertices of S
with the first color and the vertices of U \ S with the second color. This coloring
function conflict-free colors all hyperedges of F ′. Thus, (H, k, 2) is a YES instance
for p-CFC.

The UHS problem, in turn, is related to the Unique Coverage (UC) problem.
In UC, we take a hypergraph H and a positive integer k as input. The question is to
decide whether there is a subfamily F ′ of hyperedges and a set S of at least k vertices
such that each vertex in S belongs to exactly 1 hyperedge of F ′. In other words, each
vertex of S needs to be uniquely covered by F ′.

Lemma 6. An instance (H = (U,F), k) of UHS has an equivalent instance
(H ′ = (Û , F̂), k) of UC, where the parameter remains the same, and |U | = |F̂ |, |Û | =
|F|. In fact, H ′ is the dual hypergraph of H.

Proof. Given the instance (H, k) of UHS, we construct the equivalent instance
(H ′ = (Û , F̂), k) of UC in the following manner:

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1194 P. ASHOK, A. DUDEJA, S. KOLAY, AND S. SAURABH

• For every hyperedge h ∈ F , we create a new vertex uh. Û = {uh | h ∈ F}.
|Û | = |F|.

• For each vertex v ∈ U , let Fv = {h | h ∈ F , v ∈ h}. DefineTv = {uh | h ∈ Fv}.
F̂ = {Tv | v ∈ U}. Thus each hyperedge in H ′ corresponds to a vertex of H
and |U | = |F̂ |

Suppose S was a solution of UHS for (H, k) and let F ′ be the set of at least k
hyperedges that are uniquely hit by S. Then, consider the subset ÛF ′ ⊆ Û , where
ÛF ′ = {uh | h ∈ F ′}, and the subfamily F̂S ⊆ F̂ , where F̂S = {Tv | v ∈ S}. By the
property of S and F ′, every vertex of ÛF ′, which is of size at least k, is contained in
exactly one hyperedge of F̂S and therefore (H ′, k) is a YES instance of UC.

Similarly, let F̂ ′ be a solution of UC for (H ′, k) and let Ŝ be the set of at least
k vertices that are uniquely covered by F̂ ′. Then, consider the subfamily FŜ ⊆ F ,

where FŜ = {h | uh ∈ Ŝ}, and the subset UF̂ ′ ⊆ U , where UF̂ ′ = {v | Tv ∈ F̂ ′}. By

the property of Ŝ and F̂ ′, the vertex set UF̂ ′ uniquely hits FŜ , which is of size at least
k. Therefore (H, k) is a YES instance of UHS.

The UC problem has been studied in the field of parameterized complexity. When
k, the number of vertices to be uniquely covered, is the parameter, the problem was
shown to be in FPT in [12]. The following proposition was proved in [12], and we will
shortly show how this is useful to us.

Proposition 7 (see [12, Lemma 17]). Let (H = (U,F), k) be an instance of UC

such that every hyperedge has size at most k−1. Then there exists a constant αuc such
that if |U | ≥ αuck log k then (H = (U,F), k) is a YES instance and, furthermore, in
polynomial time, it is possible to find a subfamily covering at least k elements uniquely.

We use Proposition 7 to bound the universe size for p-CFC.

Lemma 8. Let (H = (U,F), k, r) be an instance of p-CFC. Then in polynomial
time, either we can conclude that (H, k, r) is a YES instance of p-CFC or |F| ≤
αuck log k.

Proof. Let (H = (U,F), k, r) be an instance of p-CFC. We first check whether
Reduction 1 applies. If it does not apply then we know each element of U appears in
at most k − 1 sets. Now we consider (H, k) as an instance for UHC and apply the
reduction given in Lemma 6 to obtain an equivalent instance (H ′ = (Û , F̂), k) of UC.
Observe that since each element of U appears in at most k−1 sets, we have that every
hyperedge in F̂ has size at most k − 1. Furthermore, since H is a simple hypergraph
no elements in Û repeat. Now we apply Proposition 7 on (H ′ = (Û , F̂), k). This tells
us that either |Û | = |F| ≤ αuck log k or (H ′ = (Û , F̂), k) is a YES instance of UC. In
the latter case, combining Lemma 6 and Observation 1 we have that (H = (U,F), k, r)
is a YES instance of p-CFC.

Thus, from now onwards, we assume our instance to have at most O(k log k)
hyperedges. Using an extremal result on set systems [11], we obtain the following.

Theorem 9. p-CFC has a kernel with at most 4k vertices and O(k log k) hyper-
edges.

For the proof of Theorem 9, we use the following result. The following definition
is required for our purpose. Given a family of sets F = {F1, . . . , Fm}, an m-tuple
(x1, . . . , xm) is said to be a strong system of distinct representatives if all the elements
xi are distinct and xi ∈ Fi for all i = 1, 2, . . . ,m, and xi /∈ Fj for all i �= j. We use
the following result from [11, Theorem 8.12].

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MAX-CONFLICT-FREE COLORING IN HYPERGRAPHS 1195

Proposition 10. In any family of more than
(
r+s
s

)
sets of cardinality at most r,

at least s+ 2 of its members have a strong system of distinct representatives.

Proof of Theorem 9. Given a hypergraphH = (U,F), we consider a family of sets
F ′: For each vertex in u ∈ U , we define the set Fu = {F ∈ F | u ∈ F} in F ′. Clearly,
F ′ has n sets, one for each vertex. Since the degree of every vertex u ∈ U is bounded
by k, the size of Fu is also bounded by k. Suppose there exists a strong system of
distinct representatives for k members of F ′ i.e, there exists k hyperedges in F such
that each of them has a vertex that does not appear in any other hyperedge. Then, by
coloring these vertices by color 1 and giving everything else a different color, we can
2 conflict-free color these k hyperedges. Now by substituting r = k− 1 and s = k− 2
in the statement of Proposition 10, we know that if F ′ has more than

(
2k−3
k−2

) ≤ 22k

sets i.e., if U has more than 22k vertices, we can say YES. Thus, combining this and
Lemma 8, we get our result.

We also get the following corollary.

Corollary 11. p-CFC for hypergraphs induced by neigborhoods of graphs ad-
mits polynomial kernels.

Corollary 11 follows from Lemma 8 and the fact that the number of hyperedges
is the same as the number of vertices in hypergraphs induced by graph neigborhoods.

Theorem 9 immediately implies that p-CFC is FPT. Given an instance
(H = (U,F), k, r) of p-CFC, by using Theorem 9, we either conclude that
(H = (U,F), k, r) is a YES instance of p-CFC or we have that |U | ≤ 4k. Now
we look at every r-partition of U and check whether there are k hyperedges that are
conflict-free colored. If we succeed for any partition then we return YES, else we con-
clude that the given instance is a NO instance. The running time of this algorithm

is upper bounded by r4
k

(|U |+ |F|)O(1).

Faster FPT algorithm for p-CFCp-CFCp-CFC. Let N = |U |+ |F|. In this section, we give
the full description of an FPT algorithm for p-CFC that runs in 2O(k log log k+k log r) ·
NO(1) time. We will assume that our input instance contains at most O(k log k)
hyperedges and 4k vertices.

We first define some related concepts. Given a set S ⊆ U , a subfamily F ′, and
a coloring Γ : U → [r], we say that S is a cfc-solution with respect to F ′ if each
hyperedge h in F ′ is conflict-free colored and a uniquely colored vertex of h belongs
to S. Furthermore, given such a set S and a hyperedge h, let unicoleltS(h) denote one
uniquely colored vertex of h that is arbitrarily chosen from all the uniquely colored
vertices of h belonging to S.

Our algorithm uses color-coding technique, introduced by Alon, Yuster, and Zwick
in [2], which can be broadly defined as follows. Given an input G, suppose the problem
is to find a subsetH ofG with some property and of size k. The color-coding technique
considers a random coloring of the elements of G with k colors and tries to find a
colorful copy of H .

Suppose we know the following information about the solution (if it exists):
• the subfamily F ′ ⊆ F ,|F ′| = k such that all the hyperedges in F ′ are conflict-
free colored;

• a partition of the universe into p parts, U = U1 � U2 · · · � Up such that the
cfc-solution S contains exactly one element from each partition;

• ∀F ∈ F ′, the color assigned to the uniquely colored element in S ∩ F ;
• ∀1 ≤ i ≤ p, the color assigned to the element in S ∩ Ui.

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1196 P. ASHOK, A. DUDEJA, S. KOLAY, AND S. SAURABH

Note that in the last two points, we do not know the element that is uniquely colored
but only the color used to uniquely color it. The partition of the universe corresponds
to the random coloring by the color-coding technique. The assumption that this
information is known is reasonable as all of this information can be guessed in FPT
time. So we work with an auxiliary problem in which all this information is known.
We also maintain a list of admissible colors for each uncolored vertex that agrees
with this information. The first part of the algorithm does some preprocessing that
handles trivial cases and thus filters the list for each vertex. Now we make the crucial
observation that for a fixed color j, if we restrict the instance to parts of the universe
that are to be conflict-free colored by j (by item 2), the vertices in these parts to those
for which j is an admissible color, and hyperedges to those that are to be conflict-
free colored by j (by item 3) then the problem reduces to that of selecting, for each
color j, a subset of vertices such that there is exactly one vertex from each hyperedge
and each part of the universe. This is a special case of the UHS problem where the
elements are colored and we need a colorful UHS. Using known methods, we solve the
above problem for each color in the conflict-free solution.

In what follows, we formally define the auxiliary problem and give an FPT algo-
rithm for this auxiliary problem.

Partitioned p-CFC Parameter: r + p+ |F|
Input: A hypergraph (U = (U1 � U2 · · · � Up),F), a function Ψfamily : F → [r], a
function Ψparts : [p] → [r], a subset U ′ ⊆ U , and a coloring function Γ′ : U ′ → [r] for
every v ∈ U \ U ′, a list Lv ⊆ [r].
Question: Does there exist a coloring function Γ : U → [r] such that each hyperedge
is conflict-free colored, Γ(U ′) = Γ′(U ′) for each v ∈ U \ U ′,Γ(v) ∈ Lv. Also, there
exists a cfc-solution set S of size exactly p, for all i ∈ [p], |S ∩Ui| = 1, and for every
h ∈ F , unicoleltS(h) ∈

⋃
j∈Ψ−1

parts(Ψfamily(h))
Uj?

In simple words, the problem definition can be explained as follows. We are given
a partitioning of the universe U into p-parts and a partial coloring function Γ′ on a
subset U ′. We are looking for a coloring Γ : U → [r] which extends Γ′. Each vertex
v in U \ U ′ has a list of admissible colors, and Γ must choose a color from Lv. Also,
due to Γ, each hyperedge is conflict-free colored and there exists a cfc-solution set S
such that it contains exactly one vertex from each part. Suppose the hypothetical set
S is {x1, x2, . . . , xp} (think of xi as a variable), where xi ∈ Ui. The function Ψparts

is used to guess the color of xi in Γ. The function Ψfamily divides the family F into
r chunks (not to be confused with parts and coloring). The idea is that the uniquely
colored vertex of h ∈ F , say xj , has been assigned the same color by Γ as h has been
assigned to the chunk number by Ψfamily, i.e, Γ(xj) = Ψfamily(h). Next we show how
we can solve the Partitioned p-CFC problem.

Given an instance ((U = (U1�U2 · · ·�Up),F ′),Ψfamily,Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈

U \ U ′}) of Partitioned p-CFC, we first do a polynomial time preprocessing of
the instance. For all v ∈ U ′, we must set Γ(v) = Γ′(v). In the following reduc-
tion rules, we show that the input functions Ψfamily and Ψparts allow us to prune the
list of some of the vertices. The first reduction rule deals with hyperedges h where
|Γ′−1(Ψfamily(h)) ∩ h| = 1.

Reduction 2. Suppose there is a hyperedge h containing a unique vertex w ∈ U ′

such that Ψfamily(h) = Γ′(w). Then, for every v ∈ h \ {w} we delete Ψfamily(h) from
Lv. We also delete h from F .

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MAX-CONFLICT-FREE COLORING IN HYPERGRAPHS 1197

Lemma 12. Reduction rule 2 is safe.

Proof. Suppose S is a potential cfc-solution for the given instance. Also, let
unicoleltS(h) = x. This means that no other vertex of h should be assigned the color
Γ(x). Since x ∈ ⋃

j∈Ψ−1
parts(Ψfamily(h))

Uj , it implies Γ(x) = Ψfamily(h). As Ψfamily(h) =

Γ′(w), any satisfying assignment Γ must have Γ(x) = Γ′(w), and it must be the case
that x = w. Then, all other vertices v ∈ U \ U ′ of h must get a color different from
Γ(w) = Ψfamily(h). Thus, we have identified the vertex that will determine cfc of h
and ensured that no other vertex of h can destroy the uniqueness of w. Thus, in the
reduced instance, we can delete h and for every v ∈ h \ {w}, we remove Ψfamily(h)
from Lv.

On the other hand, suppose the reduced instance has a satisfying coloring Γ. For
each v ∈ U \ U ′, the list of admissible colors of the original instance is a superset of
the list of admissible colors from the reduced instance. Since w ∈ U ′ in the reduced
instance, Γ(w) = Γ′(w). But in the original instance, the function Γ′ was the same
as in the reduced instance. Therefore, Ψfamily(h) of the original instance is the same
as Γ(w) of the reduced instance. Also, in the reduced instance, no other vertex that
belonged to h contains the color Γ(w) in its list. Hence, in the original instance, the
same assignment Γ will conflict-free color h as well, and is a satisfying assignment of
the original instance. Thus, reduction rule 2 is safe.

We can further reduce the size of the lists by the following reduction.

Reduction 3. If there is a vertex v ∈ Ui, i ∈ [p], and h ∈ F , such that v ∈ h,
Ψfamily(h) �= Ψparts(i), then we remove the color Ψfamily(h) from the list of v.

Lemma 13. Reduction rule 3 is safe.

Proof. Suppose, in a potential cfc-solution S, the uniquely colored vertex of h
was xj . By definition, xj ∈

⋃
i∈Ψ−1

parts(Ψfamily(h))
Ui. In other words, xj belongs to a part

Ui such that Ψparts(i) = Ψfamily(h) and Γ(xj) = Ψfamily(h). However, for the given
vertex v and hyperedge h, Ψfamily(h) �= Ψparts(i) and, hence, v /∈ ⋃

i∈Ψ−1
parts(Ψfamily(h))

Ui.

Thus, v �= xj . Since xj is uniquely colored in h, Γ(v) �= Γ(xj). Therefore, Γ(v) �=
Ψfamily(h) and we can safely delete Ψfamily(h) from Lv in the reduced instance. On
the other hand, the reduced instance has admissible color lists which are subsets of
the admissible color lists of the original instance. Suppose the reduced instance had
a coloring Γ such that each hyperedge is conflict-free colored, and there exists a cfc-
solution set S of size exactly p, for all i ∈ [p], |S ∩ Ui| = 1 and for every h ∈ F ,
unicoleltS(h) ∈ ⋃

j∈Ψ−1
parts(Ψfamily(h))

Uj . This Γ is a satisfying coloring for the original

instance as well. Thus, reduction rule 3 is safe.

The next rule deals with hyperedges h, where |Γ′−1(Ψfamily(h)) ∩ h| ≥ 2.

Reduction 4. If there are two vertices v, w ∈ U ′ and a hyperedge h ∈ F , such
that Ψfamily(h) = Γ′(v) = Γ′(w), then we output a trivial NO instance.

Lemma 14. Reduction rule 4 is safe.

Proof. Suppose, in a potential cfc-solution S, the uniquely colored vertex of h
was x. By definition, Γ(x) = Ψfamily(h). Also, by the uniqueness of x, no other vertex
of h should be assigned the color Γ(x). However, in our instance, there are already
two vertices v, w of h∩U ′ which have been assigned Ψfamily(h) by Γ′. This means that
h cannot be conflict-free colored by any satisfying assignment Γ. Thus, we correctly
output a trivial NO instance.

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1198 P. ASHOK, A. DUDEJA, S. KOLAY, AND S. SAURABH

Reduction 5. Suppose there is a vertex w ∈ U \U ′ with Lw = {c}, then we put
w in U ′ and set Γ′(w) = c. If there is a vertex v, where Lv = ∅, then we output a
trivial NO instance.

Lemma 15. Reduction rule 5 is safe.

Proof. Γ must assign a color to every vertex. If there is a vertex w with Lw = {c},
then we must set Γ(w) = c for any satisfying assignment Γ. Thus, in the reduced
instance, we fix the coloring of w by putting it in U ′ and setting Γ′(w) = c. On
the other hand, in the reduced instance, U ′ is a superset of the U ′ of the original
instance. Hence, a satisfying assignment Γ of the reduced instance is also a satisfying
assignment of the original instance.

Similarly, by the correctness of the other reduction rules, if there is a vertex v
where Lv = ∅, the current instance must be a NO instance. Thus we correctly output
a trivial NO instance. Therefore, this reduction rule is safe.

Given an instance ((U = (U1�U2 · · ·�Up),F ′),Ψfamily,Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈

U \U ′}) of Partitioned p-CFC, we apply reduction rules 2, 3, 4, 5 exhaustively. If
in the process we infer that the given instance is a NO instance then we return the
same. It could also happen that we get F = ∅. In this case for every vertex v ∈ U \U ′,
Γ assigns to v an element of L(v) arbitrarily. Thus, from now onwards we assume
that we neither conclude that the given instance is a NO instance nor obtain F = ∅.
We call an instance of Partitioned p-CFC reduced if reduction rules 2, 3, 4, 5 are
not applicable. For simplicity, let ((U = (U1 � U2 · · · � Up),F ′),Ψfamily,Ψparts, U

′,Γ′,
{Lv ⊆ [r]|v ∈ U \U ′}) denote the reduced instance of Partitioned p-CFC. Observe
that the reduced instance has the following properties:

1. For every vertex v, |Lv| ≥ 2. This is because reduction rule 5 is not applicable.
2. For every hyperedge h, |Γ′−1(Ψfamily(h)) ∩ h| = 0. This is because reduction

rules 2 and 4 are not applicable.
We define the set Vi ⊆ U \ U ′ as the set of vertices that have i in their list of

admissible colors. Then, since reduction rule 3 is no longer applicable, there are two
kinds of vertices in Vi: The first kind is a vertex v that has i ∈ Lv and ∃h ∈ F , v ∈
Uj ∩ h such that Ψfamily(h) = i,Ψparts(j) = i. The other kind of vertex v in Vi has
i ∈ Lv but for any h with Ψfamily(h) = i, v /∈ h.

To solve the reduced instance of Partitioned p-CFC, we will solve some r
instances of an even more specialized problem that we define now.

Partitioned UHS

Input: A partitioned universe U = (U1 � . . . � Uq) and a set family F .
Question: Is there a set S ⊆ U such that for all h ∈ F , |h ∩ S| = 1, and for all
i ∈ [q], |Ui ∩ S| = 1?

Now we define some sets based on Vi ⊆ U :
1. For every j ∈ [r], and x ∈ Ψ−1

parts(j), let Z
x
j = Ux∩Vj and Zj =

⋃
x∈Ψ−1

parts(j)
Zx
j .

2. For every j ∈ [r], and h ∈ Ψ−1
family(j) let hj = h ∩ Vj and Fj =

{hj | h ∈ Ψ−1
family(j)}.

Next we relate the instance of Partitioned p-CFC to Partitioned UHS.

Lemma 16. Let ((U = (U1 � U2 · · · � Up),F ′),Ψfamily,Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈

U \ U ′}) denote the reduced instance of Partitioned p-CFC. Then it is a YES

instance of Partitioned p-CFC if and only if for all j ∈ [r], (�x∈Ψ−1
parts(j)

Zx
j ,Fj) is

a YES instance of Partitioned UHS.

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MAX-CONFLICT-FREE COLORING IN HYPERGRAPHS 1199

Proof. First, suppose that ((U = (U1 � U2 · · · � Up),F ′),Ψfamily,Ψparts, U
′,Γ′,

{Lv ⊆ [r]|v ∈ U \ U ′}) is a YES instance of Partitioned p-CFC. Then there is
a satisfying assignment Γ such that each hyperedge is conflict-free colored, Γ′(U ′) =
Γ(U ′). For each v ∈ U \ U ′,Γ(v) ∈ Lv. Also, there exists a cfc-solution set S =
{v1, . . . , vp} such that for all x ∈ [p], |S ∩Ux| = 1. In the reduced instance, for all h,
|Γ′−1(Ψfamily(h)) ∩ h| = 0. Thus, S ∩ U ′ = ∅. For each j ∈ [r], we look at S ∩ Vj . By
the definition of Zj , every vertex in S ∩Vj must belong to a part in Zj. In particular,
every vertex of S ∩ Γ−1(j) must belong to a part in Zj . Also, since every vertex of
S belongs to a unique part of (U1 � U2 · · · � Up), for each x ∈ [p] there is exactly
one vertex in S ∩ Zx

j . Also, we know that for every h ∈ F , if unicoleltS(h) = vh,
then Γ(vh) = Ψfamily(h). Thus, for each hyperedge h ∈ Fj , unicoleltS(h) ∈ S ∩
Γ−1(j). For every other vertex u ∈ h \ unicoleltS(h), Γ(u) �= j and, therefore,
u /∈ S ∩ Γ−1(j). Thus, for every j ∈ [r], Sj = S ∩ Γ−1(j) is a UHS of Fj with
the property that ∀x ∈ Ψ−1

parts(j), |Zx
j ∩ Sj | = 1. Thus, (�x∈Ψ−1

parts(j)
Zx
j ,Fj) is a YES

instance of Partitioned UHS.
In the reverse direction, suppose (�x∈Ψ−1

parts(j)
Zx
j ,Fj) is a YES instance of Par-

titioned UHS. Then a solution set Sj is a UHS of Fj with the property that
∀x ∈ Ψ−1

parts(j), |Zx
j ∩ Sj | = 1. By definition, Sj ⊆ Zj ⊆ Vj . First, for each ver-

tex v ∈ Sj, we assign Γ(v) = i. For each w ∈ U ′, we must set Γ(w) = Γ′(w).
The vertices that still need to be colored belong to Vj \ Sj for each j ∈ [r]. First,
take a vertex w ∈ Ux \ Sj , where Ψparts(Ux) = j. Consider a hyperedge h such that
Ψfamily(h) = c �= j. Then, since reduction rule 3 is no longer applicable, it must be the
case that c /∈ Lw. However, since reduction rule 5 is also no longer applicable, there is
a color c′ ∈ Lw such that c′ �= j. We set Γ(w) = c′. Next, consider a vertex w ∈ Vj\Zj.
Since reduction rule 3 is no longer applicable, for any h with Ψfamily(h) = j, w /∈ h. We
set Γ(w) = j. Every hyperedge h has exactly one vertex in the color class Ψfamily(h),
namely, the vertex in SΨfamily(h) ∩h that uniquely hit h. Thus, Γ is a satisfying assign-
ment and ((U = (U1 � U2 · · · � Up),F ′),Ψfamily,Ψparts, U

′,Γ′, {Lv ⊆ [r]|v ∈ U \ U ′}) is
a YES instance of Partitioned p-CFC.

Lemma 16 allows us to reduce an instance of the Partitioned p-CFC problem
to r instances of Partitioned UHS. Next, we design an algorithm for Partitioned
UHS.

Lemma 17. Partitioned UHS, where the number of hyperedges is m, the uni-
verse size is n, and a q ≤ m partitioning of the universe is given, is FPT parameterized
by m. The running time of the algorithm is 2(m+q) · (n+m)O(1).

Proof. We are given as input a hypergraph H = (U,F) and a q-partition U =
(U1 � · · · � Uq) of the universe. We define a function A that takes as input a pair
(E , C), where E ⊆ F and C ⊆ [q]. The function outputs 1 if exactly the subfamily
E can be uniquely hit by a set S, where the vertices of S come from

⋃
i∈C Ui, and

∀i ∈ C, |Ui∩S| = 1}, and 0 otherwise. We want to emphasize that only the hyperedges
of E should be hit by S and the hyperedges of F \ E should not be hit by S. Define
for each vertex v that belongs to a part Ui, i ∈ C, a subfamily Ev = {h | v ∈ h}. We
define the function A using the following recurrence relation:

A(E , C) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
c∈C,v∈Uc,Ev⊆E

A(E \ Ev, C \ {c}) if E �= ∅, C �= ∅,
1 if E = ∅, C = ∅,
0 if E = ∅, C �= ∅,
0 if C = ∅, E �= ∅.

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1200 P. ASHOK, A. DUDEJA, S. KOLAY, AND S. SAURABH

We prove the correctness of this recurrence by induction on the size of the set
C ⊆ [q]. In the base case, when E = ∅, C = ∅, then trivially this family has been
uniquely hit and therefore A(E , C) = 1. When C = ∅, then a nonempty subfamily
cannot be uniquely hit and therefore A(E , C) = 0 for any nonempty subfamily E .
When E = ∅, but C �= ∅, then the family cannot have a UHS S with the property
∀i ∈ C, |Ui ∩ S| = 1. Therefore, A(E , C) = 0 for any set C �= ∅.

Now, let |C| ≥ 1. Suppose we have correctly calculated A(E ′, C′) for all pairs
(E ′, C′), where |C′| < |C| and E ′ ⊆ F . There can be two cases:

1. Suppose A(E , C) = 1. Then there is a solution set S where it is true that
∀i ∈ C, |Ui ∩ S| = 1. Take one i ∈ C and let vi ∈ S ∩ Ui. Then S − {vi}
uniquely hits exactly the subfamily E \ Evi and ∀j ∈ C \ {i}, |Uj ∩ S| = 1.
Then, by the induction hypothesis, A(E\Evi , C\{i}) = 1. Hence, we correctly
calculate A(E , C).

2. On the other hand, suppose A(E , C) = 0. Then, there is no UHS S that hits
exactly the subfamily E such that ∀i ∈ C, |Ui ∩ S| = 1. Then we claim that
there is no subproblem (E \ Ev, C \ {c}) such that A(E \ Ev, C \ {c}) = 1.
Assume such a subproblem existed and let S′ be the UHS for that subfamily.
Then S′ hits all hyperedges in E \Ev and no hyperedge outside this subfamily.
Then S′ ∪ v will be a UHS for (E , C), a contradiction.

Thus the recurrence is correct.
It is enough to solve this recurrence for every pair (E , C). The given instance is a

YES instance of Partitioned UHS if A(F , [q]) = 1. In order to calculate A(E , C),
we look up the values of subproblems corresponding to each c ∈ C and v ∈ Uc. There
are at most n such subproblems. There are 2(m+q) such pairs (E , C). Thus, the
running time for solving the recurrence is 2(m+q)(n+m)O(1).

Lemmas 16, 17, and the safeness of the reduction rules 2, 3, 4, 5 together result
in the following algorithm for Partitioned p-CFC.

Lemma 18. Partitioned p-CFC can be solved in time 2p+|F| ·NO(1).

Next, using Lemma 18 and the method of the color coding technique of [2] we give
an algorithm for p-CFC. Towards this we need the following notion of a perfect hash
family. A perfect hash family is a family of functions, whose domain is a universe U
of n elements and range is a set of k elements, and with the following property: For
every k-sized subset S ⊆ U , there is a function ζ in the family that maps S to the
range injectively. That is, every element of S maps to a different number in [k]. The
following proposition shows that such families can be constructed [13].

Proposition 19. For any n and k ≤ n, an (n, k)-perfect hash family of size
ekkO(log k) logn can be deterministically computed in time ekkO(log k)n logn.

Our main theorem is the following.

Theorem 20. p-CFC can be solved in time 2O(k log log k+k log r) ·NO(1).

Proof. Let ((U,F), k, r) be an instance of p-CFC. Recall that |U | = n, |F| = m,
and N = n+m. Given an instance we first apply Theorem 9 and obtain an equivalent
instance with at most 4k vertices and O(k log k) hyperedges. We run through all
p ≤ k. Since the number of hyperedges in the input instance is αuck log k, the number
of subfamilies of size k is

(
αuck log k

k

) ≤ ( eαuck log k
k )k ≤ (eαuc log k)

k. We guess a
subfamily F ′ of hyperedges that will be conflict free colored. That is, we are trying to
find a coloring Γ : U → [r] such that each hyperedge h in F ′ is conflict-free colored.
Let S be a hypothetical cfc-solution corresponding to it. In other words, for each

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MAX-CONFLICT-FREE COLORING IN HYPERGRAPHS 1201

hyperedge h in F ′, a uniquely colored vertex of h (with respect to Γ) belongs to S.
We guess the size of |S|, say p ≤ k. For a fixed p, let F be an (n, p)-perfect hash family
of size eppO(log p) log n. By the property of F, we know that there exists a function
ζ ∈ F that maps S to [p] injectively. Let U1, . . . , Up denote the partition of U given by
ζ. Observe that after this we will be seeking for a cfc-solution S such that |S∩Ui| = 1
for all i ∈ [p].

Next for each hyperedge h in F ′, we guess the color of a vertex in h that is
uniquely colored by Γ. There are rk such guesses. Thus, after this guess, we define
a function Ψfamily : F ′ → [r] such that h is assigned the color of the vertex in h that
will be uniquely colored by Γ. Finally, for the potential solution set S we guess the
color of each vertex given by Γ. Since we are looking for a cfc-solution set S, such
that ∀i ∈ [p], |Ui ∩ S| = 1 it is equivalent to say that we guess an r partitioning of
the p parts in U = (U1 � · · · �Up). That is, the vertex of S inside Ui will be assigned
to each color by Γ. To express this guess, we define another function Ψparts : [p] → [r]
such that Ψparts(j) = i if the vertex x in S ∩ Uj will have Γ(x) = i. Thus, there are
rp guesses for the coloring of the potential solution set S by Γ. At the end of this
sequence of guesses, we have fixed a choice of hyperedges that are to be r conflict-
free colored, a coloring of the potential solution set S (without actually knowing the
vertices of S, this essentially means a partitioning of the parts of U), and a partitioning
of the hyperedges according to which color of Γ will determine that the hyperedge
is conflict-free colored. This results in the following instance of Partitioned p-

CFC: ((U = (U1 � U2 · · · � Up),F ′),Ψfamily,Ψparts, U
′ = ∅, (∀v ∈ U : Lv = [r])). By

Lemma 18 we know that we can solve this in time 2p+k ·NO(1) ≤ 4k · NO(1). Thus
the overall running time for p-CFC is upper bounded by the number of guesses and
the running time of an algorithm for Partitioned p-CFC. Thus, the running time
of the algorithm is upper bounded by(

αuck log k

k

)
× k × |F| × rk × rk × 4k ·NO(1) = 2O(k log log k+k log r) ·NO(1).

This concludes the proof.

4. FPT algorithm for p-UMCp-UMCp-UMC. Recall that p-UMC takes as input a hyper-
graph (U,F) on n vertices and m hyperedges, and positive integers r ≥ 2 and k and
determines whether there is a subfamily of at least k hyperedges that can be unique-
maximum colored using r colors. A vertex coloring is a unique-maximum coloring
if every hyperedge h in the hypergraph has a unique vertex that is colored with the
maximum color occurring in h.

Let N = |U |+|F|. In this section, we describe an FPT algorithm for p-UMC that
runs in 2O(k log log k+k log r) ·NO(1) time. This algorithm is very similar to the algorithm
for p-CFC. However, for the sake of completeness, we chalk out the algorithm for p-
UMC, while explicitly giving details of the steps where the algorithm deviates from
the one for p-CFC.

The results of Lemma 8 and Theorem 9 can be modified for p-UMC.

Theorem 21. p-UMC has a kernel with at most 4k vertices and O(k log k) sets.

Therefore, we assume that our input instance for p-UMC contains O(k log k)
hyperedges and 4k vertices.

Given a set S ⊆ U , a subfamily F ′, and a coloring Γ : U → [r], we say that S
is a unique-maximum-solution if each hyperedge h in F ′ is unique-maximum colored
and the vertex, which is unique-maximum colored in h, belongs to S. Furthermore,

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1202 P. ASHOK, A. DUDEJA, S. KOLAY, AND S. SAURABH

given such a set S and a hyperedge h, let unicoleltS(h) denote the unique-maximum
colored vertex of h that belongs to S. Our strategy for the FPT algorithm is the same
as in the case of p-CFC. We define an auxiliary problem and give an FPT algorithm
for this problem. Finally, we reduce our problem to the auxiliary problem with some
guesses and by using the color coding technique, introduced by Alon, Yuster, and
Zwick in [2], to obtain the desired algorithm for p-UMC.

Partitioned p-UMC Parameter: r + p+ |F|
Input: A hypergraph (U = U1 � U2 · · ·Up,F), a function Ψfamily : F → [r], a
function Ψparts : [p] → [r], a subset U ′ ⊆ U , and a coloring function Γ′ : U ′ → [r] for
every v ∈ U \ U ′, a list Lv ⊆ [r].
Question: Does there exist a coloring function Γ : U → [r] such that each hyperedge
is unique-maximum colored, Γ(U ′) = Γ′(U ′). For each v ∈ U \ U ′,Γ(v) ∈ Lv. Also,
the unique-maximum-solution set S, defined by Γ, is of size exactly p. For all
i ∈ [p], |S ∩ Ui| = 1, and for every h ∈ F , unicoleltS(h) ∈

⋃
j∈Ψ−1

parts(Ψfamily(h))
Uj?

Let us explain the problem definition. We are given a partitioning of the universe
U into p-parts and a partial coloring function Γ′ on a subset U ′. We are looking
for a coloring Γ : U → [r] which extends Γ′. Each vertex v in U \ U ′ has a list of
admissible colors, and Γ must choose a color from Lv. Also, due to Γ, each hyper-
edge is unique-maximum colored and the unique-maximum-solution set S, due to Γ,
is such that it contains exactly one vertex from each part. Suppose the hypothetical
set S is {x1, x2, . . . , xp} (the xi’s can be thought of as variables), where xi ∈ Ui. The
function Ψparts is used to guess the color of xi in Γ. The function Ψfamily divides the
family F into r chunks (again the chunks are different from parts and color classes).
The idea is that the unique-maximum colored vertex of h ∈ F , say xj , has been as-
signed the same color by Γ as h has been assigned to the chunk number by Ψfamily, i.e,
Γ(xj) = Ψfamily(h). Next we show how we can the Partitioned p-UMC problem.

Given an instance ((U = U1 � U2 · · ·Up,F ′),Ψfamily,Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈

U \U ′}) of Partitioned p-UMC, we first do a polynomial time preprocessing of the
instance. For all v ∈ U ′, we must set Γ(v) = Γ′(v). In the following reduction rules,
we show that the input functions Ψfamily and Ψparts allow us to prune the list of some
of the vertices. The first reduction rule is necessary for a unique-maximum coloring
that supports the function Ψfamily.

Reduction 6. For each hyperedge h, and each vertex v ∈ h, remove the colors
r ≥ i > Ψfamily(h) from L(v).

Lemma 22. Reduction rule 6 is safe.

Proof. The required unique-maximum coloring Γ should be such that for each
hyperedge h, the unique-maximum colored vertex of h must receive the same color
as Ψfamily(h). Therefore, no vertex of h can be given a color which is higher in order
than Ψfamily(h). This implies that the reduction rule is safe.

The next rule also ensures the properties of unique-maximum coloring.

Reduction 7. Given a hyperedge h, if there is a vertex w ∈ h ∩ U ′ such that
Γ′(w) > Ψfamily(h), then we output a trivial NO instance.

Lemma 23. Reduction rule 7 is safe.

Proof. The definition of the problem requires Γ to be an extension of Γ′. It also
requires the unique-maximum colored vertex of each hyperedge h to be colored by

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MAX-CONFLICT-FREE COLORING IN HYPERGRAPHS 1203

Ψfamily(h). By definition of unique-maximum coloring, all other vertices of h must
receive a color of lower order than Ψfamily(h). Therefore, for a YES instance, it must
be the case that for each vertex w in h ∩ U ′, Γ′(w) ≤ Ψfamily(h). This implies the
correctness of the reduction rule.

The next few reduction rules are similar to the rules described for the FPT algo-
rithm of p-UMC.

Reduction 8. Suppose there is a hyperedge h containing a unique vertex w ∈ U ′

such that Ψfamily(h) = Γ′(w). Then, for every v ∈ h \ {w} we delete Ψfamily(h) from
Lv. We delete h from F .

The proof of correctness for this rule is very similar to that of reduction rule 2.

Reduction 9. If there is a vertex v ∈ Ui, i ∈ [p], and h ∈ F , such that v ∈ h,
Ψfamily(h) �= Ψparts(i), then we remove the color Ψfamily(h) from the list of v.

This proof of correctness is similar to that of reduction rule 3.

Reduction 10. If there are two vertices v, w ∈ U ′ and a hyperedge h ∈ F , such
that Ψfamily(h) = Γ′(v) = Γ′(w), then we say NO.

The proof of correctness for this reduction rule is similar to reduction rule 4.

Reduction 11. Suppose there is a vertex w ∈ U \U ′ with Lw = {c}, then we put
w in U ′ and set Γ′(w) = c. If there is a vertex v where Lv = ∅, then we say NO.

This follows from the safeness of reduction rule 5.
Given an instance ((U = U1 � U2 · · ·Up,F ′),Ψfamily,Ψparts, U

′,Γ′, {Lv ⊆ [r]|v ∈
U \ U ′}) of Partitioned p-UMC, we apply the above reduction rules exhaustively.
If in the process we infer that the given instance is a NO instance then we return the
same. It could also happen that we get F = ∅. In this case, for every vertex v ∈ U \U ′,
Γ assigns to v an element of L(v) arbitrarily. Thus, from now onwards we assume
that we neither conclude that the given instance is a NO instance nor obtain F = ∅.
We call an instance of Partitioned p-UMC reduced if the above reduction rules
are not applicable. For simplicity, let ((U = U1 � U2 · · ·Up,F ′),Ψfamily,Ψparts, U

′,Γ′,
{Lv ⊆ [r]|v ∈ U \U ′}) denote the reduced instance of Partitioned p-UMC. Observe
that the reduced instance has the following properties:

1. For every vertex v, |Lv| ≥ 2. This is because reduction rule 11 is no longer
applicable.

2. For every hyperedge h, |Γ′−1(Ψfamily(h)) ∩ h| = 0. This is because reduction
rules 7, 8, and 10 are no longer applicable.

3. For every hyperedge h, and each vertex v ∈ h, L(v) contains colors that are
of order at most Ψfamily(h). This is because reduction rule 6 is no longer
applicable.

We define the set Vi ⊆ U \ U ′ as the set of vertices that have i in their list of
admissible colors. Then, because reduction rule 9 is no longer applicable, there are two
kinds of vertices in Vi: It could be that the vertex v has i ∈ Lv and ∃h ∈ F , v ∈ Uj∩h
such that Ψfamily(h) = i,Ψparts(j) = i. Or, the vertex v has i ∈ Lv but for any h with
Ψfamily(h) = i, v /∈ h, and for any h that contains v, Ψfamily(h) > i.

To solve the reduced instance of Partitioned p-UMC, we will again solve r
instances of Partitioned UHS. We define some sets based on Vi ⊆ U :

1. For every j ∈ [r] and x ∈ Ψ−1
parts(j) let Z

x
j = Ux ∩ Vj and Zj =

⋃
x∈Ψ−1

parts(j)
Zx
j .

2. For every j ∈ [r] and h ∈ Ψ−1
family(j) let hj = h ∩ Vj and Fj =

{hj | h ∈ Ψ−1
family(j)}.

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1204 P. ASHOK, A. DUDEJA, S. KOLAY, AND S. SAURABH

Next we relate the instance of Partitioned p-CFC to Partitioned UHS.

Lemma 24. Let ((U = U1 � U2 · · ·Up,F ′),Ψfamily,Ψparts, U
′,Γ′, {Lv ⊆ [r]|v ∈

U \ U ′}) denote the reduced instance of Partitioned p-UMC. Then it is a YES

instance of Partitioned p-UMC if and only if for all j ∈ [r], (�x∈Ψ−1
parts(j)

Zx
j ,Fj) is

a YES instance of Partitioned UHS.

This proof is very similar to the proof of Lemma 16. Lemmas 24 and 17 together
result in the following algorithm for Partitioned p-CFC.

Lemma 25. Partitioned p-UMC can be solved in time 2p+|F| ·NO(1).

Next, using Lemma 25 and the method of the color coding technique of [2] we
give an algorithm for p-UMC.

Theorem 26. p-UMC can be solved in time 2O(k log log k+k log r) ·NO(1).

Proof. Let ((U,F), k, r) be an instance of p-UMC. Recall that |U | = n, |F| =
m, and N = n + m. Given an instance we first apply Theorem 21 and obtain an
equivalent instance with at most 4k vertices and O(k log k) hyperedges. We run
through all p ≤ k. Since the number of hyperedges in the input instance is αuck log k,
the number of subfamilies of size k is

(
αuck log k

k

) ≤ ( eαuck log k
k )k ≤ (eαuc log k)

k. We
guess a subfamily F ′ of hyperedges that will be unique-maximum colored. That
is, we are trying to find a coloring Γ : U → [r] such that each hyperedge h in F ′

is unique-maximum colored. Let S be the hypothetical unique-maximum-solution
corresponding to it. In other words, for each hyperedge h in F ′, the unique-maximum
colored vertex of h (with respect to Γ) belongs to S. We guess the size of |S|, say p ≤ k.
For a fixed p, let F be the family of (n, p)-perfect hash family of size eppO(log p) logn.
By the property of F, we know that there exists a function ζ ∈ F that maps S to [p]
injectively. Let U1, . . . , Up denote the partition of U given by ζ. Observe that after
this we will be seeking for the unique-maximum-solution S with the property that
|S ∩ Ui| = 1 for all i ∈ [p].

Next for each hyperedge h in F ′, we guess the color of the vertex in h that is
unique-maximum colored by Γ. There are rk such guesses. Thus, after this guess, we
define a function Ψfamily : F ′ → [r] such that h is assigned the color of the vertex in
h that will be unique-maximum colored by Γ. Finally, for the potential solution set
S we guess the color of each vertex given by Γ. Since we are looking for a unique-
maximum-solution set S, such that ∀i ∈ [p], |Ui ∩ S| = 1 it is equivalent to say that
we guess an r partitioning of the p parts in U = (U1, . . . , Up). That is, the vertex of
S ∈ Ui will be assigned a color by Γ. To express this guess, we define another function
Ψparts : [p] → [r] such that Ψparts(j) = i if the vertex x in S ∩ Uj will have Γ(x) = i.
Thus, there are rp guesses for the coloring of the potential solution set S by Γ. At the
end of this sequence of guesses, we have fixed a choice of hyperedges that are to be r
unique-maximum colored, a coloring of the potential solution set S (without actually
knowing the vertices of S, this essentially means a partitioning of the parts of U) and
a partitioning of the hyperedges according to which color of Γ will determine that
the hyperedge is unique-maximum colored. This results in the following instance of
Partitioned p-UMC: ((U = U1�U2 · · ·Up,F ′),Ψfamily,Ψparts, U

′ = ∅, (∀v ∈ U : Lv =
[r])). By Lemma 25 we know that we can solve this in time 2p+k ·NO(1) ≤ 4k ·NO(1).
Thus the overall running time for p-UMC is upper bounded by the number of guesses
and the running time of an algorithm for Partitioned p-UMC. Thus, the running

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MAX-CONFLICT-FREE COLORING IN HYPERGRAPHS 1205

time of the algorithm is upper bounded by(
αuck log k

k

)
× k × |F| × rk × rk × 4k ·NO(1) = 2O(k log log k+k log r) ·NO(1).

This concludes the proof.

5. Exact algorithm forMax-CFCMax-CFCMax-CFC. In this section, we give an exact algorithm
for solving Max-CFC for hypergraphs. We give a recurrence on subproblems, using
which we can give a dynamic programming algorithm to solve the problem. However,
a much faster algorithm can be designed using the technique of subset convolutions
on functions.

Theorem 27. Max-CFC for hypergraphs can be solved by an exact algorithm
that runs in O(2(m+n)) time.

Proof. LetH = (U,F) be the input hypergraph. Suppose, for a given hypergraph,
there is a procedure to decide whether there exists an r-coloring that is conflict free.
Then, we can generate all subsets F ′ of F , such that there exists an r-coloring of
vertices of (U(F ′),F ′) that is conflict free, by running this procedure for all subsets.
Then solving the Max-CFC problem reduces to picking the maximum sized subsets
among those.

We now give a procedure to find the minimum number of colors required to
conflict-free color a given hypergraph, (U ′,F ′), where U ′ ⊆ U and F ′ ⊆ F . Let χ′ be
an r-coloring on U ′ and let F ′ be conflict-free colored by χ′. Then χ′ partitions U ′

into r sets, (U1 � U2 � · · · � Ur), such that the following property is true:

∀F ∈ F ′, ∃i ∈ [r] such that |F ∩ Ui| = 1.

Let F1 be the set of hyperedges such that ∀F ∈ F1, |F ∩ U1| = 1. In other
words, all the hyperedges in F1 have a unique vertex colored by color 1. Then, if we
correctly guessed U1, solving whether F ′ has an r cfc in U is equivalent to solving the
subproblem of whether F ′ \ F1 has an r − 1 cfc in U \ U1.

We aim at calculating a function C : 2U × 2F → Z. For a given X ⊆ U, E ⊆ F , we
want C(X, E) to be the minimum number of colors needed to conflict-free color the
hypergraph (X, E). We give the following recurrence relation to find C(X, E):

(1) C(X, E) =
{
minX′⊆X:∃h∈E,|h∩X′|=1{1 + C(X \X ′, E \ E ′)} if X �= φ,

0 if X = φ,

where E ′ = {h ∈ E||h ∩X ′| = 1}.
We prove the correctness of the recurrence by induction on the size of X . When

|X | = 0, the recurrence correctly returns 0.
Now assume |X | > 0. Assume X ′ ⊆ X is a color class of a cfc that uses

χcf ((X, E|X)) colors. Then X ′ uniquely colors all hyperedges that contain exactly
one element from X ′. E ′ represents the family of these hyperedges. The remain-
ing hyperedges E \ E ′ need to be uniquely covered by color classes in X \ X ′. By
the induction hypothesis, C(X \ X ′, E \ E ′) = χcf ((X \ X ′, E \ E ′|X\X′)). Hence,
C(X \ X ′, E \ E ′) + 1 returns the the value of χcf ((X, E|X)). Since the recurrence
considers all possible subsets of X , one of them is the correct guess for X ′ and returns
the minimum value.

Let us analyze the running time for computing the function C. Let the input pairs
(X, E) be ordered in the following lexicographic manner. The input pairs (X1, E1) ≤

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1206 P. ASHOK, A. DUDEJA, S. KOLAY, AND S. SAURABH

(X2, E2) if either |X1| < |X2| or if |X1| = |X2| and |E1| ≤ |E2|. We use a bottom-up
algorithm for filling in the table entries for each input pair (X, E), where the input
pairs are ordered as above. For a subset X of size i, once we fix a subset X ′ ⊆ X we
also fix the subfamily E ′ and, consequently, the subfamily E \ E ′. Therefore, once we
fix E and X , we need to look up at most 2i entries from the table to calculate C(X, E).
By the ordering on the input pairs, and the definition of the function C, the entries
that have to be looked up have already been calculated before the need to calculate
C(X, E). Thus, the time required to calculate C(X, E), where |X | = i is O(2i). To
compute the function C, for each fixed subset X , we need to calculate C(X, E) for all
subfamilies E ⊆ F , which are at most 2m subproblems that need to be calculated
with respect to the fixed set X . Last, there are at most

(
n
i

)
subsets X of size exactly

i. Thus, we can compute the function C in time O(2m · Σ0≤i≤n

(
n
i

)
2i) = O(3n2m).

Once this is done, finding a largest subfamily F ′ ⊆ F , such that (U(F ′),F ′) can be
r conflict-free colored, can be done in O(2n · 2m) time. Hence, we could solve the
Max-CFC problem in O(3n · 2m) time. However, we can improve the running time
by quite a bit.

Let us relax the definition of C to be the function which takes a pair (U ′,F ′), where
U ′ ⊆ U,F ′ ⊆ F , and, when χcf ((U

′,F ′|U ′)) ≤ r, correctly maps it to χcf ((U
′,F ′|U ′)).

Otherwise, it could map (U ′,F ′) to some value between n+ 1 and r(n + 1), thereby
clearly indicating that (U ′,F ′|U ′) is not r conflict-free colorable. Then, too, we can
identify subfamilies F ′ such that C((U(F ′),F ′)) ≤ r and pick one subfamily which
has that largest size. From now on, by C, we will refer to this new definition of C.

To facilitate the calculation of this newly defined C, we define another function
f which takes as input a pair (X ⊆ U, E ⊆ F). When X = ∅, for a subfamily E we
define the function f(X, E) = 0 if E = ∅ and f(X, E) = n + 1 otherwise. For each
nonempty X ⊆ U and E ⊆ F , f(X, E) = 1 if for each h ∈ E , |h ∩X | = 1. Otherwise,
f(X, E) = n + 1. Notice that it takes O(2(n+m)) time to calculate the function f .
Using this function f , we are ready to define the function C(X, E) as follows:

(2) C(X, E) = min
(X1�X2�...�Xr)=X;(E1�...�Er)=E

f(X1, E1) + · · ·+ f(Xr, Er)

Finally, we identify a subfamily F ′ of F , of largest size, such that C(U(F ′),F ′) is r
conflict-free colorable.

Correctness. The correctness for the procedure described above is similar to the
previous arguments. First, we show that, when X is nonempty, the function C(X, E)
determines whether (X, E|X) can be r conflict-free colored or not. Also, when the
tuple is r conflict-free colorable, the function returns the minimum number of colors
required. We prove the correctness by case analysis of X . When |X | = 1, then for any
subfamily F ′, f(X,F ′) = 1 if and only if every hyperedge in F ′ contains the vertex
of X . Thus, the hypothesis is true for the base case.

Now assume |X | > 1. First, suppose χcf ((X, E|X)) ≤ r. Assume (X1 �X2 � · · · �
Xr) is a cfc that realizes χcf ((X, E|X)) ≤ r. Some of the Xi’s could be empty sets
if χcf ((X, E|X)) < r. Each nonempty Xi uniquely colors all hyperedges that contain
exactly one element from Xi. Without loss of generality, we may assume that X1 is
nonempty. Let E1 ⊆ E represent the subfamily of hyperedges that contains exactly
one element from X1. For i > 1, if Xi is empty, then we set Ei = ∅. When Xi is
nonempty, let Ei ⊆ E −⋃

1≤j≤i−1 Ej be the subfamily of hyperedges that contain ex-
actly one element from Xi. Notice that for all 1 ≤ i ≤ r, when Xi is nonempty,
f(Xi, Ei) = 1. When Xi = ∅, from the definition of f , f(Xi, Ei) = 0. Hence,

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MAX-CONFLICT-FREE COLORING IN HYPERGRAPHS 1207

C(X, E) = min(X1�X2�...�Xr)=X;(E1�...�Er)=E f(X1, E1) + · · ·+ f(Xr, Er) returns the
minimum number of colors required to conflict-free color (X, E|X).

On the other hand, if C > r, then for any r-partition (X1 �X2 � · · · �Xr) of X ,
and r-partition (E1 � · · · � Er) of E , there will be at least one tuple (Xi, Ei) such that
f(Xi, Ei) = n + 1. Therefore, we correctly calculate that C(X, E) > r. Notice that
(n+ 1) ≤ C(X, E) ≤ r(n+ 1).

A subfamily F ′ which is r conflict-free colorable and of largest size should have
C(U(F ′),F ′) ≤ r. Thus, we go through all such tuples corresponding to subfamilies,
and determine a largest subfamily that is r conflict-free colorable.

Running time. The first step of the algorithm is to compute the function
C : 2U × 2F → Z ∪ {∞} for all subsets of U and all subfamilies of F . As stated
earlier, it takes O(2(n+m)) time to calculate the function f : 2U × 2F → Z ∪ {∞}.
The definition of C involves taking the minimum over the sum of r values from the
range of f . The range of f is bounded between 0 and n+1, which makes the range of
C bounded between 0 and r(n+1). Using Proposition 4, computing the function C is
equivalent to computing a sequence of log r subset convolutions over the integer min-
sum semiring in the following way: We first calculate the subset convolution f ∗f and
obtain a function g1 : 2U × 2F → Z ∪ {∞}, then we compute the subset convolution
g1 ∗ g1 to obtain a function g2 : 2U × 2F → Z∪ {∞} and so on for log r steps. Hence,
the algorithm for computing the function C runs in O(2n+m) time.

Finally, the algorithm runs through all subfamilies F ′ and finds out the largest
sized subfamily such that (U(F ′),F ′) is r conflict-free colored. Thus the total running
time of the algorithm is O(2n+m).

It is to be noted that by setting r = n, C(U,F) returns the minimum number of
colors required to conflict-free color the given hypergraph.

Corollary 28. Given a hypergraph H, χcf (H) can be found in O(2n2m) time.

Corollary 29. The Max-CFC problem on hypergraphs induced by neighbor-
hoods of graphs can be solved in O(4n) time.

6. Exact algorithm for unique maximum coloring. We now give an exact
algorithm for solving Max-UMC on hypergraphs. It can be seen that the dynamic
algorithm that we gave in Section 5, with minor changes, can be used to solve this
problem.

Lemma 30. There exists an exact algorithm to solve Max-UMC with running
time O(3n · 2m).

Proof. Given a hypergraph (U ′,F ′), let χ′ be an r-coloring on U ′ and let F ′ be
unique-maximum colored by χ′. Then χ′ partitions U ′ into r sets, (U1�U2�· · ·�Ur),
such that the following property is true:

∀F ∈ F , ∃i ∈ [r] such that |F ∩ Ui| = 1 and ∀j > i, F ∩ Uj = ∅.
This is similar to partitions given by a cfc except for the last part. Let U be the
function that takes a tuple (X ⊆ U, E ⊆ F) and maps it to the minimum number
of colors required for unique-maximum coloring (X, E|X). We give a recurrence very
similar to that in the previous section:
(3)

U(X, E) =
{
minX′⊆X,∀E∈E,|E∩X′|=0∨|E∩X′|=1{1 + U(X \X ′, E \ E ′)} if X �= φ,

0 if X = φ,

where E ′ = {E ∈ E||E ∩X ′| = 0 ∨ |E ∩X ′| = 1}.

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1208 P. ASHOK, A. DUDEJA, S. KOLAY, AND S. SAURABH

The correctness of this recurrence can be seen in a similar way. Assume X ′ is
the maximum color class in U . Then X ′ uniquely colors all hyperedges that contain
exactly one element from X ′. The remaining hyperedges can be optimally colored
by U(X \ X ′, E \ E ′). Since we are considering all subsets of X , we get an optimal
solution.

We would like to note that the fast subset convolution technique will also give
rise to an algorithm for Max-UMC. However, the running time of this algorithm is
not better than the above dynamic programming algorithm.

7. Conclusion. We studied the Max-CFC and the Max-UMC problems and
gave exact algorithms for the two problems. We also looked at p-CFC and p-UMC,
and gave an FPT algorithm that runs in time 2O(k log log k+k log r) ·NO(1). Here, k is
the number of hyperedges that are r conflict-free colored, and N is the size of the
input instance. It would be interesting to show lower bounds for FPT algorithms for
p-CFC and p-UMC. We also obtain an exponential vertex kernel for the problem,
and it is open whether a polynomial kernel for the problem exists or not.

REFERENCES

[1] D. Ajwani, K. Elbassioni, S. Govindarajan, and S. Ray, Conflict-free coloring for rectangle
ranges using o(n.382) colors, Discrete Comput. Geom., 48 (2012), pp. 39–52.

[2] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844–856, http://
doi.org/10.1145/210332.210337.

[3] P. Cheilaris, Conflict-Free Coloring, Ph.D. thesis, CUNY, New York, 2009.
[4] P. Cheilaris and G. Tóth, Graph unique-maximum and conflict-free colorings, J. Discrete

Algorithms, 9 (2011), pp. 241–251.
[5] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky, Conflict-free colorings of simple geomet-

ric regions with applications to frequency assignment in cellular networks, in Proceedings
of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, IEEE
Computer Society, Los Alamitos, CA, 2002, pp. 691–700.

[6] J. Flum and M. Grohe, Parameterized Complexity Theory, Texts Theoret. Comput. Sci.
EATCS Ser., Springer, Berlin, 2006.

[7] F. V. Fomin and D. Kratsch, Exact Exponential Algorithms, Springer, Heidelberg, 2010.
[8] L. Gargano and A. A. Rescigno, Complexity of conflict-free colourings of graphs, Theoret.

Comput. Sci., 566 (2015), pp. 39–49.
[9] R. Glebov, T. Szabó, and G. Tardos, Conflict-free colouring of graphs, Combin. Probab.

Comput., 23 (2014), pp. 434–448.
[10] S. Har-Peled and S. Smorodinsky, Conflict-free coloring of points and simple regions in the

plane, Discrete Comput. Geom., 34 (2005), pp. 47–70.
[11] S. Jukna, Extremal Combinatorics: With Applications in Computer Science, Springer, Hei-

delberg, 2011.
[12] N. Misra, H. Moser, V. Raman, S. Saurabh, and S. Sikdar, The parameterized complexity

of unique coverage and its variants, Algorithmica, 65 (2013), pp. 517–544.
[13] M. Naor, L. J. Schulman, and A. Srinivasan, Splitters and near-optimal derandomization,

in 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin,
1995, IEEE Computer Society, New York, 1995, pp. 182–191.

[14] J. Pach and G. Tardos, Conflict-free colourings of graphs and hypergraphs, Combin. Probab.
Comput., 18 (2009), pp. 819–834.

[15] S. Smorodinsky, Combinatorial Problems in Computational Geometry, Ph.D. thesis, Tel Aviv
University, Tel Aviv, 2003.

[16] S. Smorodinsky, Conflict-Free Coloring and its Applications, Springer, Berlin, 2013.

D
ow

nl
oa

de
d 

09
/1

8/
18

 to
 1

31
.1

55
.6

9.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://doi.org/10.1145/210332.210337
http://doi.org/10.1145/210332.210337

	Introduction
	Preliminaries
	FPT Algorithm for p-CFC-.4
	 Kernel for p-CFC-.4

	FPT algorithm for p-UMC-.4
	Exact algorithm for Max-CFC-.4
	Exact algorithm for unique maximum coloring
	Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


