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Abstract. A harmonious coloring of a graph is a partitioning of its ver-
tex set into parts such that, there are no edges inside each part, and there
is at most one edge between any pair of parts. It is known that finding a
minimum harmonious coloring number is NP-hard even in special classes
of graphs like trees and split graphs.

We initiate a study of parameterized and exact exponential time com-
plexity of harmonious coloring. We consider various parameterizations
like by solution size, by above or below known guaranteed bounds and
by the vertex cover number of the graph. While the problem has a sim-
ple quadratic kernel when parameterized by the solution size, our main
result is that the problem is fixed-parameter tractable when parameter-
ized by the size of a vertex cover of the graph. This is shown by reducing
the problem to multiple instances of fixed variable integer linear pro-
gramming.

We also observe that it is W [1]-hard to determine whether at most
n − k or Δ + 1 + k colors are sufficient in a harmonious coloring of an
n-vertex graph G, where Δ is the maximum degree of G and k is the
parameter. Concerning exact exponential time algorithms, we develop a
2nnO(1) algorithm for finding a minimum harmonious coloring in split
graphs improving on the naive 2O(n logn) algorithm.

1 Introduction and Motivation

Graph Coloring is the problem of partitioning the vertex set of a graph to satisfy
some constraints. Coloring problems have been extensively studied in discrete
mathematics and theoretical computer science. Given a coloring χ of a graph G,
the set of vertices that receive the same color is said to be a color class. One of
the most well-known coloring problems is the chromatic number problem that
seeks the minimum number of colors required so that each color class induces
an independent set (i.e. no pair of vertices in a set is adjacent), and it is one
of Karp’s 21 NP-complete problems from 1972 [18]. Lawler gave an algorithm
for the problem running in time 2.4423nnO(1) on an n-vertex graph [19]. Later,
using the principle of inclusion-exclusion Björklund et al. [5] gave an algorithm
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running in time 2nnO(1) on an n-vertex graph and this is the fastest known exact
algorithm for the problem.

Different variants of the graph coloring problem have been studied in the
literature. The Achromatic Number seeks the maximum number of colors
required so that each color class induces an independent set, and there is at least
one edge between every pair of color classes. A characterization for this problem
was given in [14] using which one can obtain an FPT algorithm for Achro-
matic Number parameterized by the solution size (see Sect. 2.1 for definitions
on parameterized complexity). The Pseudo-Achromatic Number problem is
a generalization of Achromatic Number, and does not demand that each color
class induces an independent set. This problem is also FPT parameterized by
the solution size [7]. Another related problem is the b-Chromatic Number.
Here the objective is to color the vertices with the same properties as that in
Achromatic Number, but insist that in each color class there is a vertex that
has a neighbor in every other color class. This problem was introduced in [2].
The problem is W[1]-hard when parameterized by the solution size [22].

In 1989, Hopcroft and Krishnamoorthy [15] introduced the notion of harmo-
nious coloring. A harmonious coloring of a graph is a partition of the vertex
set into sets such that every set induces an independent set and additionally
between any pair of sets, there is at most one edge. The minimum number of
sets in such a partition is called the harmonious coloring number of the graph.
Determining whether a graph has harmonious coloring using at most k colors is
known to be NP-complete [15], even in trees [13], split graphs [3], interval graphs
[3,6] and several other classes of graphs [3,4,6,12,13,16]. Polynomial time algo-
rithms are known for some special classes of graphs [21], the most important
being for trees of bounded degree [11].

In this paper, we initiate the parameterized complexity of the problem under
natural parameterizations. With solution size k (the harmonious coloring num-
ber) as a parameter, there is a trivial kernel on O(k2) vertices and edges, and
this is discussed in Sect. 4.1. In this section, we also discuss parameterized com-
plexity of parameterizing above or below some known bounds for harmonious
coloring number. As the problem is NP-complete on trees, the problem parame-
terized by the treewidth or feedback vertex set is trivially para NP-hard. Our
main result is that the problem is fixed-parameter tractable when parameterized
by the size of the minimum vertex cover of the graph. This is shown by solv-
ing several bounded variable integer linear programming (ILP) problems. The
number of ILPs is upper bounded by a function of minimum vertex cover. This
is developed in Sect. 4.2. In Sect. 5, we discuss exact exponential algorithms for
harmonious coloring, and give an 2O(n) algorithm in split graphs, improving on
the naive 2O(n log n) algorithm. In Sect. 3, we develop improved upper bounds on
the harmonious coloring number in terms of the vertex cover number and the
maximum degree of the graph. Results marked with a (�) have their proofs in
the full version of this paper.
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2 Preliminaries

We use N and Z to denote the set of natural numbers and set of integers, respec-
tively. For n ∈ N we use [n] to denote {1, . . . , n}. We use standard notations from
graph theory [9]. By “graph” we mean simple undirected graph. The vertex set
and edge set of a graph G are denoted as V (G) and E(G) respectively. The com-
plement of a graph G, denoted by G, has V (G) as its vertex set and

(
V (G)

2

)\E(G)
as its edge set. Here,

(
V (G)

2

)
denotes the family of two sized subsets of V (G). The

neighborhood of a vertex v is represented as NG(v), or, when the context of the
graph is clear, simply as N(v). The closed neighborhood of a vertex v, denoted
by N [v], is the subset N(v)∪{v}. For set U , we define N(U) as union of N(v) all
vertices v in U . If U = ∅ then N(U) = ∅. For two disjoint subsets V1, V2 ⊆ V (G),
E(V1, V2) is set of edges where one end point is in V1 and another is in V2. An
edge in the set E(V1, V2) is said to be going across. A trivial component of graph
is a component which does not contain any edge. A non-trivial component of a
graph is a connected component of G that has at least two vertices. The function
dG : V (G) × V (G) → N corresponds to the minimum distance between a pair of
vertices in the graph G. A d-degenerate graph is a graph G where V (G) has an
ordering in which any vertex has at most d neighbors with indices lower than
that of the vertex. For a graph G, a set S ⊆ V (G) is called a vertex cover of G
if G − S is an independent set. A graph G is called a split graph if V (G) has a
bipartition (V1, V2) such that G[V1] is an induced clique and G[V2] is an induced
independent set. In this case, (G[V1], G[V2]) is called a split partition of G. No
split graph contains a 4-cycle (C4), a 5-cycle (C5) or the complement of a 4-cycle
(2K2) as an induced subgraph. The finite set of graphs {C4, C5, 2K2} is said to
be a finite forbidden set of the class of split graphs. Each graph in the finite
forbidden set is referred to as a forbidden structure.

A function h : V (G) → [k], where k is a positive integer, is called a coloring
function. For a coloring function h and for any i ∈ [k], the vertex subset h−1(i)
is called the ith color class of h. If no edge has both its end points in the same
color class then coloring function is said to be proper. Harmonious coloring is a
proper coloring with additional property that there is at most one edge across
any two color classes. The minimum number of colors required for a harmonious
coloring of a graph G is denoted by hc(G). The restriction of a coloring function
h to a subset V ′ ⊆ V (G), denoted by h|V ′ , is a coloring function such that
h|V ′ : V ′ → [k], and h|V ′(u) = h(u) for each vertex u ∈ V ′. In this case, h is said
to be an extension of h|V ′ . For a subset V ′ ⊆ V (G), h(V ′) = {i|h−1(i)∩V ′ �= ∅}.

The technical tool we use to prove that Harmonious Coloring is fixed-
parameter tractable (defined in next section) by size of vertex cover is the fact
that Integer Linear Programming is fixed-parameter tractable parameter-
ized by the number of variables. An instance of Integer Linear Program-
ming consists of a matrix A ∈ Z

m×p, a vector b ∈ Z
m and a vector c ∈ Z

p. The
goal is to find a vector x ∈ Z

p which satisfies Ax ≤ b and minimizes the value of
c ·x (scalar product of c and x). We assume that an input is given in binary and
thus the size of the input is the number of bits in its binary representation.
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Proposition 1 ([17], [20]). An Integer Linear Programming instance of
size L with p variables can be solved using O(p2.5p+o(p)·(L+log Mx)·log(Mx·Mc))
arithmetic operations and space polynomial in L+log Mx, where Mx is an upper
bound on the absolute value a variable can take in a solution, and Mc is the
largest absolute value of a coefficient in the vector c.

2.1 Parameterized Complexity

The goal of parameterized complexity is to find ways of solving NP-hard prob-
lems more efficiently than brute force by associating a small parameter to each
instance. Formally, a parameterization of a problem is assigning a positive integer
parameter k to each input instance and we say that a parameterized problem is
fixed-parameter tractable (FPT) if there is an algorithm that solves the problem
in time f(k) · |I|O(1), where |I| is the size of the input and f is an arbitrary
computable function depending only on the parameter k. Such an algorithm is
called an FPT algorithm and such a running time is called FPT running time.
There is also an accompanying theory of hardness using which one can identify
parameterized problems that are unlikely to admit FPT algorithms. The hard
classes are W [i], i ∈ N. For the purpose of this paper, it is enough to know that
the Independent Set problem is W[1]-hard [10].

A parameterized problem is said to be in the class para-NP if it has a nonde-
terministic algorithm with FPT running time. To show that a problem is para-
NP-hard, we need to show that the problem is NP-hard when the parameter
takes a value from a finite set of positive integers.

Another direction of research is in providing a refinement of the FPT class,
through the concept of kernelization. A parameterized problem is said to admit
a h(k)-kernel if there is a polynomial time algorithm (the degree of the poly-
nomial is independent of k), called a kernelization algorithm, that reduces the
input instance to an instance with size upper bounded by h(k), while preserving
the answer. If the function h(k) is polynomial in k, then we say that the prob-
lem admits a polynomial kernel. For more on parameterized complexity, see the
recent book [8].

3 Upper and Lower Bounds and Structural Results

In this section, we give some general upper bounds of harmonious coloring num-
ber based on other natural graph parameters and show some structural results
which are used later in our algorithms.

Observation 1. For a given graph G and two vertices u, v, if u and v belong
to the same harmonious color class then dG(u, v) > 2.

Definition 1 (Identify). For a graph G, identifying a vertex set U of V (G)
is the operation of deleting U , adding a new vertex w and the edge set {wx|x /∈
U,∃u ∈ Uandxu ∈ E(G)}.
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Observation 2 (�). For a graph G, let φ be an optimal harmonious coloring.
Suppose the graph G′ is formed by identifying a color class of φ. Then hc(G) =
hc(G′).

Lemma 1 (�). Let G be a graph without isolated vertices, X be a vertex cover
of G, and let H be the auxiliary graph defined such that V (H) = V (G − X) and
for u, v ∈ V (H), uv ∈ E(H) if dG(u, v) = 2. A coloring function h of G, where
(1) h(X)∩h(V (G−X)) = ∅, (2) h(i) �= h(j) for all i �= j ∈ X, is a harmonious
coloring of G if and only if h|V (G−X) is a proper coloring of H.

Let Δ(G) denote the maximum degree of the graph, and vc(G) denote the
vertex cover number of G. We use Δ if the graph G is clear from the context.
We show the following bound for general graphs.

Theorem 1. For any graph G with Δ ≥ 2,Δ + 1 ≤ hc(G) ≤ vc(G) + Δ(Δ − 1).

Proof. By Observation 1, any two vertices in the same harmonious color class
should be at a distance three or more from each other. This implies that for any
vertex u, every vertex in its closed neighbourhood gets a separate color. Since
this is true for a vertex with the highest degree, lower bound on harmonious
coloring follows.

We first construct a harmonious coloring with vc(G) + Δ(Δ − 1) + 1 many
colors and then apply a trick to save one color. Let X be a vertex cover of graph
G. Construct a coloring φ : V (G) → [vc(G) + Δ(Δ − 1) + 1] in the following
fashion: Color each vertex in vertex cover X with separate color which will not
be used for remaining vertices. Construct an auxiliary graph H as mentioned
in Lemma 1. Notice that Δ(H) = Δ(G)(Δ(G) − 1). Graph H can be properly
colored using Δ(H) + 1 many colors ([9] p.115). Coloring φ|V (G−X) is proper
coloring of H and satisfies the premises of Lemma 1 hence it is harmonious
coloring of G.

We now show how to save one color from this coloring using a similar idea
from [1]. Let X be the vertex cover. If our greedy coloring above used only
Δ(Δ−1) colors to color vertices of V (G)\X, then we are already done. Otherwise,
pick any vertex u in X. We recolor u using a color used by vertices in V (G) \X.
Let u be adjacent to i ≤ Δ − 1 vertices in X (If all neighbors of u are in X,
then u can be moved out of X, without loss of generality). Hence there are at
most i(Δ − 1) vertices in V (G) \ X which are at distance two from vertex u.
There are at most Δ − i vertices adjacent to u in V (G) \ X. Colors used by all
these vertices can not be used to recolor vertex u because of Observation 1 but
u can be colored with any other color. Thus the number of forbidden colors is
i(Δ − 1) + Δ − i = i(Δ − 2) + Δ. But i(Δ − 2) + Δ ≤ (Δ − 1)(Δ − 2) + Δ =
Δ(Δ− 1)−Δ+2 ≤ Δ(Δ− 1) when Δ ≥ 2 and hence we can always find a color
to recolor vertex u reducing the upper bound by 1. �

The upper bound is tight for C4, a cycle on 4 vertices.

Theorem 2 (�). If G is a d-degenerate graph, then Δ + 1 ≤ hc(G) ≤ vc(G) +
d(Δ − 1) + Δ(d − 1) + 1.



250 S. Kolay et al.

The following corollary follows from Theorem 2 as a forest is 1-degenerate.

Corollary 1. If G is a forest with at least one edge, then Δ + 1 ≤ hc(G) ≤
vc(G) + Δ.

The upper bounds in Theorem 1 and Corollary 1 improve respectively the
bounds of Theorems 6 and 4 of [1].

4 Parameterized Complexity of Harmonious Coloring

4.1 ‘Standard’ and ‘Above/Below Guarantee’ Parameterizations

In this subsection, we capture some easy observations on the parameterized
complexity of harmonious coloring under some standard parameterizations. We
start with the following theorem whose proof (given in the full version of this
paper) follows from the observation that if the number of edges is ‘large’, then
the harmonious coloring number has to be large.

Lemma 2 (�). Let G be a graph on n vertices and m edges. Harmonious
Coloring, parameterized by the number of colors used, is FPTwith a quadratic
kernel.

The proof of the above theorem suggests that the harmonious coloring num-
ber of most graphs is large with respect to the number of vertices. The number
of vertices n is a trivial upper bound and Theorem 1 gives a lower bound of
Δ+1 for the harmonious coloring number of a graph. So the natural question is:
is it FPT to determine whether one can harmoniously color using at most n − k
or Δ + k + 1 colors where the parameter is k. We prove the following theorem.

Theorem 3 (�). (i) It is W[1]-hard to determine whether a given n-vertex graph
has harmonious coloring number at most n − k where k is the parameter. (ii) It
is para-NP-hard to determine whether a given graph has a harmonious coloring
number at most Δ + 1 + k where Δ is the maximum degree of the graph, and k
is the parameter.

4.2 Parameterization by Size of Vertex Cover

As the Harmonious coloring is NP-complete on trees, it is trivially para NP-
hard when parameterized by the treewidth of the graph or the feedback vertex
set size of the graph. In this section, we consider the structural parameterization
by the well-studied vertex cover number of the graph. We describe an FPT
algorithm for Harmonious coloring when parameterized by the size of a
vertex cover of the input graph. We show that the problem reduces to several
instances of Integer Linear Programming. We assume that the input graph
G has no isolated vertices. Otherwise, for any harmonious coloring of the input
graph G, we can include the set of isolated vertices into any one of the color
classes.
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In case of structural parameters, sometimes it is necessary to demand a wit-
ness of the required structure as part of the input. However, when the size of a
vertex cover is the parameter, this is not a serious demand. Suppose the input
parameter is �. We find a 2-approximation of the minimum vertex cover of the
input graph G(pp 11,[23]). If the size of the approximate vertex cover is strictly
more than 2�, then we have verified that the input parameter does not corre-
spond to a valid vertex cover number of G. Otherwise, the approximate vertex
cover is of size 2� and we can use this vertex cover as a witness. Thus, we may
assume that we are solving the following problem.

VC-Harmonious Coloring Parameter: |X|
Input: A graph G, a vertex cover X of G, a non-negative integer k
Question: Is there a harmonious coloring of G with k colors?

The idea is to enumerate over all the possible harmonious coloring of G[X]
and for each harmonious coloring, verify whether it can be extended to G using
a total of k colors. As we will see, the problem of extending harmonious coloring
of G[X] to the entire graph is equivalent to that of finding harmonious coloring
of the graph such that each color class contains at most one vertex from the
vertex cover. We first observe some properties of such a harmonious coloring.

In the remaining section, unless stated otherwise, G is the input graph with
vertex cover X of size � and I = V (G) \ X is an independent set.

Observation 3 (�). For any harmonious coloring of G the size of a color class
is at most �.

For each vertex u in I we associate a brand.

Definition 2. The brand of a vertex v in I with respect to X is the set N(v).

The number of different brands is upper bounded by the number of nonempty
subsets of X which is 2� −1. For vertices u, v in I if brand(u)∩brand(v) �= ∅ then
dG(u, v) = 2 and by Observation 1 these two vertices can not belong to the same
harmonious color class. For S ⊆ X, we define set I(S) = {v ∈ I|brand(u) = S}.

Consider a harmonious coloring h : V (G) → [k] and two vertices u, v in I,
such that brand(u) = brand(v). Let h(u) = i and h(v) = j. Define a coloring h̃

on V (G) as h̃(w) = h(w) for all w in V (G) \ {u, v}, and h̃(u) = j and h̃(v) = i.

Observation 4 (�). For a given harmonious coloring h of G, let u, v be two
vertices in I such that brand(u) = brand(v). If coloring h̃ is as defined above
then h̃ is also a harmonious coloring of G.

Thus we can characterize a harmonious color class based on the brand of the
vertices which are part of it. Once the brands which make up the color class are
fixed, it does not matter which vertex having that brand is chosen for the color
class. This leads us to the definition of a type of a potential color class.

Definition 3 (type). A type Z with respect to X is a �+1 sized tuple where the
first entry is subset of X of cardinality at most 1, and each of the remaining �
entries is either ∅ or a distinct brand of a vertex in I.
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A type Z can be represented as (Y ;S1, S2, . . . , S�) where Y is either an empty
set or a singleton set from X. All the entries in this tuple are subsets of X
but we distinguish the first entry from the remaining entries. The number of
different types is at most � ·(2�

�

)
, which is at most � ·2�2 . Any color class C which

contains at most one vertex from the vertex cover and at most � vertices from
the independent set can be labeled with some type.

Definition 4 (Color Class of type Z). Let h be a harmonious coloring of G
such that each color class contains at most one vertex from X, and let Z =
(Y ;S1, S2, . . . , S�) be a type defined with respect to X. Color class C of h is of
type Z if C ∩ X = Y and for every u ∈ C ∩ I there exists Si in type Z such that
brand(u) = Si.

Not all the types can be used to label a harmonious color class. We define
the notion of valid types to filter out such types.

Definition 5 (Valid type). A type Z = (Y ;S1, S2, . . . , S�) is said to be valid if
all the sets in the family {N [Y ], S1, S2, . . . S�} are pairwise disjoint.

The validity constraints imply that if a vertex set is labeled with a valid
type Z, then for any u, v in that set, the minimum distance between u and v
is strictly greater than 2. Only the valid types can be used to label harmonious
color classes.

Definition 6 (Compatible types). Two valid types Z = (Y ;S1, S2, . . . , S�)
and Z ′ = (Y ′;S′

1, S
′
2, . . . , S

′
�) are said to be compatible with each other if |Y ∩

(S′
1 ∪ S′

2 ∪ · · · ∪ S′
�)| + |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S�)| ≤ 1.

The compatibility condition of types encodes that the number of edges run-
ning across two harmonious color classes is at most 1. Two harmonious color
classes C and C ′ can be of type Z and Z ′ respectively only if these two types are
compatible with each other.

Lemma 3. Let C and C ′ are two disjoint sets of V (G) of valid types Z =
(Y ;S1, S2, . . . , S�) and Z ′ = (Y ′;S′

1, S
′
2, . . . , S

′
�) respectively. |E(C,C ′)| ≤ 1 if

and only if Z and Z ′ are campatible with each other.

Proof. (⇒) If |E(C,C ′)| = 0 then there is no edge across C ′ and C and hence
|Y ∩ (S′

1 ∪ S′
2 ∪ · · · ∪ S′

�)| = |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S�)| = 0 making types Z
and Z ′ compatible. Consider the case when |E(C,C ′)| = 1. With out loss of
generality, let x ∈ C ∩ X and z′ ∈ C ′ and xz′ is the edge across C and C ′. For
any u in C \ X, E({u}, Y ′) = ∅ implying N(u) ∩ Y ′ = ∅ which is equivalent
to |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S�)| = 0. Since xz′ is the only edge across C and C ′,
|Y ∩ (S′

1 ∪ S′
2 ∪ · · · ∪ S′

�)| is 0 or 1 depending on whether z′ is in X or not. In
either case, types Z and Z ′ are compatible.

(⇐) If |Y ∩ (S′
1 ∪ S′

2 ∪ · · · ∪ S′
�)| = |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S�)| = 0 then there is

no edge across C and C ′ whose one end point is outside vertex cover X. Since
Y and Y ′ has cardinality of at most 1, |E(C,C ′)| ≤ 1. So now we are in a case
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where |Y ∩ (S′
1 ∪ S′

2 ∪ · · · ∪ S′
�)| + |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S�)| = 1. Without loss

of generality, assume that |Y ∩ (S′
1 ∪ S′

2 ∪ · · · ∪ S′
�)| = 1. This imply that there

is an edge whose one end point is in Y and another end point is in C ′ \ Y ′.
Also, |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S�)| = 0 implies that there is no edge with one
end point incident on Y ′ and another end point in C \ Y . The only thing that
remains to argue that in this situation E(Y, Y ′) = ∅. If this is not the case then
Y ∩ N(Y ′) �= ∅. But there exists S′

i such that Y ∩ S′
i �= ∅. Since Y is singleton

set, this implies N(Y ′) ∩ S′
i �= ∅ which contradicts the fact that type Z ′ is valid.

Hence E(Y, Y ′) = ∅ which concludes the proof of |E(C,C ′)| ≤ 1. �
For a given graph G and a vertex cover X of G, we construct a set Z consisting
of all types with respect to X which are valid. For every subset Z ′ of Z such that
any two types in Z ′ are compatible with each other, we construct an instance
JZ′ of Integer Linear Programming as follows.

We define a variable zi as the number of color class of type Zi used in the
coloring. In the following objective function, we encode the aim of minimizing
number of color classes used.

minimize
|Z′|∑

i=1

zi

For every S ⊆ X and j ∈ [|Z ′|] define

bS
j = 1 if there is brandS in typeZj ; otherwise 0

There are exactly |I(S)| many vertices of brand S.

|Z′|∑

j=1

zj · bS
j = |I(S)| ∀S ⊆ X (1)

For every x ∈ X and j ∈ [|Z ′|] define

cx
j = 1 if {x} is the first entry in typeZj ; otherwise 0

There can be at most one color class which contains vertex x in X.

|Z′|∑

j=1

zj · cx
j = 1 ∀x ∈ X (2)

Corollary 2. An instance JZ′ can be solved in time 2O(2�2 ·�3)nO(1).

Proof. The number of variables in instance JZ′ is |Z ′| which is upper bounded
by � · 2�2 . The maximum value, any variable zi can take, is n and the largest
value any coefficient in the objective function can take is 1. The coefficients in
the constraints are upper bounded by n. The number of constraints is at most
2� + �. By Proposition 1, instance JZ′ can be solved in time 2O(2�2 ·�3)nO(1). �
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Recall that for a given graph G and its vertex cover X, Z is the set of all
valid types with respect to X and Z ′ is a subset of Z such that any two types in
Z ′ are compatible with each other.

Lemma 4 (�). Given a graph G with a vertex cover X, an integer k, there
exists a harmonious coloring of G with at most k colors and each color class
contains at most one vertex from X if and only if there exists Z ′ ⊆ Z such that
the minimum value for an instance IZ′ is at most k.

This leads us to the main theorem of this section.

Theorem 4 (�). Harmonious Coloring, parameterized by the size of a ver-
tex cover of the input graph, is fixed-parameter tractable.

While it is an interesting open problem to improve the bound of the FPT
algorithm, we show that when the input graph is a forest, the bound can be
substantially improved to show the following.

Theorem 5 (�). Given a forest G, a vertex cover X of size �, we can find
the minimum harmonious number, and the corresponding coloring of G in
2O(�2)nO(1) time.

The main reason for the improved bound is that the number of brands for vertices
in V (I) comes down to at most 2� − 1 (from 2� − 1). Also, except for � brands,
all others have at most one vertex having that brand. Furthermore, we can run
through some careful choices and avoid solving the integer linear programming.
The details are in the full version of this paper.

5 Exact Algorithm on Split Graphs

As the number of vertices is a trivial upper bound for the harmonious color-
ing number, a naive algorithm to find the minimum harmonious number runs
through all the nn possible colorings to find the minimum number. It is know
that Harmonious Coloring on Split graphs is NP-Complete. In this section,
we give an exact algorithm for Harmonious coloring on the class of split
graphs improving on this 2n log n bound to 2nnO(1). We make use of a relation
between a harmonious coloring of a split graph and a proper coloring of an auxil-
iary graph to obtain our improved algorithm. We can relate the number of colors
required for a harmonious coloring of the graph G with that for a harmonious
coloring of its non-trivial component.

Observation 5 (�). Let G be an input split graph with E(G) �= ∅ and let C be
a non-trivial component of G. Then hc(G) = hc(C).

Observation 6 ([21]). For any harmonious coloring h of G and a split-partition
(K, I), each vertex in K must be given a distinct color.

As a corollary to Lemma 1, we obtain the following relation in split graphs.
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Corollary 3 (�). Let G be a connected split graph with a split-partition (K, I),
and let H be the auxiliary graph defined from G as in the statement of Lemma 1.
A coloring function h is a harmonious coloring of G if and only if (i)h(K) ∩
h(I) = ∅, (ii) each vertex of K gets distinct color, and (iii)h|I is a proper
coloring of H.

Theorem 6. Given a split graph G, there is an algorithm, running in 2nnO(1)

time, that computes the minimum harmonious coloring of graph G.

Proof. By Observation 5, we can assume that G is a connected graph. Let (K, I)
be a split partition of G. By Observation 6, in any harmonious coloring of G,
each vertex of K must get a distinct color. Also, by connectivity, each vertex in
V (I) must be adjacent to a vertex in V (K). Hence, in any harmonious coloring
of G, the vertices of V (I) must be colored distinctly from the vertices of V (K).
From Corollary 3, the minimum proper coloring of the auxiliary graph H gives
the minimum harmonious coloring of G extending the coloring of K. Thus, it is
enough to find the minimum proper coloring of H, which can be done in time
2nnO(1) using the algorithm of Björklund et al. [5]. �

We obtain an improved FPT algorithm for split graphs as a corollary.

Corollary 4 (�). Given a split graph G and a non-negative integer k, we can
determine whether G has a harmoniously coloring with at most k colors in
2O(k2)nO(1) time.

6 Conclusions

We have shown that the harmonious coloring problem is fixed-parameter
tractable when parameterized by the harmonious coloring number or the vertex
cover number. While improving the bounds for our FPT algorithms is a natural
open problem, we end with the following specific open problems.

– When parameterizing by k, the harmonious coloring number, can the kernel
size of O(k2) be improved?

– When parameterizing by the vertex cover number �, is there a c�nO(1) algo-
rithm, for some constant c, at least on trees?
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