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Abstract. A graph G is called a block graph if every maximal
2-connected component of G is a clique. In this paper we study the
Block Graph Vertex Deletion from the perspective of fixed para-
meter tractable (FPT) and kernelization algorithms. In particular, an
input to Block Graph Vertex Deletion consists of a graph G and
a positive integer k, and the objective to check whether there exists a
subset S ⊆ V (G) of size at most k such that the graph induced on
V (G) \S is a block graph. In this paper we give an FPT algorithm with
running time 4knO(1) and a polynomial kernel of size O(k4) for Block

Graph Vertex Deletion. The running time of our FPT algorithm
improves over the previous best algorithm for the problem that runs in
time 10knO(1), and the size of our kernel reduces over the previously
known kernel of size O(k6). Our results are based on a novel connection
between Block Graph Vertex Deletion and the classical Feedback
Vertex Set problem in graphs without induced C4 and K4 − e. To
achieve our results we also obtain an algorithm for Weighted Feed-

back Vertex Set running in time 3.618knO(1) and improving over the
running time of previously known algorithm with running time 5knO(1).

1 Introduction

Deleting the minimum number of vertices from a graph such that the resulting
graph belongs to a family F of graphs, is a measure on how close the graph is to
the graphs in the family F . In the problem of vertex deletion, we ask whether
we can delete at most k vertices from the input graph G such that the result-
ing graph belongs to the family F . Lewis and Yannakakis [12] showed that for
any non-trivial and hereditary graph property Π on induced subgraphs, the ver-
tex deletion problem is NP-complete. Thus these problems have been subjected
to intensive study in algorithmic paradigms that are meant for coping with
NP-completeness [7,8,13,14]. These paradigms among others include applying
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restrictions on inputs, approximation algorithms and parameterized complexity.
The focus of this paper is to study one such problem from the viewpoint of
parameterized algorithms.

Given a family F , a typical parameterized vertex deletion problem gets as
an input an undirected graph G and a positive integer k and the goal is to
test whether there exists a vertex subset S ⊆ V (G) of size at most k such that
G \ S ∈ F . In the parameterized complexity paradigm the main objective is to
design an algorithm for the vertex deletion problem that runs in time f(k)·nO(1),
where n = |V (G)| and f is an arbitrary computable function depending only on
the parameter k. Such an algorithm is called an FPT algorithm and such a
running time is called FPT running time. We also design a polynomial time
preprocessing algorithm that reduces the given instance to an equivalent one
with size as small as possible. This is mathematically modelled by the notion of
kernelization. A parameterized problem is said to admit a h(k)-kernel if there is
a polynomial time algorithm (the degree of the polynomial is independent of k),
called a kernelization algorithm, that reduces the input instance to an equivalent
instance with size upper bounded by h(k). In other words, let (x, k) be the input
instance and (x′, k′) be the reduced instance. Then, (x, k) ∈ Π if and only if
(x′, k′) ∈ Π. Also, |x′|, k′ ≤ h(k). If the function h(k) is polynomial in k, then
we say that the problem admits a polynomial kernel. For more background, the
reader may refer to the following monograph [6].

A graph G is known as a block graph if every maximal 2-connected component
in G is a clique. Equivalently, we can see a block graph as a graph obtained by
replacing each edge in a forest by a clique. A chordal graph is a graph which
has no induced cycles of length at least four. An equivalent characterisation of a
block graph is a chordal graph with no induced K4 − e [2,9]. The class of block
graphs is the intersection of the chordal and distance-hereditary graphs [9].

In this paper, we consider the problem which we call Block Graph Vertex

Deletion (BGVD). Here, as an input we are given a graph G and an integer
k, and the question is whether we can find a subset S ⊆ V (G) of size at most
k such that G \ S is a block graph. The NP-hardness of the BGVD problem
follows from [12].

Block Graph Vertex Deletion (BGVD) Parameter: k
Input: An undirected graph G = (V,E), and a positive integer k
Question: Is there a set S ⊆ V , of size at most k, such that G\S is a block
graph?

Kim and Kwon [10] gave an FPT algorithm with running time O�(10k) and
a kernel of size O(k6) for the BGVD problem. In this paper we improve both
these results via a novel connection to Feedback Vertex Set problem.

Our Results and Methods. We start by giving the results we obtain in this
article and then we explain how we obtain these results. Our three main results
are:
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Theorem 1. BGVD has an FPT algorithm running in time O�(4k).

Theorem 2. BGVD admits a factor four approximation algorithm.

Theorem 3. BGVD has a kernel of size O(k4).

Our two of the theorems improve both the results in [10]. That is, the running
time of our FPT algorithm improves over the previous best algorithm for the
problem that runs in time 10knO(1), and the size of our kernel reduces over the
previously known kernel of size O(k6).

Our results are based on a connection between the Weighted-FVS and
BGVD problems. In particular we show that if the given input graph does not
have induced four cycles or diamonds (K4−e) then we can construct an auxiliary
bipartite graph and solve Weighted-FVS on it. This results in a faster FPT

algorithm for BGVD. In the algorithm that we give for the BGVD problem,
as a sub-routine we use the algorithm for the Weighted-FVS problem. For
obtaining a better polynomial kernel for BGVD, most of our Reduction Rules
are same as those used in [10]. On the way to our result we also design a factor
four approximation algorithm for BGVD.

Finally, we talk about Weighted-FVS. For which, we also design a faster
algorithm than known in the literature. The Feedback Vertex Set problem
is one of the most well studied problems. Given an undirected graph G = (V,E)
and a positive integer k, the problem is to decide whether there is a set S ⊆ V
such that G \ S is a forest. Thus, S is a vertex subset that intersects with every
cycle of G. In the parameterized complexity setting, Feedback Vertex Set

parameterized by k, has an FPT algorithm. The best known FPT algorithm
runs in time O�(3.618k) [4,11]. The problem also admits a kernel on O(k2)
vertices [15]. Another variant of Feedback Vertex Set that has been studied
in parameterized complexity is Weighted Feedback Vertex Set, where each
vertex in the graph has some rational number as its weight.

Weighted-FVS Parameter: k
Input: An undirected graph G = (V,E), a weight function w : V → Q, and
a positive integer k
Output: The minimum weighted set S ⊆ V of size at most k, such that G\S
is a forest.

Weighted-FVS is known to be in FPT with an algorithm of running time
5knO(1) [3]. We obtain a faster FPT algorithm for Weighted-FVS. This algo-
rithm uses, as a subroutine, the algorithm for solving Weighted-Matroid

Parity [16]. In fact, this algorithm is very similar to the algorithm for Feed-

back Vertex Set given in [4,11]. Thus, our final new result is the following
theorem.

Theorem 4 [�]. Weighted-FVS has an FPT algorithm running in time
O�(3.618k).

Due to paucity of space, results stated without proof in the short version are
marked with [�]. These proofs can be found in the full version of the paper.
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2 Preliminaries

We start with some basic definitions and terminology from graph theory and
algorithms. We also establish some of the notation that will be used in this
paper.

We will use the O� notation to describe the running time of our algorithms.
Given f : N → N, we define O�(f(n)) to be O(f(n) · p(n)), where p(·) is some
polynomial function. That is, the O� notation suppresses polynomial factors in
the running-time expression. We denote the set of rational numbers by Q.

Graphs. A graph is denoted by G = (V,E), where V and E are the vertex
and edge sets, respectively. We also denote the vertex set and edge set of G by
V (G) and E(G), respectively. All the graphs that we consider are finite graphs,
possibly having loops and multi-edges. For any non-empty subset W ⊆ V (G),
the subgraph of G induced by W is denoted by G[W ]; its vertex set is W and
its edge set consists of all those edges of E(G) with both endpoints in W . For
W ⊆ V (G), by G \ W we denote the graph obtained by deleting the vertices in
W and all edges which are incident to at least one vertex in W .

For a graph G, we denote the degree of vertex v in G by dG(v). A vertex
v ∈ V (G) is called as a cut vertex if the number of connected components in
G \ {v} is more than the number of connected components in G. For a vertex
v ∈ V (G), the neighborhood of v in G is the set NG(v) = {u|(v, u) ∈ E(G)}. We
drop the subscript G from NG(v), whenever the context is clear. Two vertices
u, v ∈ V (G) are called true-twins in G if N(u)\{v} = N(v)\{u}. For A ⊂ V (G),
an A-path in G is a path with at least one edge, whose end vertices are in A and
all the internal vertices are from V (G) \ A.

A weighted undirected graph is a graph G = (V,E), with a weight function
w : V (G) → Q. For a subset X ⊆ V (G), w(X) =

∑
v∈X w(v).

A feedback vertex set is a subset S ⊆ V (G) such that G \ S is a forest.
A minimum weight feedback vertex set of a weighted graph G is a subset X ⊆
V (G), such that G \ X is a forest and w(X) is minimum among all possible
weighted-fvs in G. In a graph with vertex weights, an FVS is called a weighted
feedback vertex set (weighted-fvs). Similarly, for a given positive integer k, a
minimum weighted-fvs of size k is a subset X ⊆ V (G) such that |X| ≤ k, G \ X
is a forest and w(X) is minimum among all possible weighted-fvs in G that are
of size at most k. Given a graph G and a vertex subset S ⊆ V (G), we say that
S is a block vertex deletion set if G \ S is a block graph.

A maximal 2-connected subgraph of a graph G is called a block. By K4 − e
we denote the graph obtained by removing an edge e from a complete graph on
4 vertices. For a graph G, let Vc denote the set of cut vertices of G, and B the
set of its blocks. We then have a natural bipartite graph F on Vc ∪ B formed
by the edges (v,B) if and only if c ∈ V (B). Note that for a block graph G, F
is a forest [5]. The bipartite graph F is called as the block forest of G. We will
arbitrarily root F at some vertex B ∈ V (F ).
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A leaf block of a block graph G is a maximal 2-connected component with
at most one cut vertex. For a maximal 2-connected component C in G a vertex
v ∈ V (C) is called as an internal vertex if v is not a cut vertex in G.

We refer the reader to [5] for details on standard graph theoretic notation
and terminology we use in the paper.

3 FPT Algorithm for Block Graph Vertex Deletion

In this section, we present an FPT algorithm for the BGVD problem. First,
we look at the special case, when the input graph does not have any small
obstructions in the form of D4’s and C4’s. Here, D4 = K4 − e. We show that,
in this case, BGVD reduces to Weighted-FVS. Later, we solve the general
problem, using the algorithm of the special case.

3.1 Restricted BGVD

In this part, we solve the following special case of BGVD in FPT time.

Restricted BGVD Parameter: k
Input: A connected undirected graph G, which is {D4, C4}-free, and a pos-
itive integer k.
Question: Does there exist a set S such that G \ S is a block graph?

Let G be the input graph. Let C be the set of maximal cliques in G. We start
with the following simple observation about graphs without C4 and D4.

Lemma 1. Let G be a graph that does not contain C4 and D4 as an induced
subgraph then (a) any two maximal cliques intersect on at most one vertex and
(b) the number of maximal cliques in G is at most n2.

Proof. Let C1 and C2 be two maximal cliques in C. Since G is D4-free, V (C1) ∩
V (C2) can have at most one vertex. Thus, each edge of G belongs to exactly one
maximal clique. This gives a bound of n2 on the number of maximal cliques. 	


We construct an auxiliary weighted bipartite graph Ĝ in the following way:
Ĝ is a bipartite graph with vertex set bipartition V (G) ∪ VC , where VC is the
set where we add a vertex vC corresponding to each C ∈ C. Note that there is a
bijective correspondence between the vertices of VC and the maximal cliques in
C. A vertex v of a clique C is called external if it is part of at least two maximal
cliques in C. We add an edge between a vertex v ∈ V (G) and a vertex vC ∈ VC
in E(Ĝ) if and only if v is an external vertex of the clique C ∈ C.

Lemma 2. Let G be a graph without induced C4 and D4 and S ⊆ V (G). Then
S is block vertex deletion set of G if and only if Ĝ \ S is acyclic.
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Proof. First, let S be a block vertex deletion set solution for G. Suppose that
Ĝ \ S has a cycle C. Notice that C cannot be a C4, as this corresponds to two
maximal cliques that share 2 vertices. Thus, C is an even cycle of length at least
6. Suppose C has length 6. This corresponds to maximal cliques C1, C2, C3 such
that u = C1 ∩ C2, v = C2 ∩ C3 and w = C1 ∩ C3. Since C1, C2, C3 are distinct
maximal cliques, at least one of them must have a vertex other than u, v or w.
Without loss of generality, let C1 have a vertex x /∈ {u, v, w}. Then, the set
{x, u, v, w} forms a D4 in G. However, this is not possible, as G did not have a
D4 to start with. Hence, C must be an even cycle of length at least 8. However,
this corresponds to a set of maximal cliques and external vertices, such that the
external vertices form an induced cycle of length at least four. This contradicts
that S was a block vertex deletion set for G. Thus, Ĝ \ S must be acyclic.

On the other hand, let Ĝ\S be acyclic. Suppose G\S has an induced cycle C,
of length at least four. As C is an induced cycle of length at least four, no two
edges of C can belong to the same maximal clique. For an edge (u, v) of C, let
C(u,v) be the maximal clique containing it. Also, let c(u,v) be the corresponding
vertex in Ĝ. We replace the edge (u, v) in C by two edges (u, c(u,v)) and (v, c(u,v)).
In this way, We obtain a cycle C ′ of Ĝ \ S, which is a contradiction. Thus, S
must be a block vertex deletion set for G. 	


If the input graph G is without induced C4 and D4 then Lemma 2 tells us that
to find block vertex deletion set of G of size at most k one can check whether
there is a feedback vertex set of size at most k for Ĝ contained in V (G). To
enforce that we find feedback vertex set for Ĝ completely contained in V (G)
we solve an appropriate instance of Weighted-FVS. In particular we give the
weight function w : V (Ĝ) → N as follows. For v ∈ V (G), w(v) = 1 and for
vC ∈ VC , w(vC) = n4. Clearly, V (G) is a feedback vertex set of Ĝ and thus the
weight of a minimum sized feedback vertex set of Ĝ is at most n. This implies
that running an algorithm for Weighted-FVS on an instance (Ĝ, w, k) either
returns a feedback vertex set contained inside V (G) or returns that the given
instance is a No instance.

Theorem 5. Restricted BGVD can be solved in O�(3.618k).

Proof. Given an instance (G, k) of Restricted BGVD. We apply the Weighted-

FVS on the instance (Ĝ, w, k), where Ĝ is obtained as described above. Let S be
the weighted-fvs of size at most k in Ĝ returned by Weighted-FVS (of course
if there exists one). By the discussion above we know that if Weighted-FVS

does not return that the given instance is a No instance then S ⊆ V (G). If
it returns that the given instance is a No instance then we return the same.
Else, assume that S is non-empty. Now we check whether w(S) is at most k
or not. Since every vertex in V (G) has been assigned weight one we have that
w(S) = |S| and thus if w(S) ≤ k then we return S as block vertex deletion set
of G. In the case when w(S) > k we return that the given instance is a No

instance for Restricted BGVD. Correctness of these steps are guaranteed by
Lemma 2. The running time of the algorithm is dominated by the running time
of Weighted-FVS and thus it is O�(3.618k). This completes the proof. 	
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3.2 Block Graph Vertex Deletion

We are now ready to describe an FPT algorithm for BGVD, and hence prove
Theorem 1. We design the algorithm for the general case with the help of the
algorithm for Restricted BGVD.

Proof (of Theorem 1). Let O be a D4 or C4 present in the input graph G. For
any potential solution S, at least one of the vertices of O must belong to S.
Therefore, we branch on the choice of these vertices, and for every vertex v ∈ O,
we recursively apply the algorithm to solve BGVD instance (G \ {v}, k − 1). If
one of these branches returns a solution X, then clearly X ∪{v} is a block vertex
deletion set of size at most k for G. Else, we return that the given instance is a
No instance. On the other hand, if G is {D4, C4}-free, then we do not make any
further recursive calls. Instead, we run the algorithm for Restricted BGVD

on G and return the output of the algorithm. Thus, the running time of this
algorithm is upper bounded by O∗(4k). 	


4 An Approximation Algorithm for BGVD

In this section, we present a simple approximation algorithm A1 for BGVD.
Given a graph G, we give a block vertex deletion set S of size at most 4 · OPT,
where OPT is the size of a minimum sized block vertex deletion set for G.

Proof (of Theorem 2). Let G be the given instance of BGVD and OPT be the
size of a minimum sized block vertex deletion set for G and SOPT be a minimum
sized block vertex deletion set for G.

Let S be a maximal family of D4 and C4 such that any two members of
S are pairwise disjoint. One can easily construct such a family S greedily in
polynomial time. Let S1 be the set of vertices contained in any obstruction in S.
That is, S1 =

⋃
O∈S O. Since any block vertex deletion set must contain a vertex

from each obstruction in S and any two members of S are pairwise disjoint, we
have that |SOPT ∩ S1| ≥ |S|.

Let G′ = G \ S1. Observe that G′ does not contain either D4 or C4 as an
induced subgraph. Now we construct Ĝ′, as described in Sect. 3.1. We apply
the factor two approximation algorithm A given in [1] on the instance (Ĝ′, w).
This returns an fvs S2 of Ĝ′ such that w(S2) is at most twice the weight of a
minimum weight feedback vertex set. By out construction S2 ⊆ V (G′). Lemma 2
implies that S2 is a factor two approximation for BGVD on G′. We return the
set S = S1 ∪ S2 as our solution. Since SOPT \ S1 is also an optimum solution for
G′ we have that |S2| ≤ 2|SOPT \ S1|.

It is evident that S is block vertex deletion set of G. To conclude the proof
of the theorem we will show that |S| ≤ 4OPT. Towards this observe that

|S| = |S1| + |S2| ≤ 4|S| + 2|SOPT \ S1|
≤ 4|SOPT ∩ S1| + 2|SOPT \ S1|
≤ 4|SOPT| = 4OPT.

This completes the proof. 	
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5 Improved Kernel for Block Graph Vertex Deletion

In this section, we give a kernel of O(k4) vertices for BGVD. Let (G, k) be an
instance of the BGVD problem. We start with some of the known reduction
rules from [10].

Reduction Rule BGVD 1. If G has a component H, where H is a block
graph, then remove H from G.

Reduction Rule BGVD 2. If there is a vertex v ∈ V (G), such that G \ {v}
has a component H, where G[{v}∪V (H)] is a connected block graph then, remove
H from G.

Reduction Rule BGVD 3. Let S ⊆ V (G), where each u, v ∈ S are true-twins
in G. If |S| > k + 1, then remove all the vertices from S except k + 1 vertices.

Reduction Rule BGVD 4. Let t1, t2, t3, t4 be an induced path in G. For i ∈
{1, 2, 3}, let Si ⊆ V (G) \ {t1, t2, t3, t4} be a clique in G such that the following
holds.

– For i ∈ {1, 2, 3}, v ∈ Si, NG(v) \ Si = {ti, ti+1}, and
– For i ∈ {2, 3}, NG(ti) = {ti−1, ti+1} ∪ Si−1 ∪ Si.

Remove S2 from G and contract the edge (t2, t3).

Proposition 1 (Proposition 3.1 [10]). Let G be a graph and k be a positive
integer. For a vertex v ∈ V (G), in O(kn3) time, we can find one of the following.

i. k + 1 pairwise vertex disjoint obstructions,
ii. k + 1 obstructions whose pairwise intersection is exactly v,
iii. S′

v ⊆ V (G), such that |S′
v| ≤ 7k and G \ S′

v has no block graph obstruction
containing v.

Reduction Rule BGVD 5. Let v ∈ V (G) and G′ = G \ {v}. We remove the
edges between NG(v) from G′, i.e. E(G′) = E(G′) \ {(u,w)|u,w ∈ NG(v)}. In
G′ if there are at least 2k + 1 vertex-disjoint NG(v)-paths in G′ then we do one
of the following.

– If G contains k + 1 vertex disjoint obstructions, then return that the graph is
a no-instance.

– Otherwise, delete v from G and decrease k by 1.

The Reduction rules BGVD 1 to BGVD 5 are safe and can be applied in
polynomial time [10]. For sake of clarity we denote the reduced instance at each
step by (G, k). We always apply the lowest numbered Reduction Rule, in the
order that they have been stated, that is applicable at any point of time. For the
rest of the discussion, we assume that Reduction rules BGVD 1 to BGVD 5 are
not applicable.
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For a vertex v ∈ V (G), by Proposition 1, we may find k + 1 pairwise vertex-
disjoint obstructions, and we can safely conclude that the graph is a No instance.
Secondly, if we find k + 1 obstructions whose pairwise intersection is exactly v
then the Reduction rule BGVD 5 will be applicable. Thus, we assume that
for each vertex v ∈ V (G), the third condition of Proposition 1 holds. In other
words, we have a set S′

v of size at most 7k, such that G\S′
v does not contain any

obstruction passing through v. In fact, for each v ∈ V (G), we can find a block
vertex deletion set Sv ⊆ V (G) \ {v} of bounded size.

Observation 1 [�]. For every vertex v ∈ V (G), we can find in nO(1) time, a
set Sv ⊆ V (G) \ {v} such that |Sv| ≤ 11k and G \ Sv is a block graph.

For a vertex v ∈ V (G), component degree of v is the number of connected
components in C, where C is the set of connected components in G \ (Sv ∪ {v})
that have a vertex adjacent to v. We give a reduction rule that bounds the
component degree of a vertex v ∈ V (G), using Expansion Lemma [15].

A q-star, q ≥ 1, is a graph with q + 1 vertices, one vertex of degree q and all
other vertices of degree 1. Let B be a bipartite graph with the vertex bipartition
as (X,Y ). A set of edges M ⊆ E(B) is called a q-expansion of X into Y if
(i) every vertex of X is incident with exactly q edges of M and (ii) M saturates
exactly q|X| vertices in Y , i.e. edges in M are adjacent to exactly q|X| vertices
in Y .

Lemma 3 (Expansion Lemma). Let q be a positive integer and B be a bipar-
tite graph with vertex bipartition (X,Y ) such that |Y | ≥ q|X| and there are
no isolated vertices in Y . Then, there exist nonempty vertex sets X ′ ⊆ X and
Y ′ ⊆ Y such that:

1. X ′ has a q-expansion into Y ′ and
2. no vertex in Y ′ has a neighbour outside X ′, i.e. N(Y ′) ⊆ X ′.

Furthermore, the sets X ′ and Y ′ can be found in polynomial time.

See [4] for the version of the Lemma 3 stated above. For a vertex v ∈ V (G), let
Cv be the set of connected components in G\(Sv∪{v}) that have a vertex adjacent
to v. Consider a connected component C ∈ Cv, such that no vertex u ∈ V (C)
is adjacent to any vertex in Sv. But then, G \ {v} has a component which
is a block graph (namely, the connected component C) therefore, Reduction
rule BGVD 2 is applicable, a contradiction to the assumption that none of the
previous Reduction rules are applicable. Therefore, for each C ∈ C there is a
vertex u ∈ V (C) and s ∈ Sv, such that (u, s) ∈ E(G). Let D be a vertex set,
with a vertex d corresponding to each component D ∈ C. Consider the bipartite
graph Bv with the vertex set bipartitioned as (D, Sv). There is an edge between
d ∈ D and s ∈ Sv if and only if the component D corresponding to which the
vertex d was added to D has a vertex ud such that (ud, s) ∈ E(G).
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Reduction Rule BGVD 6. For a vertex v ∈ V (G) if |Cv| > 33k, then we do
the following.

– Let D′ ⊆ D and S ⊆ Sv be the sets obtained after applying Lemma3 with
q = 3, X = Sv and Y = D;

– For each d ∈ D′, let the component corresponding to d be D ∈ Cv. Delete all
the edges between (u, v), where u ∈ V (D);

– For each s ∈ S, add two vertex disjoint paths between v and s.

Safeness of the Reduction rule BGVD 6 follows from the safeness of Reduc-
tion rule 6 in [10].

5.1 Bounding the Number of Blocks in G \ A

Using the approximation algorithm for BGVD we compute an approximate
solution A of size at most 4k. Of course if |A| > 4k then we can immediately
return that G is a No instance. First, we bound the number of leaf blocks in
G\A, when none of the Reduction rules apply. Note that G\A is a block graph,
since A is an approximate solution to BGVD. For v ∈ A, let S′

v be the set
obtained from Proposition 1 and Sv be the set obtained from Observation 1. Let
Cv be the set of connected components in G \ (Sv ∪ {v}) which have a vertex
adjacent to v. All the connected components in G\A, which do not have a vertex
that is adjacent to v, must be adjacent to some v′ ∈ A. Otherwise, Reduction
rule BGVD 1 will be applicable. Also, all the leaf blocks in G \ A must have an
internal vertex that is adjacent to some vertex in A, since the Reduction rules
BGVD 1 and BGVD 2 are not applicable. The number of leaf blocks, in G \ A,
whose set of internal vertices have a non-empty intersection with S′

v, is at most
7k. Therefore, it is enough to count, for each v ∈ A, the number of leaf blocks
in Cv. In the Observation 2, we give a bound on the number of leaf blocks in
G \ A, not containing any vertex from S′

v.

Observation 2 [�]. For v ∈ A, the number of leaf blocks in G\A not containing
any vertex from S′

v is at most the number of leaf blocks in G \ (Sv ∪ {v}).

Therefore, for each v ∈ A we count those leaf blocks in Cv which do not
contain any vertex from S′

v.

Lemma 4. Consider a vertex v ∈ V (G) and its corresponding set Sv. Let C be
the set of connected components in G \ (Sv ∪ {v}). For each C ∈ C, there is a
block B̃ in C, such that NC(v) ⊆ V (B̃).

Proof. Let C be the set of connected components of G \ (Sv ∪ {v}), v ∈ V (G).
By definition of Sv, for each C ∈ C, C ∪ {v} is a block graph.

If for some C ∈ C, NC(v) = ∅, then the condition is trivially satisfied for
that connected component C. Let C ∈ C be a connected component such that
NC(v) = ∅. Let t be a vertex in NB(v), where B is a block in C. Let B′ be a
block in C, where B′ = B and B′ has a vertex t′ ∈ V (B′)\V (B) that is adjacent
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to v. Note that B,B′ are in the same connected component C. Let P be the
shortest path from t to t′.

We first argue for the case when (t, t′) /∈ E(G). Therefore, the path P has
at least 2 edges. We prove that we can find an obstruction, by induction on the
length of the path (number of edges). If length of path P is 2, say P = t, u, t′.
If (u, v) ∈ E(G), then {t, t′, u, v} forms an induced D4, otherwise they form an
induced C4, contradicting that C ∪ {v} is a block graph.

Let us assume that we can find an obstruction if the path length is l. We
now prove it for paths of length l + 1. Let P = t, x1, x2, . . . , xl−1, t

′ and y be the
first vertex other than t in P such that (y, v) ∈ E(G). If y = t′, then P along
with v forms an induced cycle of length at least 5, contradicting that C ∪ {v}
is a block graph. If y = x1, then {t, x1, x2, v} either forms a D4, the case when
(x2, v) ∈ E(G), or P̂ = x1, x2, . . . , t

′ is a path of shorter length with at least 2
edges and by induction hypothesis has an obstruction along with v. Otherwise,
P ′ = t, x1, . . . , y is a path of length less than l, with at least 2 edges, such that
(y, t) ∈ E(G). Therefore, by induction hypothesis there is an obstruction along
with the vertex v, contradicting that C ∪ {v} is a block graph.

From the above arguments it follows that if v has a neighbour t in block B
in C, then v cannot have a neighbour t′ in block B′, if the shortest path between
t, t′ has at least 2 edges.

If (t, t′) ∈ E(G), then t, t′ are contained in some block B̂. If v is adjacent to
any other vertex u not in V (B̂) then at most one of (t, u) or (t′, u) can be an
edge in G, since t, t′ and u are in different blocks. If there is an edge, say (t, u),
then t, t′, u, v forms an induced D4, contradicting that C ∪ {v} is a block graph.
Otherwise, there is a path with at least two edges between u and t. Therefore,
by the previous arguments we can find an obstruction along with the vertex v.
Therefore, NC(v) ⊆ V (B̂) when (t, t′) ∈ E(G).

Hence, it follows that there is a block B̃ in C such that NC(v) ⊆ V (B̃). 	


This leads us to the following Lemma.

Lemma 5 [�]. For every v ∈ A , the number of leaf blocks in Cv is O(k).

Observe that in G \ A, a vertex v ∈ A can be adjacent to at most O(k) leaf
blocks by Observation 2 and Lemma 5. Also, for a leaf block B in G \ A, there
must be an internal vertex b ∈ V (B), such that b is adjacent to some vertex in
Sv, since the Reduction rule BGVD 2 is not applicable. Therefore, the number
of leaf blocks in G \ A is O(k2).

Lemma 6 [�]. The number of blocks B in G \ A such that the vertex set of B
intersects with the vertex set of at least three other block in G \ A is O(k2).

Let L be the of leaf blocks in G \ A and T be the set of blocks in G \ A
such that each block in T intersects with at least three other blocks in G \ A.
By Lemmas 5 and 6, we have that |L| = O(k2) and |T | = O(k2).

Let B be a block in G∗ = G \ (Sv ∪ {v}) such that the vertex set of B has
exactly two cut vertices, and intersects with exactly two blocks of G∗. Further-
more, the vertex set of B has an empty intersection with leaf blocks of G∗ and
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those blocks in G∗ which vertex set intersects with at least three other blocks
of G∗. Also, B has a vertex that is neighbor to v. Such blocks are called nice
degree two blocks of v. If a block satisfies the above conditions for some vertex
w ∈ A, the block is called a nice degree two block. We denote the set of nice
degree two blocks by T1.

Lemma 7 [�]. Let G∗ = G \ (Sv ∪{v}). Then G∗ has at most O(k) nice degree
two blocks of v.

What remains is to bound the number of blocks which have exactly two cut
vertices and are not nice degree two blocks.

Lemma 8 [�]. The number of blocks in G \ A with exactly two cut vertices is
O(k2).

Now, we have a bound on the total number of blocks in G \ A.

Lemma 9. Consider a graph G, a positive integer k and an approximate block
vertex deletion set set A of size O(k). If none of the Reduction rules BGVD 1 to
BGVD 6 is applicable then the number of blocks in G \ A is bounded by O(k2).

Proof. Follows from Lemmas 5, 6 and 8. 	


5.2 Bounding the Number of Internal Vertices
in a Maximal Clique of the Block Graph

We start by bounding the number of internal vertices in a maximal 2-connected
component of G\A. Consider a block B in G\A. We partition the internal vertices
VI(B) of block B into three sets B,R and I depending on the neighborhood
of A in block B. We also partition the vertices in A depending on the number
of vertices they are adjacent to in B. In Lemma 10 we show that the number of
internal vertices in a block B of G \ A is upper bounded by O(k2). We do so
by partitioning the vertices into different sets and bounding each of these sets
separately.

Lemma 10 [�]. Let (G, k) be an instance to BGVD and let A be an approxi-
mate block vertex deletion set of G of size O(k). If none of the Reduction rules
BGVD 1 to BGVD 6 is applicable then the number of internal vertices in a block
B of G \ A is bounded by O(k2).

We wrap up our arguments to show a O(k4) sized vertex kernel for BGVD,
and hence prove Theorem 3.

Proof (of Theorem 3). Let (G, k) be an instance to BGVD and let A be an
approximate block vertex deletion set of G of size O(k). Also, assume that none
of the Reduction rules BGVD 1 to BGVD 6 are applicable. By Theorem 9, the
number of blocks in G \ A is bounded by O(k2). By Lemma 10 the number of
internal vertices in a block of G \ A is bounded by O(k2). Also note that the
number of cut-vertices in G\A is bounded by the number of blocks in G\A, i.e.
O(k2). The number of vertices in G \ A is sum of the internal vertices in G \ A
and the number of cut vertices in G \A. Therefore, |V (G)| = |V (G \A)|+ |A| =
(O(k2) · O(k2) + O(k2)) + O(k) = O(k4). 	
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