
Theory of Computation:
Time Hierarchy

Efficiency of UTM

So far, if we had to simulate a deterministic TM on an input
as part of a subroutine of an algorithm, we used a Universal
Turing Machine (UTM) for it.

If we are looking at efficiency of algorithms, the running time
of the UTM is also important – it adds to the total running
time of the algorithm.

Theorem: There is a UTM that for every M#x , where the
running time of M is denoted by function T : N→ N, writes
down M(x) on its tape in the end in CT (|x |) log(T (|x |)) time.
C is a constant that only depends on the alphabet size,
number of tapes and number of states of M.

Relaxed version

To give an idea of the Proof, we give a proof for a relaxed version
where the UTM U runs in T (n)2 time if M(x) is computed in
T (n) time:

The input to U is an encoding of TM M and the input x .

Transformation of M: Single work tape
M only has alphabets {`,B, 0, 1} - encoding of larger
alphabets using {0, 1}
These transformations may make M run in T 2 time instead of
T on a given input.

The UTM U has alphabets {`,B, 0, 1} and 3 work tapes.
One work tape is used in the same way as M (also the input
and output tapes)
One tape is used to store M’s transition function
One tape stores M’s current state.

Relaxed version contd.

One computational step: U scans the M’s transition function
and current state to find out the new state, symbols to be
written and tape head movements. Then it executes this.
This is done in time C - only dependent on size of the
transition function.

Total time for outputting M(x) on the output tape of U :
CT (|x |)2.

For CT (n) log(T (n)) running time, we need to design the
UTM more carefully.

Efficiency of NUTM

Nondeterministic UTMs can also be designed: An NDTM
taking in encodings of NDTMs to be simulated as subroutines.

Theorem: There is a NUTM that for every M#x , where the
running time of M is denoted by function T : N→ N, writes
down M(x) on its tape in the end in CT (|x |) time.
C is a constant that only depends on the alphabet size,
number of tapes and number of states of M.

Time constructible functions

Time constructible function: A function T : N→ N such that
T (n) ≥ n and there is a deterministic TM M that computes
the function f : N→ {0, 1}∗ with f (x) = bin(T (x)).

Examples: n, n log n, n2, 2n.

All functions we see in this course are time constructible.
Especially when we are looking at functions that act as time
bounds for Turing machines.

T (n) ≥ n implies that an algorithm running in time T (n) has
time to read the input.

Time Hierarchy Theorem

Theorem: If f , g are time constructible functions satisfying
f (n) log f (n) = o(g(n)), then
DTIME (f (n)) (DTIME (g(n))

Proof uses a form of diagonalization.

We will show that DTIME (n) (DTIME (n1.5) and all other
pairs of functions will have similar proofs.

Diagonalization TM M: On input x , run UTM U for |x |1.4
steps to simulate the execution of Mx on x .
If U outputs bit b ∈ {0, 1} then output 1− b. Else, output 0.

M halts in n1.4 steps and language L = L(M) is in
DTIME (n1.5).

Time Hierarchy Theorem

L /∈ DTIME (n): Suppose there is some TM N and constant c
such that N on any input x halts within c |x | steps and
outputs M(x).
N#x can be simulated in U in time c ′c |x | log |x |, where c ′

only depends on description of N.
There is an n0 such that ∀n ≥ n0, n1.4 > c ′c |x | log |x |.
Let x be a string representing N such that |x | ≥ n0 (infinitely
many strings represent N)
M will obtain output b = N(x) in |x |1.4 steps, but by
definition M(x) = 1− b 6= N(x) (→←).

Nondeterministic Time Hierarchy Theorem

Theorem: if f , g are time constructible functions satisfying
f (n + 1) = o(g(n)), then
NTIME (f (n)) (NTIME (g(n))

Use of NUTM here.

In Time Hierarchy Theorem, we crucially use the fact that a
DTM can compute the opposite answer: If it is running a
subroutine M, then on computing M(x) it can flip the answer.

In case of an NTM, that is not clear. Because these machines
verify, they do not compute.
If some branches compute “accept” and others compute
“reject”, then what would be a flipped answer?
If allowed exponential time, then they can compute all possible
certificates and solve the problem, but within an increase of
time bound by a polynomial factor, it may not be possible.

Lazy Diagonalisation

Lazy diagonalization: Here, the machine executing the
diagonalization will not try to flip the answer of a subroutine TM
on every input, but on a crucial input. This will be enough to get
the contradiction we are aiming for using diagonalization.

Nondeterministic Time Hierarchy Theorem

Just show NTIME (n) (NTIME (n1.5). All other pairs will
have similar arguments.

Define h : N→ N such that h(1) = 2, h(i + 1) = 2h(i)
1.2

.

Given n, find in n1.5 time i such that h(i) < n ≤ h(i + 1).

Diagonalisation machine M: try to flip answer of Mi on some
input in set {1n|h(i) < n ≤ h(i + 1)}.
Machine M: On input x , if x /∈ 1∗ then reject.
If x = 1n, then compute i such that h(i) < n ≤ h(i + 1).
1. If h(i) < n < h(i + 1), then simulate Mi on 1n+1 using
nondeterminism in n1.1 time and output the answer. (If Mi

does not halt in this time , then halt and accept.)
2. If n = h(i + 1), accept 1n iff Mi rejects 1h(i)+1 in
(h(i) + 1)1.1 time.

Nondeterministic Time Hierarchy Theorem

Point 2: All possible 2(h(i)+1)1.1 branches of Mi on input
1h(i)+1 have to be computed. - input size is h(i + 1) = 2h(i)

1.2
.

M runs in O(n1.5) time.

L = L(M).

Nondeterministic Time Hierarchy Theorem

Claim: L /∈ NTIME (n).

Suppose there is an NDTM N running in cn steps for L.

Pick an i large enough such that N = Mi and on inputs of
length n ≥ h(i), Mi can be simulated in less than n1.1 steps.

Target: Try to flip the answer of N with M on an input in
{1n|h(i) < n ≤ h(i + 1)}.

Nondeterministic Time Hierarchy Theorem

Description of M ensures: If h(i) < n < h(i + 1), then
M(1n) = Mi (1n+1) (which is same as M(1n+1))
Otherwise, M(1h(i+1)) 6= Mi (1h(i)+1).

Mi and M agree on all inputs 1n for n ≥ h(i), and in
particular in the interval (h(i), h(i + 1)]
By definition: M(1h(i)+1) = Mi (1h(i)+2) = M(1h(i)+2)
= Mi (1h(i)+3) = M(1h(i)+3) . . .
= Mi (1h(i+1)) = M(1h(i+1) (→←).

Thus, there is a string in {1n|h(i) < n ≤ h(i + 1)} on which
M and Mi do not agree.

