
Theory of Computation
Recursive Functions



Recursive functions

This was an alternative formalism to Turing Machines that
was proposed by Godel.

Godel defined a set of functions between Nk → N that he
thought would represent all computable functions.

Church later proved this equivalence.



The Functions

Successor. s : N→ N such that s(x) = x + 1 - computable,
total recursive.

Zero. z : N0 → N such that z() = 0 - computable, total
recursive.

Projections. πnk : Nn → N such that πnk(x1, x2, . . . , xn) = xk ,
1 ≤ k ≤ n - computable, total recursive.

Composition. Given computable functions f : Nk → N and
g1, g2, . . . gk : Nn → N, f · (g1, g2, . . . , gk) : Nn → N such that
on input x = (x1, x2, . . . xn) gives f (g1(x), g2(x), . . . , gk(x)) -
computable, total recursive.



The Functions contd.

Primitive Recursion. Given computable functions
hi : Nn−1 → N and gi : Nn+k → N, 1 ≤ i ≤ k the inductively
defined functions
fi (0, x) := hi (x
fi (y + 1, x) := gi (y , x , f1(y , x , . . . , fk(y , x))),
x = (x2, x3, . . . , xn)
-computable, total recursive



The Functions contd.

Unbounded Minimization. Given computable function
g : Nn+1 → N, the function f : Nn → N that takes input
x = (x1, x2, . . . , xn) and gives the least y such that g(z , x) is
defined for all z ≤ y and g(y , x) = 0 if such a y exists. The
function f is undefined otherwise. Denoted as:
f (x) = µy .(g(y , x) = 0).
-computable, partially recursive.



The Functions contd.

These functions are called µ-recursive functions - all
computable.

The first five functions are called primitive recursive functions
- all these functions are also total recursive.



Examples

Constant function. constn := s · . . . · s · z
Addition. Using primitive recursion when
k = 1, h = π11, g = s · π33
add(0, y) = h(y) = y
add(x + 1, y) = g(x , y , add(x , y)) = s(add(x , y))



Examples contd.

Try using Primitive recursion for:

multiplication, exponentiation, predecessor,

subtraction (x − y if x ≥ y and 0 otherwise),

sign function,

comparisons like <,≤, >,≥,=, 6=, where the output can be
considered to be from {0, 1} depending on the truth of the
relation.



The Ackermann Function

A(0, y) := y + 1
A(x + 1, 0) := A(x , 1)
A(x + 1, y + 1) := A(x ,A(x + 1, y))

Designed by Ackermann in his PhD thesis, this is an extremely
fast growing function that can be shown to grow faster than
any primitive recursive function.

But it can be shown to be a total computable function.

First example of a total computable function that is not
primitive recursive.


