Theory of Computation
A-Calculus



M-Calculus

@ Consists of a set of objects called A-terms and some rules to
manipulate them.

@ Designed to capture functional abstraction and functional
application, and their interaction

@ These principles used in programming languages like LISP,
SCHEME and DYLAN



Expressions

Ax.f(x) denotes a function f that on input x computes f(x).

To apply this function to an input, substitute the input for the
variable x in f(x) and evaluate.

Eg. Successor function: Ax.(x + 1) is the expression;
(M.(x+1)7T—>7+1=8.

Functions can also be taken as inputs: An expression like

A Ag. Ax.f(gx) takes input function f and computes the
expression on variables g, x, then input function g and the
expression on variable x and finally input x and evaluates the
expression for the composition function fg.



Example of Functions as inputs

Take f and g to be successor functions:

(Mg Ax.(f(gx)))(Ay.(y +1))(Az.(z+ 1))

— (Ag A Ax.((A\y.(y +1))(gx)))(Az.(z + 1)) when f is substituted
— A ((Ay.(y +1))((Az.(z + 1))x)) when g is substituted

— Mx.((Ay.(y +1))(x + 1)) when x substitutes z

— Ax.((x + 1) + 1) when x + 1 substitutes y



Example of Functions as inputs contd.

Take f and g to be successor functions:

Try the same by substituting y by gx in the second step

Same answer should come - the order of substitutions does not
matter.



Currying

@ Functions take one variable at a time.

e For two variable functions f(x, y), we assume that first the
variable x is being substituted to give a function on y and
then the variable y is being substituted to evaluate f(x, y).

@ Ax.\y.f(x,y)

@ This is called Currying after the Haskell B. Curry.



Pure \-calculus

@ There are only variables {f, g, h,x,y,...} and operators for
A-abstraction and application.

e A-terms (inductively defined): Any variable x is such a term;
If M and N are \-terms then so is MN - as if M is a function
that is to be applied on input N,

If M is a A\-term and x is a variable, then Ax.M is also a
A-term - as if on input x the term M will be computed.



Pure \-calculus contd.

@ The operation of application is not associative: (MN)P and
M(NP) could lead to very different answers.

@ By convention, in unparenthesized expressions the parenthesis
is given from the left. Eg. MNP should be (MN)P.

@ \-terms can be thought of as both functions as well as input
data - shown in substitution rule in next slide.



Pure \-calculus: Substitution rules

o Given A-terms Ax.M and N, sy (M) is the term where,
(i) bound variables y of M are renamed so that they are not
common with x or variables of N/, and
(i) all occurrences of x are substituted by M.

@ [-reduction: Suppose a A-term has a subterm of the form
(Ax.M)N, we can replace the subterm with sy (M).



Pure \-calculus: Substitution rules

@ The order of reductions does not matter - by Church-Rosser
property.

@ Normal form: if a term cannot be converted by any more
[-reductions.

@ not all terms have normal forms: (Ax.xx)(Ax.xx).



Church Numerals and Equivalence with TMs

Method to encode natural numbers as \-terms.

This method will help us show that all u-recursive functions
can be simulated in A-calculus, and therefore all Turing
computable functions.

On the other hand, description of exhaustive application of
substitution rules can be implemented in Turing machines.

So A-calculus and Turing Machines are equivalent.



Nl R Ol

]

Church Numerals contd.

= AM.Ax.x

= A fx
= M f(fx)
= M. Ax.f"x



Successor function by Church numerals

@ s:= AmAf.Ax.f(mfx).

o sn = (AmAf.Ax.f(mfx))(Af.Ax.f"x)
— (Am.Ag.A\y.g(mgy))(Af.Ax.f"x) as f,x needed renaming

— n+ 1 by a series of S-reductions (please work it out).



Other p-recursive functions

Similarly, all the p-recursive functions can be defined in terms of
A-calculus and Church numerals.



