
Theory of Computation
λ-Calculus



λ-Calculus

Consists of a set of objects called λ-terms and some rules to
manipulate them.

Designed to capture functional abstraction and functional
application, and their interaction

These principles used in programming languages like LISP,
SCHEME and DYLAN



Expressions

λx .f (x) denotes a function f that on input x computes f (x).

To apply this function to an input, substitute the input for the
variable x in f (x) and evaluate.

Eg. Successor function: λx .(x + 1) is the expression;
(λx .(x + 1))7 → 7 + 1 = 8.

Functions can also be taken as inputs: An expression like
λf .λg .λx .f (gx) takes input function f and computes the
expression on variables g , x , then input function g and the
expression on variable x and finally input x and evaluates the
expression for the composition function fg .



Example of Functions as inputs

Take f and g to be successor functions:
(λf .λg .λx .(f (gx)))(λy .(y + 1))(λz .(z + 1))
→ (λg .λx .((λy .(y + 1))(gx)))(λz .(z + 1)) when f is substituted
→ λx .((λy .(y + 1))((λz .(z + 1))x)) when g is substituted
→ λx .((λy .(y + 1))(x + 1)) when x substitutes z
→ λx .((x + 1) + 1) when x + 1 substitutes y



Example of Functions as inputs contd.

Take f and g to be successor functions:
Try the same by substituting y by gx in the second step
Same answer should come - the order of substitutions does not
matter.



Currying

Functions take one variable at a time.

For two variable functions f (x , y), we assume that first the
variable x is being substituted to give a function on y and
then the variable y is being substituted to evaluate f (x , y).

λx .λy .f (x , y)

This is called Currying after the Haskell B. Curry.



Pure λ-calculus

There are only variables {f , g , h, x , y , . . .} and operators for
λ-abstraction and application.

λ-terms (inductively defined): Any variable x is such a term;
If M and N are λ-terms then so is MN - as if M is a function
that is to be applied on input N,
If M is a λ-term and x is a variable, then λx .M is also a
λ-term - as if on input x the term M will be computed.



Pure λ-calculus contd.

The operation of application is not associative: (MN)P and
M(NP) could lead to very different answers.

By convention, in unparenthesized expressions the parenthesis
is given from the left. Eg. MNP should be (MN)P.

λ-terms can be thought of as both functions as well as input
data - shown in substitution rule in next slide.



Pure λ-calculus: Substitution rules

Given λ-terms λx .M and N, sxN(M) is the term where,
(i) bound variables y of M are renamed so that they are not
common with x or variables of N, and
(ii) all occurrences of x are substituted by N.

β-reduction: Suppose a λ-term has a subterm of the form
(λx .M)N, we can replace the subterm with sxN(M).



Pure λ-calculus: Substitution rules

The order of reductions does not matter - by Church-Rosser
property.

Normal form: if a term cannot be converted by any more
β-reductions.

not all terms have normal forms: (λx .xx)(λx .xx).



Church Numerals and Equivalence with TMs

Method to encode natural numbers as λ-terms.

This method will help us show that all µ-recursive functions
can be simulated in λ-calculus, and therefore all Turing
computable functions.

On the other hand, description of exhaustive application of
substitution rules can be implemented in Turing machines.

So λ-calculus and Turing Machines are equivalent.



Church Numerals contd.

0 := λf .λx .x

1 := λf .λx .fx

2 := λf .λx .f (fx)

n := λf .λx .f nx



Successor function by Church numerals

s := λm.λf .λx .f (mfx).

sn = (λm.λf .λx .f (mfx))(λf .λx .f nx)
→ (λm.λg .λy .g(mgy))(λf .λx .f nx) as f , x needed renaming
→ n + 1 by a series of β-reductions (please work it out).



Other µ-recursive functions

Similarly, all the µ-recursive functions can be defined in terms of
λ-calculus and Church numerals.


