
Practice problems: Time and Space complexity

1. Show that there exists a function that is not time-constructible.

2. Show that NTIME(f(n)) ⊆ DSPACE(f(n)).

3. Show that P 6= DSPACE(n)

4. PSPACE is closed under union, intersection and complement.

5. NL is closed under union, intersection and complement.

6. Show that if a language is NL-complete then it is also coNL-complete.

7. Show that the language consisting of strings with properly nested paren-
theses is in L.

8. A ladder is a sequence of strings s1, s2, . . . , sk wherein every string differs
from the preceding one in exactly one character. Fr example, the following
is a ladder of English words, starting with “head” and ending with “free”:
head, hear, near, fear, bear, beer, deer, deed, feed, feet, fret, free. Let

LADDERDFA Takes as input < M, s, t > where M is a DFA and deter-
mines if L(M) consists of a ladder of strings starting with s and ending
with t, where s, t ∈ Σ∗ and M is over input alphabet Σ.
Show that the language is in PSPACE. (Hint: PSPACE = NPSPACE).

Solutions in the next page. Please try the problems first.

1

1. We use diagonalisation to construct such a function. Let M0,M1,M2, . . .
be an enumeration of TMs. We construct a function f : N → N such that
there is no machine that can compute the function in f(n) time. Let f
be computed as follows. On input n, simulate Mn(n). If Mn(n) 6= n, set
f(n) = n; otherwise set f(n) = n2 . Output f(n).
Let n0 be the encoding of a TM computing f . If f(n0) = n0 , then
Mn0

(n0) 6= n0 i.e., Mn0
(n0) 6= f(n0). If f(n0) = n2

0 , then Mn0
(n0) = n0

i.e., Mn0
(n0) 6= f(n0). This contradicts the choice of Mn0

as the TM
computing f . Thus f is not constructible.

2. Let A ∈ NTIME(f(n)). Then there is an NDTM M running in time f(n)
deciding A. We describe a space f(n) DTM N deciding A. That is, given
a string x, N decides whether or not x ∈ A. Consider the configuration
graph GM,x on input x. Each computation path is of length at most
f(n). Also M makes at most f(n) choices, which can be encoded using
an f(n)-bit string (we can assume there are two transition choices at each
configuration - think about how to design an equivalent TM where this
property holds. Since the transition function has finitely many transitions
there are finitely many transitions that can be applied at any step). N
checks for each f(n)-bit string whether following these choices M enters an
accepting configuration or not. If for some sequence of choices, M accepts
then N accepts and halts. If after trying all f(n)-bit strings representing
choices, M rejects, then N rejects. At any point of time, N stores an
f(n)-bit string representing choices. And to check whether a path ends in
accepting configuration, N writes down the configurations resulting from
the choices represented in the f(n)-bit string, one at a time, erasing the
previous one in each iteration. Each configuration can be encoded using
O(f(n)-bits. So the total space requirements of N is O(f(n)) implying
that A ∈ DSPACE(f(n)).

3. (Proof by contradiction) Assume that P = DSPACE(n). Let L ∈
DSPACE(n2) and let M be a space n2 deterministic TM deciding L.
Construct a language L0 = {x01|x|−|x|−1|x ∈ L} (padding trick). The
map from strings in L to strings in L0 can be computed in n2 time
i.e., L ≤p L0 . By our assumption, there exists a space n determin-
istic TM that decides L0 which ignores (does not have enough time to
read) the last n2 − n bits of the input (n2 here is the length of the in-
put) and then simulates M . Since M runs in space n2 which is linear
in length n2 of the input, L0 ∈ DSPACE(n). By our assumption that
DSPACE(n) = P , we have L0 ∈ P . But since L ≤p L0 , we have
L ∈ P . This holds for any L ∈ DSPACE(n2), thus implying that
DSPACE(n2) ⊆ P = DSPACE(n), contradicting the space hierarchy
theorem.
Note: Similarly, one can show that DSPACE(n) 6= NP .

4. Let L1, L2 ∈ PSPACE and let M1,M2 be deterministic TMs deciding
L1, L2 respectively in polynomial space. We describe constructions of de-

2

terministic TMs running in polynomial space for the following languages.
L1 ∪L2 : On input x, run M1 on x. If it accepts, then accept. Otherwise,
run M2 on x. If it accepts, then accept; else reject.
L1∩L2 : On input x, run M1 on x and then run M2 on x. If both accept,
then accept; otherwise reject.
Lc
1 : On input x, run M1 on x and negate its output. (This can be done

since M is deterministic).

5. Same as previous problem. The complement result comes from the Immerman-
Szelepcsenyi Theorem.

6. Consider language Π that is NL-complete. This means that Π ∈ NL for
any Π′ ∈ NL, Π′ ≤l Π. By Immerman-Szelepcsenyi Theorem, Π ∈ coNL.
Similarly, every language in NL is also in coNL. Thus every language in
coNL logspace reduces to Π. This implies that Π is coNL-complete.

7. Initialise a counter to zero. While reading the input string from left to
right, increment the counter whenever a left paranthesis is encountered.
Decrement the counter whenever a right paranthesis is read. Reject the
string if the counter becomes negative or does not become zero after read-
ing the end of the input string. Otherwise accept. It requires log-space to
store the counter.

8. Since NPSPACE = PSPACE, it suffices to show that LADDERDFA ∈
NPSPACE. We describe a non-deterministic algorithm that decides
LADDERDFA . Given an instance < M, s, t >, reject if |s| 6= |t|. Other-
wise, consider a graph G whose vertices are labeled with strings in Σ|s| .
There is a directed edge from vertex u to vertex v if u and v differ in exactly
one character and u, v ∈ L(M). Then, < M, s, t >∈ LADDERDFA iff
there is a path from s to t in G. This can be checked non-deterministically
in polynomial space (although G has exponential number of vertices) –
guess the path, storing at each step only the label of the current vertex
(which is of size |s|). At a step, suppose the current vertex is u. Non-
deterministically choose a new out-neighbour v of u and check if M accepts
v. To ensure that the machine always halts, maintain a counter which is
incremented after each guess. Reject and halt when the counter crosses
|Σ||s|. This is because any path from s to t (without loops) can be of
length at most |Σ||s| .

3

