
Theory of Computation

Introduction

What is computation?

• Computation is an effective method (an
Algorithm!), which given a problem with
possibly a finite number of inputs, can produce
an output which can be recognized as a
solution to the problem.

• 'Effective method' is here used in the rather
special sense of a method each step of which is
precisely predetermined and which is certain to
produce the answer in a finite number of steps.

What is computation?

• Points to note:

• The “size” of both Input and Output should be
finite

• The number of steps should also be finite.

• An arbitrarily large natural number is a finite
number.

What is a Computer?

• A Computer is a physically realizable machine
which can perform computation.

• A Computer is a Formal System. This is a
direct implication of the requirement that
each step in an “Effective Method” is precisely
predetermined.

What is Theory of Computation?

• It is the study about the ultimate capability of
Computers, that is what problems can be computed,
what cannot and what can only be solved partially
by any computer which works under the limitation
of being “physically realizable” and employing only
“Effective Methods”.

• This requires working with abstract models of
computers / computation and as we will show, this
has more to do with the nature of problems rather
than computers.

Formal systems

1. A finite set of symbols, known as the alphabet, which concatenate to
give formulas, so that a formula is just a finite string of symbols
taken from the alphabet.

2. A grammar consisting of rules to form formulas from simpler
formulas. A formula is said to be well-formed if it can be formed
using the rules of the formal grammar. It is often required that there
be a decision procedure for deciding whether a formula is well-
formed.

3. A set of axioms, or axiom schemata, consisting of well-formed
formulas.

4. A set of inference rules. A well-formed formula that can be inferred
from the axioms is known as a theorem of the formal system.

Derivation in a Formal System

• The derivation rules determine in which cases a
formal expression A can be deduced from other
formal expressions B1,…,Bn. If n=0, then A is called
an axiom. Derivations are either sequences or tree
diagrams made up of formal expressions according
to the derivation rules. If there are only axioms at
the vertices of the derivation tree, then the formal
expression at the end of the derivation is said to
be deducible (or derivable) in the formal system.

Effective Formal Systems

• Very interesting formal systems are those for which
the language and the concept of derivation satisfy
the requirement of effectiveness. This means that
there must be an effective procedure for
determining whether an arbitrary sequence of
symbols is an expression of the formal system or
not. The concept of a derivation must satisfy the
same requirement. The concept of a deducible
expression in effective formal systems is, generally
speaking, not effective.

Mathematical Logic

• A calculus in mathematical logic is an effective
formal system given by the rules of formation
of expressions and of constructing derivations
in that calculus. The expressions of a formal
system are regarded as purely-formal
combinations of symbols;

• The two basic calculi are Zeroth order Logic
(Propositional Calculus) and First order Logic
(Predicate Calculus)

Important Properties of Logical Systems

• Consistency: no theorem of the system contradicts another.

• Validity: the system's rules of proof never allow a false
inference from true premises.

• Completeness: if a formula is true, it can be proven, i.e. is a
theorem of the system.

• Soundness: if any formula is a theorem of the system, it is
true. This is the converse of completeness. (Note that in a
distinct philosophical use of the term, an argument is sound
when it is both valid and its premises are true.)

• Expressivity: what concepts can be expressed in the system.

Semantics – the Idea of Truth

• A formula in a Formal System is just a finite
string of symbols taken from the alphabet
without any meaning associated with them.

• Semantics is derived by associating a Domain of
discourse so that the truth values of Logical
Propositions/Predicates, domains of non-logical
variables if any and non-logical functions can be
defined over this domain. Such an association is
called an interpretation or a model.

Zeroth Order Logic

• Propositional calculus is a branch of logic. It is also sometimes
called zeroth-order logic. It deals with propositions (which can be
true or false) and relations between propositions, including the
construction of arguments based on them. Compound propositions
are formed by connecting propositions by logical connectives.
Propositions that contain no logical connectives are called atomic
propositions.

• The formal language for propositional logic consists of formulas built
up from propositional symbols and logical connectives. The only
non-logical symbols in a formal language for propositional logic are
the propositional symbols, which are often denoted by capital
letters. To make the formal language precise, a specific set of
propositional symbols must be fixed.

Zeroth Order Logic

• Any combinational circuit can be expressed in
this logic.

• Unlike first-order logic, propositional logic does
not deal with non-logical objects, predicates
about them, or quantifiers. However, all the
machinery of propositional logic is included in
first-order logic and higher-order logics. In this
sense, propositional logic is the foundation of
first-order logic and higher-order logic.

Interpretations for propositional logic

• The standard kind of interpretation in this setting
is a function that maps each propositional
symbol to one of the truth values true and false.
This function is known as a truth assignment or
valuation function. In many presentations, it is
literally a truth value that is assigned,

• For a language with n distinct propositional
variables there are 2n distinct possible
interpretations.

Interpretations for propositional logic

• Given any truth assignment for a set of
propositional symbols, there is a unique
extension to an interpretation for all the
propositional formulas built up from those
variables. This extended interpretation is
defined inductively, using the truth-table
definitions of the logical connectives discussed
above.

First Order Logic

• First-order logic—also known as predicate logic,
quantificational logic, and first-order predicate calculus—is a
collection of formal systems used in mathematics, philosophy,
linguistics, and computer science. First-order logic uses
quantified variables over non-logical objects, and allows the use
of sentences that contain variables, so that rather than
propositions such as "Socrates is a man", one can have
expressions in the form "there exists x such that x is Socrates
and x is a man", where "there exists" is a quantifier, while x is a
variable. This distinguishes it from propositional logic, which
does not use quantifiers or relations; in this sense,
propositional logic is the foundation of first-order logic.

First Order Logic

• A theory about a topic is usually a first-order
logic together with a specified domain of
discourse (over which the quantified variables
range), finitely many functions from that domain
to itself, finitely many predicates defined on that
domain, and a set of axioms believed to hold
about them. Sometimes, "theory" is understood
in a more formal sense, which is just a set of
sentences in first-order logic

First Order Logic

• First-order logic is the standard for the formalization of
mathematics into axioms, and is studied in the
foundations of mathematics. Peano arithmetic and
Zermelo–Fraenkel set theory are axiomatizations of
number theory and set theory, respectively, into first-
order logic. No first-order theory, however, has the
strength to uniquely describe a structure with an infinite
domain, such as the natural numbers or the real line.
Axiom systems that do fully describe these two
structures (that is, categorical axiom systems) can be
obtained in stronger logics such as second-order logic.

First Order Logic

• So the boundary of what we can compute is
somewhat hazily discernible in the infinite domain
of all theories that can be captured by First order
Logic.

• Arithmatic? Set Theory? Up to arbitarily large nos.

• Decision Problems? Some of them

• Functions on Natural nos.? Some of them

• We will now discuss First order logic and
Arithmatic in greater detail

Language of First Order Logic

• The basic components of FOL are called terms. Essentially,
a term is an object that denotes some object other than true
or false.

• The simplest kind of term is a constant.
• A value such as 8 is a constant; the denotation of this term is

the number 8—a value that is contained in the sets ℕ and Z.
• We often use constants in maths; we introduce them by

writing things like Let S be the set {1; 2; 3}. In this case, we
have introduced a constant and made its denotation clear;
we have given it an interpretation.

• We can have constants that stand for any kind of object; for
example, we could have a constant that stood for (denoted)
the individual ‘MichaelWooldridge’.

Language of First Order Logic

• The second simplest kind of term is a variable.
• A variable can stand for anything in a set of

Objects.
• That is, a variable of type ℕ could stand for any

of the natural numbers.
• Lets just formalise this before going any further.
• Definition: A constant of type T is a name that

denotes some particular object in the set T.
• Definition: A variable of type T is a name that

can denote any value in the set T.

Language of First Order Logic

• We can now introduce a more complex class of terms
— functions

• In FOL, we have a set of function symbols; each
symbol corresponds to a particular function. (It
denotes some function.)

• Each function symbol is associated with a natural
number called its arity. This is just the number of
arguments it takes.

• Each function symbol has a return-type associated
with it

Language of First Order Logic

• Formally . . .

• Definition: Let f be an arbitrary function
symbol of type T, with arity n ℕ, taking
arguments of type T1; : : : ; Tn respectively.

• Also, let 1; : : : ; n be terms of type T1; : : : ; Tn
respectively. Then f (1; : : : ; n) is a functional
term.

Language of First Order Logic

• Consider the function plus:

• plus(2; 3) is an acceptable functional term;

• plus(0; 1) is acceptable;

• plus(plus(1; 2); 4) is acceptable;

• plus(plus(plus(0; 1); 2); 4) is acceptable;

• but

• plus(-1; 0) isn’t;

Language of First Order Logic

• The language of FOL contains a stock of predicate
symbols. These symbols stand for relationships
between objects.

• Definition: Let P be a predicate symbol of arity n
 ℕ , which takes arguments of

• types T1; : : : ; Tn. Then if 1; : : : ; n are terms

• of type T1; : : : ; Tn respectively, then P(1; : : : ; n)
is a predicate, which will either be true or false
under some interpretation.

Language of First Order Logic

• So a predicate just expresses a relationship
between some values.

• What happens if a predicate contains
variables: can we tell if it is true or false?

• Not usually; we need to know an
interpretation for the variables.

• A predicate that contains no variables is a
proposition

Language of First Order Logic

• Predicates of arity 1 are called properties.

• EXAMPLE. The following are properties:
– Man(x)

– Mortal(x)

– Malfunctioning(x):

• Predicate that have arity 0 (i.e., take no
arguments) are called primitive propositions.

• Predicates may be combined using Logical
Operators , , .

Language of First Order Logic

• We now come to the central part of first order
logic: quantification.

• Consider trying to represent the following:
– all men have a mother;

– every natural number has a prime factor.

• We can’t represent these using the apparatus
we’ve got so far; we need quantifiers.

Language of First Order Logic

• In Z, we shall use two quantifers:

• — the universal quantifier; is read ‘for all. . . ’

•  — the existential quantifier; is read ‘there
exists. . . ’

Language of First Order Logic

• The simplest form of quantified formula in Z is
as follows:

• quantifier signature predicate

• where

• – quantifier is one of ,  ;
• – signature is of the form variable : type

• – and predicate is a predicate.

Language of First Order Logic

• EXAMPLES.
–  x : Man Mortal(x)

• ‘For all x of type Man, x is mortal.’

• (i.e. all men are mortal)

• If the logic is used in a type free manner,
–  x Mortal(x)

Language of First Order Logic

• Note that universal quantification is similar to
conjunction:

•  n : {2; 4; 6} Even(n)

• is the same as

• Even(2)  Even(4)  Even(6):

• In the same way, existential quantification is the same as
disjunction:

•  n : {7; 8; 9} Prime(n)

• is the same as

• Prime(7)  Prime(8)  Prime(9):

Language of First Order Logic

• The universal and existential quantifiers are in
fact duals of each other:

•  x : T P(x)   x : T P(x)

• Saying that everything has some property is
the same as saying that there is nothing that
does not have the property.

Language of First Order Logic

• x : T P(x)    x : T  P(x)

• Saying that there is something that has the
property is the same as saying that its not the
case that everything doesn’t have the
property.

Interpretation of First Order Logic

• An interpretation of a first-order language assigns a
denotation to each non-logical symbol in that
language. It also determines a domain of discourse
that specifies the range of the quantifiers. The
result is that each term is assigned an object that it
represents, each predicate is assigned a property of
objects, and each sentence is assigned a truth
value. In this way, an interpretation provides
semantic meaning to the terms, the predicates, and
formulas of the language.

Arithmetic – Peano’s Axioms

• An Axiomatic Approach to Mathematics:

• In order to approach Arithmetic in a formal way, we have to be very
careful when proving our various propositions and theorems to
only use results we know to be true.

• However, many of the statements that we take to be true had to be
proven at some point. Those proofs, of course, relied on other true
statements. If we continue to “trace back” our mathematics proofs,
we begin to notice that mathematics must have some initial set of
true statements that cannot be proven. These statements, known
as axioms, are the starting point for any mathematical theory.

• In this section, we will axiomatically define the natural numbers N.

Arithmetic – Peano’s Axioms

• As we move through the various axioms, we will see that each
one is crucial in defining N in such a way that they are equal
to{0,1,2,3, . . .}, which are the natural numbers that we know
and love. After establishing this, we will establish the basic
arithmetic operations on N by defining addition and
multiplication.

• Axiomatizaing the Natural Numbers In this section, we will
develop the Peano Axioms and use them to provide a
completely formal definition of the natural numbers N. In what
follows, itis best to train yourself to assume nothing and use
only statements that are known to be true via axioms or
statements that follow from these axioms.

Arithmetic – Peano’s Axioms

• We will formalize the notion of equality and then present the
Peano axioms. The Notion of Equality. When approaching
mathematics axiomatically, it is important to not assume
anything at all, including something as rudimentary as how
equality behaves. After all, “=” is merely a symbol until we
declare it to have some important properties. Below, we will
define the natural numbers N axiomatically. Before we get
deep into this, let’s establish the properties that “=” should
have. First, every natural number should be equal to itself;
this is known as the reflexivity axiom.

• Axiom 1. For every x N, x=x∈ N, x=x

Arithmetic – Peano’s Axioms

• Next, if one natural number equals a second one, then
that second one should equal the first one. This is
called the symmetry axiom.

• Axiom 2. x, y N, if x=y, then y=x∈ N, x=x
• The next property allows us to say that if one natural

number is equal to a second, and that second natural
number is equal to a third, then the first and third are
equal to each other. This is known as the transitivity
axiom.

• Axiom 3.  x, y, z N, if x=y and y=z, then x=z.∈ N, x=x

Arithmetic – Peano’s Axioms

• The above three properties of reflexivity, symmetry, and
transitivity come up numerous times in essentially every
mathematical field. Equality is an example of what is
called a relation, and relations that enjoy the above
three properties are known as equivalence relations.
There remains one last axiom related to equality. In each
of the above axioms, whenever we used a symbol (like x,
y, or z), we always had an assumption that these
elements were in the natural numbers. If we don’t make
this assumption, then we may run into problems.

Arithmetic – Peano’s Axioms

• To help get around this, the fourth axiom, called the closure of
equality axiom, says that if you have a natural number that is equal to
something, then that “something” also has to be a natural number.

• Axiom 4.  x and y, if x N and x=y, then y N.∈ N, x=x ∈ N, x=x
• In other words, the only way for something to be equal to a natural

number is for it to be a natural number itself. In different versions of
the Peano axioms, the above four axioms are excluded, as they these
properties of equality are frequently assumed to be true as part of
that logic system. For completeness, though, we include them in
these notes. Furthermore, their inclusion here highlights the
importance of questioning even the most basic mathematical
assumptions.

Arithmetic – Peano’s Axioms

• Axioms : Now, we are ready to present the main Peano
axioms. It is important to keep in mind that when Peano
and others constructed these axioms, their goal was to
provide the fewest axioms that would generate the
natural numbers that everyone was familiar with. The
insight is that this could be done by asserting the
existence of at least one natural number, and then
defining a function, called successor function, that can
be used to construct the remaining natural numbers. An
obvious element to axiomatically include in the natural
numbers is zero

Arithmetic – Peano’s Axioms

• Axiom 5: 0 is a natural number.

• That is, 0 N. In alternate versions of the Peano ∈ N, x=x
axioms, Axiom 5 actually replaces 0 with1. This
creates an almost identical set of natural numbers,
which correspond to “positive whole numbers” (as
we known them now). Whether a mathematician
includes 0 in the natural numbers or not depends on
the context. We use the convention of including 0 as a
natural number. At this point, we are only guaranteed
the existence of a single natural number, 0.

Arithmetic – Peano’s Axioms

• The next axiom uses the successor function to generate other natural
numbers. As its name implies, the successor function is a function S
that has as its domain N. The next axiom simply states that the co-
domain of S is also N.

• Axiom 6: If x N, then S(x) N. ∈ N, x=x ∈ N, x=x
• That is, if x is a natural number, then so is its successor.

• As the above axiom implies, we will commonly refer to S(x) as the
successor of x. Intuitively, we should think of S(x) as x+1. Of course, we
cannot formally define it this way yet since we do not know what +
means! At this point, we are still quite far away from having the
natural numbers as we know them. For example, if we have N={0} and
define S(0) = 0, then all of the above axioms are satisfied. We, of
course, want to avoid this.

Arithmetic – Peano’s Axioms

• A way to ensure this is to insist that 0 is not the successor of
any natural number (including itself, of course).

• Axiom 7: For every natural number x N, S(x) = 0 is false.∈ N, x=x
• Rephrasing this using our knowledge of functions, we can

say that the pre-image of 0 under S in the natural numbers
is the empty set. At this point, we are slightly closer to
having N look more like the natural numbers we know. In
particular, we know that S(0) is not equal to 0, and thus it
must equal some other natural number. We can denote this
natural number by 1. Thus, we can at this point, we know
that N contains at least two natural numbers, 0 and 1.

Arithmetic – Peano’s Axioms

• If we were to stop here, though, we could not be
guaranteed that all the rest of the natural numbers
(as we know them) exist. For example, we could
define N={0,1} where S(0) = 1 andS(1) = 1. Again,
using our knowledge of functions, we recognize that
the fact that S(0) = 1 and S(1) = 1 means that the S is
not an injective function. We would like this
successor function to be injective, so we have the
following axiom.

• Axiom 8. x, y N, if S(x) =S(y), then x=y.∈ N, x=x

Arithmetic – Peano’s Axioms

• The above axiom has some very important ramifications. First, it
excludes the possibility of defining N to be just {0,1}. To see why,
notice that we already have that S(0) = 1 and, by injectivity, we
cannot have that S(1) = 1. Axiom 6 excludes the possibility that
S(1) = 0. Thus,S(1) must be some other natural number, which we
denote as 2. Thus, we can define 2 =S(1).. A similar argument gives
that S(2) cannot be 0,1, or 2. Thus, it must be some other natural
number, which we call 3. Continuing in this pattern, we see that N
must contain all the natural numbers that we know! At this point,
we have established that N must include 0, its successor 1 =S(0),
its successor’s successor 2 =S(1), and so on. Thus, we formally
have that N must include 0, S(0), S(S(0)), S(S(S(0))),

Arithmetic – Peano’s Axioms

• Of course, to avoid so many nested applications of S, we use
the numerals 1,2,3 to denote S(0), S(S(0)),and S(S(S(0))),
respectively. We are, however, not done. These first eight
axioms have pushed our formal definition of N to include all of
the “usual” natural numbers that we know and love. That is, we
know now that{0,1,2, . . .} N. However, what disallows our ⊂N. However, what disallows our
axiomatic N from containing more? So far, nothing does. To see
this, let’s consider this version of N that satisfies all the above
axioms, but is not the usual natural numbers we know:
N={0,1,2,3, . . . ,} {a, b}.That is, this version of N contains all the ∪{a, b}.That is, this version of N contains all the
natural numbers and also includes two other symbols a and b.
We also need to describe the successor function 3

Arithmetic – Peano’s Axioms

• On the portion{0,1,2,3, . . . ,}, we define S in the way
described above, where S(0) = 1, S(1) = 2, S(2) = 3, and so
on. On the portion {a, b}, we can define S(a) =b and S(b)
= a. This version of N with this successor function
satisfies all the axioms, but is “larger” than we want our
natural numbers to be. The next (and final) axiom will
exclude versions of N that are “too large” from occurring.
Before we begin, we need a definition that is inspired by
induction. A set V is called inductive if the following two
conditions are satisfied: 0 V If x V, then S(x) V∈ N, x=x ∈ N, x=x ∈ N, x=x

Arithmetic – Peano’s Axioms

• Of course, the name comes from the fact that the first
condition is similar to our “base case” from induction, and the
second condition is analogous to the induction step. The last
axiom, many times called the Axiom of Induction says that if V
is an inductive set, then V contains the set of natural numbers.

• Axiom 9. If V is an inductive set, then N V.⊂N. However, what disallows our
• As stated above, the first 8 axioms ensure that{0,1,2,3, . . .} ⊂N. However, what disallows our

N. Furthermore, notice that the set{0,1,2,3, . . .} is an inductive
set! Thus, by Axiom 9,it must be true that N {0,1,2,3, . . .}. ⊂N. However, what disallows our
Thus, we finally have the set equality that we were after: N =
{0,1,2,3, . . .}

Axiomatic Arithmetic

• As we know, the importance of N does not stem from
its set-theoretic properties .Rather, N is of crucial
importance because of the arithmetic that we can
perform on it. Specifically, addition + and multiplication
touch every single aspect of our academic (and non-
academic) lives. Given that so much care was taken to
axiomatically define the set of natural numbers, we
should be sure to carefully define what is meant by
addition and multiplication. The Peano axioms and the
successor function allow us to do precisely that.

Axiomatic Arithmetic

• Addition We will now, using only the information provided in the
Peano Axioms, define the operation + of addition. In what follows, we
let a, b N. Axiom 5 guarantees that 0 N, so we begin by defining ∈ N, x=x ∈ N, x=x
what it means to add 0. Thus, we define a+ 0 = a. To define the sum
of any two natural numbers, we use the following recursive
definition: a+S(b) =S(a+b).Therefore, if we want to compute 1 + 1, we
note that 1 =S(0) and get 1 + 1 =1 +S(0) =S(1 + 0) =S(1) = 2. We can
proceed further to compute 1 + 2. To do so, we note that 2 =S(1) and
therefore that1 + 2 = 1 +S(1) =S(1 + 1) =S(2) = 3.Notice that this latter
computation relied on the previous computation of 1+1 =2 and the
fact that we defined 3 to beS(2). Similarly, the first computation of1 +
1 relied on using the given fact that 1 + 0 = 1. Iterating this process
enough times will generate the usual addition that we use.

Axiomatic Arithmetic

• Multiplication When we first learned multiplication in early grade
school, it was taught by asking us to perform addition in an iterative
manner. Similarly, axiomatic multiplication is built upon the
previously defined axiomatic addition. As with addition, axiomatic
multiplication is given recursively: a·0 = 0 and a·S(b) =a+ (a·b)

• Thus, we can easily show that a·1 =a by noting that 1 =S(0) and
therefore a·1 =a·S(0) =a+ (a·0) =a+ 0 =a. We can use this to multiply
3·2. Of course, we know that 2 =S(1) and therefore3·2 = 3·S(1) = 3 +
(3·1) = 3 + 3 = 6.Notice that in the last two steps of the computation,
we use that 3·1 = 3 (which we proved above) and that 3 + 3 = 6. This
latter statement, of course, can be shown using enough iterations of
addition from the previous section

What can be done with FOL

• So apparently we can do basic arithmetic with
arbitrarily large numbers.

• The question is can we compute any function
over Natural Numbers? Can we prove all
truths about arithmetic of natural numbers?
The answer is no.

• For this we will revisit Semantics and
introduce the notion of Decidability.

Semantics – the Idea of Truth

• An interpretation of a first-order language assigns a
denotation to each non-logical symbol in that language.
It also determines a domain of discourse that specifies
the range of the quantifiers. The result is that each term
is assigned an object that it represents, each predicate is
assigned a property of objects, and each sentence is
assigned a truth value. In this way, an interpretation
provides semantic meaning to the terms, the predicates,
and formulas of the language. The question is whether
there is an effective method to do this

Decidability

• In propositional logic, some formulae are
tautologies—they have the property of being
true under all interpretations.

• There is a procedure which can be used to tell
whether any formula is a tautology—this
procedure is the truth-table method.

• A formula of FOL that is true under all
interpretations is said to be valid.

Decidability

• Now we can’t use truth tables to tell us
whether a formula of FOL is valid.

• Is there any other procedure that we can use,
that will be guaranteed to tell us, in a finite
amount of time, whether a FOL formula is, or
is not, valid?

• The answer is no.

• FOL is for this reason said to be undecidable.

Provability and Logical Validity

• Each logical system comes with both a syntactic
component, which among other things determines
the notion of provability, and a semantic
component, which determines the notion of logical
validity. The logically valid formulas of a system are
sometimes called the theorems of the system,
especially in the context of first-order logic where
Gödel's completeness theorem establishes the
equivalence of semantic and syntactic consequence.

Completeness

• A set of axioms is (syntactically, or negation-)
complete if, for any statement in the axioms'
language, that statement or its negation is
provable from the axioms

• semantic completeness, which means that the
set of axioms proves all the semantic
tautologies of the given language. In his
completeness theorem, Gödel proved that first
order logic is semantically complete.

GöDel’s Incompleteness Theorem

• The first incompleteness theorem states that no
consistent system of axioms whose theorems can be
listed by an effective procedure (i.e., an algorithm) is
capable of proving all truths about the arithmetic of
natural numbers. For any such consistent formal
system, there will always be statements about natural
numbers that are true, but that are unprovable within
the system. The second incompleteness theorem, an
extension of the first, shows that the system cannot
demonstrate its own consistency.

• The theorems are widely, but not universally,
interpreted as showing that Hilbert's program
to find a complete and consistent set of
axioms for all mathematics is impossible.

Unsolvability /Undecidabilty

• The impossibility of solving a given problem exactly
by prescribed means. The non-existence of an
algorithm or the impossibility of proving or
disproving a statement within a formal system. Both
aspects will be considered below. The non-existence
of an algorithm for settling a given problem is often
referred to as the unsolvability of the problem.
Sometimes the two words "undecidable" and
"unsolvable" are used as synonyms.

Unsolvability /Undecidabilty

• The notion of an algorithm has to be
formalized in order to show that some
problem is undecidable. The undecidability of
a problem means that an algorithm is
impossible in principle — not only that no
algorithm is presently known.

• Three such formalizations will be considered in
the course, namely General Recursive
functions, -Calculus and Turing Machines

Unsolvability /Undecidabilty

• The most common among such formalizations
is a Turing machine. It is to be emphasized,
however, that all suggested formalizations
have turned out to be equivalent and,
moreover, the existence of undecidable
problems is independent of the formalization
used. An argument showing this will now be
briefly outlined.

Unsolvability /Undecidabilty

• Consider any such formalization. For any
algorithm A and any input word x of A, there are
two possibilities: either A halts with x, that is, a
terminating computation results when A is
applied to x, or A does not halt with x. In the
latter case one says that A loops with x. The
halting problem consists of deciding, for an
arbitrary pair (A,x), whether A halts or loops with
x. This is a well known undecidable problem.

Semidecidability

• A property of a theory or logical system
weaker than decidability is semidecidability. A
theory is semidecidable if there is an effective
method which, given an arbitrary formula, will
always tell correctly when the formula is in the
theory, but may give either a negative answer
or no answer at all when the formula is not in
the theory.

Semidecidability

• A logical system is semidecidable if there is an
effective method for generating theorems
(and only theorems) such that every theorem
will eventually be generated. This is different
from decidability because in a semidecidable
system there may be no effective procedure
for checking that a formula is not a theorem.

Semidecidability

• For example, the set of logical validities V of
first-order logic is semi-decidable, but not
decidable. In this case, it is because there is no
effective method for determining for an
arbitrary formula A whether A is not in V.
Similarly, the set of logical consequences of
any recursively enumerable set of first-order
axioms is semidecidable.

General Recursive Functions

• In 1933, Kurt Gödel, with Jacques Herbrand,
created a formal definition of a class called
general recursive functions. The class of
general recursive functions is the smallest
class of functions (possibly with more than
one argument) which includes all constant
functions, projections, the successor function,
and which is closed under function
composition, recursion, and minimization.

λ-calculus

• In 1936, Alonzo Church created a method for
defining functions called the λ-calculus. Within
λ-calculus, he defined an encoding of the
natural numbers called the Church numerals. A
function on the natural numbers is called λ-
computable if the corresponding function on
the Church numerals can be represented by a
term of the λ-calculus.

• Language LISP is based on λ-calculus

Turing Machine

• Also in 1936, before learning of Church's work,Alan
Turing created a theoretical model for machines,
now called Turing machines, that could carry out
calculations from inputs by manipulating symbols
on a tape. Given a suitable encoding of the natural
numbers as sequences of symbols, a function on
the natural numbers is called Turing computable if
some Turing machine computes the corresponding
function on encoded natural numbers

Church’s Thesis

• Church and Turing proved that these three formally
defined classes of computable functions coincide: a
function is λ-computable if and only if it is Turing
computable, and if and only if it is general recursive.
This has led mathematicians and computer scientists
to believe that the concept of computability is
accurately characterized by these three equivalent
processes. Other formal attempts to characterize
computability (like combinators) have subsequently
strengthened this belief

Resources Required for Solvable Problems

• The main resources we talk about are
– Time and

– Space

• A problem is regarded as inherently difficult if its solution
requires significant resources, whatever the algorithm
used.

• Computational complexity theory focuses on classifying
computational problems according to their resource
usage, and relating these classes to each other. A
computational problem is a task solved by a computer

Complexity Classes

• A complexity class is a set of problems of related complexity.
Simpler complexity classes are defined by the following factors:

• The type of computational problem: The most commonly used
problems are decision problems. However, complexity classes can
be defined based on function problems, counting problems,
optimization problems, etc.

• The model of computation: The most common model of
computation is the deterministic Turing machine, but many
complexity classes are based on non-deterministic Turing
machines, Boolean circuits, quantum Turing machines, monotone
circuits, etc.

• The resource (or resources) that is being bounded and the bound.

Complexity Classes

• But bounding the computation time above by
some concrete function f(n) often yields
complexity classes that depend on the chosen
machine model. For instance, the language {xx
| x is any binary string} can be solved in linear
time on a multi-tape Turing machine, but
necessarily requires quadratic time in the
model of single-tape Turing machines

Complexity Classes by Space
Requirement

Complexity class Model of computation Resource constraint

Deterministic space

DSPACE(f(n))
Deterministic Turing
machine

Space O(f(n))

L Deterministic Turing
machine

Space O(log n)

PSPACE Deterministic Turing
machine

Space O(poly(n))

EXPSPACE
Deterministic Turing
machine Space O(2poly(n))

What will not be discussed

• The universe is equivalent to a Turing machine; thus,
computing non-recursive functions is physically impossible.
This has been termed the strong Church–Turing thesis, or
Church–Turing–Deutsch principle, and is a foundation of
digital physics.

• The universe is not equivalent to a Turing machine (i.e., the
laws of physics are not Turing-computable), but
incomputable physical events are not "harnessable" for the
construction of a hypercomputer. For example, a universe
in which physics involves random real numbers, as opposed
to computable reals, would fall into this category.

What will not be discussed

• The universe is a hypercomputer, and it is possible to
build physical devices to harness this property and
calculate non-recursive functions. For example, it is an
open question whether all quantum mechanical events
are Turing-computable, although it is known that rigorous
models such as quantum Turing machines are equivalent
to deterministic Turing machines. (They are not
necessarily efficiently equivalent; see above.) John Lucas
and Roger Penrose have suggested that the human mind
might be the result of some kind of quantum-
mechanically enhanced, "non-algorithmic" computation

	Slide 1
	What is computation?
	What is computation?
	What is a Computer?
	What is Theory of Computation?
	Formal systems
	Derivation in a Formal System
	Effective Formal Systems
	Mathematical Logic
	Important Properties of Logical Systems
	Semantics – the Idea of Truth
	Zeroth Order Logic
	Zeroth Order Logic
	Interpretations for propositional logic
	Interpretations for propositional logic
	First Order Logic
	First Order Logic
	First Order Logic
	First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Language of First Order Logic
	Interpretation of First Order Logic
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Arithmetic – Peano’s Axioms
	Axiomatic Arithmetic
	Axiomatic Arithmetic
	Axiomatic Arithmetic
	What can be done with FOL
	Semantics – the Idea of Truth
	Decidability
	Decidability
	Provability and Logical Validity
	Completeness
	GöDel’s Incompleteness Theorem
	Slide 61
	Unsolvability /Undecidabilty
	Unsolvability /Undecidabilty
	Unsolvability /Undecidabilty
	Unsolvability /Undecidabilty
	Semidecidability
	Semidecidability
	Semidecidability
	General Recursive Functions
	λ-calculus
	Turing Machine
	Church’s Thesis
	Resources Required for Solvable Problems
	Complexity Classes
	Complexity Classes
	Complexity Classes by Space Requirement
	What will not be discussed
	What will not be discussed

