
Theory of Computation

Introduction



What is computation?

• Computation is an effective method (an 
Algorithm!), which given a problem with 
possibly a finite number of inputs, can produce 
an output which can be recognized as a 
solution to the problem.

• 'Effective method' is here used in the rather 
special sense of a method each step of which is 
precisely predetermined and which is certain to 
produce the answer in a finite number of steps.



What is computation?

• Points to note:

• The “size” of both Input and Output should be 
finite

• The number of steps should also be finite.

• An arbitrarily large natural number is a finite 
number.



What is a Computer?

• A Computer is a physically realizable machine 
which can perform computation.

• A Computer is a Formal System.  This is a 
direct implication of the requirement that 
each step in an “Effective Method” is precisely 
predetermined.



What is Theory of Computation?

• It is the study about the ultimate capability of 
Computers, that is what problems can be computed, 
what cannot and what can only be solved partially 
by any computer which works under the limitation 
of being “physically realizable” and employing only 
“Effective Methods”.

• This requires working with abstract models of 
computers / computation and as we will show, this 
has more to do with the nature of problems rather 
than computers.



Formal systems

1. A finite set of symbols, known as the alphabet, which concatenate to 
give formulas, so that a formula is just a finite string of symbols 
taken from the alphabet.

2. A grammar consisting of rules to form formulas from simpler 
formulas. A formula is said to be well-formed if it can be formed 
using the rules of the formal grammar. It is often required that there 
be a decision procedure for deciding whether a formula is well-
formed.

3. A set of axioms, or axiom schemata, consisting of well-formed 
formulas.

4. A set of inference rules. A well-formed formula that can be inferred 
from the axioms is known as a theorem of the formal system.



Derivation in a Formal System

• The derivation rules determine in which cases a 
formal expression A can be deduced from other 
formal expressions B1,…,Bn. If n=0, then A is called 
an axiom. Derivations are either sequences or tree 
diagrams made up of formal expressions according 
to the derivation rules. If there are only axioms at 
the vertices of the derivation tree, then the formal 
expression at the end of the derivation is said to 
be deducible (or derivable) in the formal system. 



Effective Formal Systems

• Very interesting formal systems are those for which 
the language and the concept of derivation satisfy 
the requirement of effectiveness. This means that 
there must be an effective procedure for 
determining whether an arbitrary sequence of 
symbols is an expression of the formal system or 
not. The concept of a derivation must satisfy the 
same requirement. The concept of a deducible 
expression in effective formal systems is, generally 
speaking, not effective. 



Mathematical Logic

• A calculus in mathematical logic is an effective 
formal system given by the rules of formation 
of expressions and of constructing derivations  
in that calculus. The expressions of a formal 
system are regarded as purely-formal 
combinations of symbols; 

• The two basic calculi are Zeroth order Logic 
(Propositional Calculus) and First order Logic 
(Predicate Calculus)



Important Properties of Logical Systems

• Consistency: no theorem of the system contradicts another.

• Validity: the system's rules of proof never allow a false 
inference from true premises.

• Completeness: if a formula is true, it can be proven, i.e. is a 
theorem of the system.

• Soundness: if any formula is a theorem of the system, it is 
true. This is the converse of completeness. (Note that in a 
distinct philosophical use of the term, an argument is sound 
when it is both valid and its premises are true.)

• Expressivity: what concepts can be expressed in the system.



Semantics – the Idea of Truth

• A formula in a Formal System is just a finite 
string of symbols taken from the alphabet 
without any meaning associated with them.

• Semantics is derived by associating a Domain of 
discourse so that the truth values of Logical 
Propositions/Predicates, domains  of non-logical 
variables if any and non-logical functions can be 
defined over this domain.  Such an association is 
called an interpretation or a model.



Zeroth Order Logic

• Propositional calculus is a branch of logic. It is also sometimes 
called zeroth-order logic. It deals with propositions (which can be 
true or false) and relations between propositions, including the 
construction of arguments based on them. Compound propositions 
are formed by connecting propositions by logical connectives. 
Propositions that contain no logical connectives are called atomic 
propositions. 

• The formal language for propositional logic consists of formulas built 
up from propositional symbols and logical connectives. The only 
non-logical symbols in a formal language for propositional logic are 
the propositional symbols, which are often denoted by capital 
letters. To make the formal language precise, a specific set of 
propositional symbols must be fixed. 



Zeroth Order Logic

• Any combinational circuit can be expressed in 
this logic.

• Unlike first-order logic, propositional logic does 
not deal with non-logical objects, predicates 
about them, or quantifiers. However, all the 
machinery of propositional logic is included in 
first-order logic and higher-order logics. In this 
sense, propositional logic is the foundation of 
first-order logic and higher-order logic. 



Interpretations for propositional logic

• The standard kind of interpretation in this setting 
is a function that maps each propositional 
symbol to one of the truth values true and false. 
This function is known as a truth assignment or 
valuation function. In many presentations, it is 
literally a truth value that is assigned, 

• For a language with n distinct propositional 
variables there are 2n distinct possible 
interpretations. 



Interpretations for propositional logic

• Given any truth assignment for a set of 
propositional symbols, there is a unique 
extension to an interpretation for all the 
propositional formulas built up from those 
variables. This extended interpretation is 
defined inductively, using the truth-table 
definitions of the logical connectives discussed 
above. 



First Order Logic

• First-order logic—also known as predicate logic, 
quantificational logic, and first-order predicate calculus—is a 
collection of formal systems used in mathematics, philosophy, 
linguistics, and computer science. First-order logic uses 
quantified variables over non-logical objects, and allows the use 
of sentences that contain variables, so that rather than 
propositions such as "Socrates is a man", one can have 
expressions in the form "there exists x such that x is Socrates 
and x is a man", where "there exists" is a quantifier, while x is a 
variable. This distinguishes it from propositional logic, which 
does not use quantifiers or relations; in this sense, 
propositional logic is the foundation of first-order logic. 



First Order Logic

• A theory about a topic is usually a first-order 
logic together with a specified domain of 
discourse (over which the quantified variables 
range), finitely many functions from that domain 
to itself, finitely many predicates defined on that 
domain, and a set of axioms believed to hold 
about them. Sometimes, "theory" is understood 
in a more formal sense, which is just a set of 
sentences in first-order logic



First Order Logic

• First-order logic is the standard for the formalization of 
mathematics into axioms, and is studied in the 
foundations of mathematics. Peano arithmetic and 
Zermelo–Fraenkel set theory are axiomatizations of 
number theory and set theory, respectively, into first-
order logic. No first-order theory, however, has the 
strength to uniquely describe a structure with an infinite 
domain, such as the natural numbers or the real line. 
Axiom systems that do fully describe these two 
structures (that is, categorical axiom systems) can be 
obtained in stronger logics such as second-order logic.



First Order Logic

• So the boundary of what we can compute is 
somewhat hazily discernible in the infinite domain 
of all theories that can be captured by First order 
Logic.

• Arithmatic? Set Theory? Up to arbitarily large nos.

• Decision Problems? Some of them

• Functions on Natural nos.? Some of them

• We will now discuss First order logic and 
Arithmatic in greater detail



Language of First Order Logic

• The basic components of FOL are called terms.  Essentially, 
a term is an object that denotes some object other than true 
or false.

•  The simplest kind of term is a constant.
•  A value such as 8 is a constant; the denotation of this term is 

the number 8—a value that is contained in the sets ℕ and Z.
•  We often use constants in maths; we introduce them by 

writing things like Let S be the set {1; 2; 3}. In this case, we 
have introduced a constant and made its denotation clear; 
we have given it an interpretation.

•  We can have constants that stand for any kind of object; for 
example, we could have a constant that stood for (denoted) 
the individual ‘MichaelWooldridge’.



Language of First Order Logic

• The second simplest kind of term is a variable.
•  A variable can stand for anything in a set of 

Objects.
•  That is, a variable of type ℕ could stand for any 

of the natural numbers.
•  Lets just formalise this before going any further.
•  Definition: A constant of type T is a name that 

denotes some particular object in the set T.
•  Definition: A variable of type T is a name that 

can denote any value in the set T.



Language of First Order Logic

• We can now introduce a more complex class of terms
— functions

• In FOL, we have a set of function symbols; each 
symbol corresponds to a particular function. (It 
denotes some function.)

•  Each function symbol is associated with a natural 
number called its arity. This is just the number of 
arguments it takes.

• Each function symbol has a return-type associated 
with it



Language of First Order Logic

• Formally . . .

• Definition: Let f be an arbitrary function 
symbol of type T, with arity n ℕ, taking 
arguments of type T1; : : : ; Tn respectively.

• Also, let 1; : : : ; n be terms of type T1; : : : ; Tn 
respectively. Then  f (1; : : : ; n) is a functional 
term.



Language of First Order Logic

•  Consider the function plus:

• plus(2; 3) is an acceptable functional term;

•  plus(0; 1) is acceptable;

•  plus(plus(1; 2); 4) is acceptable;

•  plus(plus(plus(0; 1); 2); 4) is acceptable;

• but

•  plus(-1; 0) isn’t;



Language of First Order Logic

• The language of FOL contains a stock of predicate 
symbols. These symbols stand for relationships 
between objects.

• Definition: Let P be a predicate symbol of arity n 
 ℕ , which takes arguments of

• types T1; : : : ; Tn. Then if 1; : : : ; n are terms

• of type T1; : : : ; Tn respectively, then P(1; : : : ; n) 
is a predicate, which will either be true or false 
under some interpretation.



Language of First Order Logic

• So a predicate just expresses a relationship 
between some values.

•  What happens if a predicate contains 
variables: can we tell if it is true or false?

• Not usually; we need to know an 
interpretation for the variables.

• A predicate that contains no variables is a 
proposition



Language of First Order Logic

• Predicates of arity 1 are called properties.

•  EXAMPLE. The following are properties:
– Man(x)

– Mortal(x)

– Malfunctioning(x):

•  Predicate that have arity 0 (i.e., take no 
arguments) are called primitive propositions.

• Predicates may be combined using Logical 
Operators , , .



Language of First Order Logic

• We now come to the central part of first order 
logic: quantification.

•  Consider trying to represent the following:
–  all men have a mother;

–  every natural number has a prime factor.

•  We can’t represent these using the apparatus 
we’ve got so far; we need quantifiers.



Language of First Order Logic

• In Z, we shall use two quantifers:

• — the universal quantifier; is read ‘for all. . . ’

•  — the existential quantifier; is read ‘there 
exists. . . ’



Language of First Order Logic

• The simplest form of quantified formula in Z is 
as follows:

• quantifier signature  predicate

• where

• – quantifier is one of ,  ;
• – signature is of the form variable : type

• – and predicate is a predicate.



Language of First Order Logic

• EXAMPLES.
–   x : Man  Mortal(x)

• ‘For all x of type Man, x is mortal.’

• (i.e. all men are mortal)

• If the logic is used in a type free manner,
–   x  Mortal(x)



Language of First Order Logic

• Note that universal quantification is similar to 
conjunction:

•  n : {2; 4; 6}  Even(n)

• is the same as

• Even(2)   Even(4)   Even(6):

•  In the same way, existential quantification is the same as 
disjunction:

•   n : {7; 8; 9}  Prime(n)

• is the same as

• Prime(7)  Prime(8)  Prime(9):



Language of First Order Logic

• The universal and existential quantifiers are in 
fact duals of each other:

•   x : T  P(x)    x : T   P(x)

• Saying that everything has some property is 
the same as saying that there is nothing that 
does not have the property.



Language of First Order Logic

• x : T  P(x)    x : T  P(x)

• Saying that there is something that has the 
property is the same as saying that its not the 
case that everything doesn’t have the 
property.



Interpretation of First Order Logic

• An interpretation of a first-order language assigns a 
denotation to each non-logical symbol in that 
language. It also determines a domain of discourse 
that specifies the range of the quantifiers. The 
result is that each term is assigned an object that it 
represents, each predicate is assigned a property of 
objects, and each sentence is assigned a truth 
value. In this way, an interpretation provides 
semantic meaning to the terms, the predicates, and 
formulas of the language.



Arithmetic – Peano’s Axioms

• An Axiomatic Approach to Mathematics:

• In order to approach Arithmetic in a formal way, we have to be very 
careful when proving our various propositions and theorems to 
only use results we know to be true. 

• However, many of the statements that we take to be true had to be 
proven at some point. Those proofs, of course, relied on other true 
statements. If we continue to “trace back” our mathematics proofs, 
we begin to notice that mathematics must have some initial set of 
true statements that cannot be proven. These statements, known 
as axioms, are the starting point for any mathematical theory. 

• In this section, we will axiomatically define the natural numbers N.



Arithmetic – Peano’s Axioms

• As we move through the various axioms, we will see that each 
one is crucial in defining N in such a way that they are equal 
to{0,1,2,3, . . .}, which are the natural numbers that we know 
and love. After establishing this, we will establish the basic 
arithmetic operations on N by defining addition and 
multiplication.

•  Axiomatizaing the Natural Numbers In this section, we will 
develop the Peano Axioms and use them to provide a 
completely formal definition of the natural numbers N. In what 
follows, itis best to train yourself to assume nothing and use 
only statements that are known to be true via axioms or 
statements that follow from these axioms.



Arithmetic – Peano’s Axioms

• We will formalize the notion of equality and then present the 
Peano axioms. The Notion of Equality. When approaching 
mathematics axiomatically, it is important to not assume 
anything at all, including something as rudimentary as how 
equality behaves. After all, “=” is merely a symbol until we 
declare it to have some important properties. Below, we will 
define the natural numbers N axiomatically. Before we get 
deep into this, let’s establish the properties that “=” should 
have. First, every natural number should be equal to itself; 
this is known as the reflexivity axiom.

• Axiom 1. For every x  N, x=x∈ N, x=x



Arithmetic – Peano’s Axioms

• Next, if one natural number equals a second one, then 
that second one should equal the first one. This is 
called the symmetry axiom.

• Axiom 2. x, y  N, if x=y, then y=x∈ N, x=x
• The next property allows us to say that if one natural 

number is equal to a second, and that second natural 
number is equal to a third, then the first and third are 
equal to each other. This is known as the transitivity 
axiom.

• Axiom 3.  x, y, z  N, if x=y and y=z, then x=z.∈ N, x=x



Arithmetic – Peano’s Axioms

• The above three properties of reflexivity, symmetry, and 
transitivity come up numerous times in essentially every 
mathematical field. Equality is an example of what is 
called a relation, and relations that enjoy the above 
three properties are known as equivalence relations. 
There remains one last axiom related to equality. In each 
of the above axioms, whenever we used a symbol (like x, 
y, or z), we always had an assumption that these 
elements were in the natural numbers. If we don’t make 
this assumption, then we may run into problems.



Arithmetic – Peano’s Axioms

• To help get around this, the fourth axiom, called the closure of 
equality axiom, says that if you have a natural number that is equal to 
something, then that “something” also has to be a natural number. 

• Axiom 4.  x and y, if x  N and x=y, then y  N.∈ N, x=x ∈ N, x=x
• In other words, the only way for something to be equal to a natural 

number is for it to be a natural number itself. In different versions of 
the Peano axioms, the above four axioms are excluded, as they these 
properties of equality are frequently assumed to be true as part of 
that logic system. For completeness, though, we include them in 
these notes. Furthermore, their inclusion here highlights the 
importance of questioning even the most basic mathematical 
assumptions.



Arithmetic – Peano’s Axioms

• Axioms :  Now, we are ready to present the main Peano 
axioms. It is important to keep in mind that when Peano 
and others constructed these axioms, their goal was to 
provide the fewest axioms that would generate the 
natural numbers that everyone was familiar with. The 
insight is that this could be done by asserting the 
existence of at least one natural number, and then 
defining a function, called successor function, that can 
be used to construct the remaining natural numbers. An 
obvious element to axiomatically include in the natural 
numbers is zero



Arithmetic – Peano’s Axioms

• Axiom 5:  0 is a natural number. 

• That is, 0  N. In alternate versions of the Peano ∈ N, x=x
axioms, Axiom 5 actually replaces 0 with1. This 
creates an almost identical set of natural numbers, 
which correspond to “positive whole numbers” (as 
we known them now). Whether a mathematician 
includes 0 in the natural numbers or not depends on 
the context. We use the convention of including 0 as a 
natural number. At this point, we are only guaranteed 
the existence of a single natural number, 0.



Arithmetic – Peano’s Axioms

• The next axiom uses the successor function to generate other natural 
numbers. As its name implies, the successor function is a function S 
that has as its domain N. The next axiom simply states that the co-
domain of S is also N. 

• Axiom 6:  If x  N, then S(x)  N. ∈ N, x=x ∈ N, x=x
• That is, if x is a natural number, then so is its successor.

• As the above axiom implies, we will commonly refer to S(x) as the 
successor of x. Intuitively, we should think of S(x) as x+1. Of course, we 
cannot formally define it this way yet since we do not know what + 
means! At this point, we are still quite far away from having the 
natural numbers as we know them. For example, if we have N={0} and 
define S(0) = 0, then all of the above axioms are satisfied. We, of 
course, want to avoid this.



Arithmetic – Peano’s Axioms

• A way to ensure this is to insist that 0 is not the successor of 
any natural number (including itself, of course).

• Axiom 7:  For every natural number x  N, S(x) = 0 is false.∈ N, x=x
• Rephrasing this using our knowledge of functions, we can 

say that the pre-image of 0 under S in the natural numbers 
is the empty set. At this point, we are slightly closer to 
having N look more like the natural numbers we know. In 
particular, we know that S(0) is not equal to 0, and thus it 
must equal some other natural number. We can denote this 
natural number by 1. Thus, we can   at this point, we know 
that N contains at least two natural numbers, 0 and 1. 



Arithmetic – Peano’s Axioms

• If we were to stop here, though, we could not be 
guaranteed that all the rest of the natural numbers 
(as we know them) exist. For example, we could 
define N={0,1} where S(0) = 1 andS(1) = 1. Again, 
using our knowledge of functions, we recognize that 
the fact that S(0) = 1 and S(1) = 1 means that the S is 
not an injective function. We would like this 
successor function to be injective, so we have the 
following axiom.

• Axiom 8. x, y  N, if S(x) =S(y), then x=y.∈ N, x=x



Arithmetic – Peano’s Axioms

• The above axiom has some very important ramifications. First, it 
excludes the possibility of defining N to be just {0,1}. To see why, 
notice that we already have that S(0) = 1 and, by injectivity, we 
cannot have that S(1) = 1. Axiom 6 excludes the possibility that 
S(1) = 0. Thus,S(1) must be some other natural number, which we 
denote as 2. Thus, we can define 2 =S(1).. A similar argument gives 
that S(2) cannot be 0,1, or 2. Thus, it must be some other natural 
number, which we call 3. Continuing in this pattern, we see that N 
must contain all the natural numbers that we know! At this point, 
we have established that N must include 0, its successor 1 =S(0), 
its successor’s successor 2 =S(1), and so on. Thus, we formally 
have that N must include 0, S(0), S(S(0)), S(S(S(0))), . . . .



Arithmetic – Peano’s Axioms

• Of course, to avoid so many nested applications of S, we use 
the numerals 1,2,3 to denote S(0), S(S(0)),and S(S(S(0))), 
respectively. We are, however, not done. These first eight 
axioms have pushed our formal definition of N to include all of 
the “usual” natural numbers that we know and love. That is, we 
know now that{0,1,2, . . .} N. However, what disallows our ⊂N. However, what disallows our 
axiomatic N from containing more? So far, nothing does. To see 
this, let’s consider this version of N that satisfies all the above 
axioms, but is not the usual natural numbers we know: 
N={0,1,2,3, . . . ,} {a, b}.That is, this version of N contains all the ∪{a, b}.That is, this version of N contains all the 
natural numbers and also includes two other symbols a and b. 
We also need to describe the successor function 3



Arithmetic – Peano’s Axioms

• On the portion{0,1,2,3, . . . ,}, we define S in the way 
described above, where S(0) = 1, S(1) = 2, S(2) = 3, and so 
on. On the portion {a, b}, we can define S(a) =b and S(b) 
= a. This version of N with this successor function 
satisfies all the axioms, but is “larger” than we want our 
natural numbers to be. The next (and final) axiom will 
exclude versions of N that are “too large” from occurring. 
Before we begin, we need a definition that is inspired by 
induction. A set V is called inductive if the following two 
conditions are satisfied: 0 V If x  V, then S(x) V∈ N, x=x ∈ N, x=x ∈ N, x=x



Arithmetic – Peano’s Axioms

• Of course, the name comes from the fact that the first 
condition is similar to our “base case” from induction, and the 
second condition is analogous to the induction step. The last 
axiom, many times called the Axiom of Induction says that if V 
is an inductive set, then V contains the set of natural numbers. 

• Axiom 9. If V is an inductive set, then N  V.⊂N. However, what disallows our 
• As stated above, the first 8 axioms ensure that{0,1,2,3, . . .}  ⊂N. However, what disallows our 

N. Furthermore, notice that the set{0,1,2,3, . . .} is an inductive 
set! Thus, by Axiom 9,it must be true that N  {0,1,2,3, . . .}. ⊂N. However, what disallows our 
Thus, we finally have the set equality that we were after: N = 
{0,1,2,3, . . .}



Axiomatic Arithmetic

• As we know, the importance of N does not stem from 
its set-theoretic properties .Rather, N is of crucial 
importance because of the arithmetic that we can 
perform on it. Specifically, addition + and multiplication 
touch every single aspect of our academic (and non-
academic) lives. Given that so much care was taken to 
axiomatically define the set of natural numbers, we 
should be sure to carefully define what is meant by 
addition and multiplication. The Peano axioms and the 
successor function allow us to do precisely that.



Axiomatic Arithmetic

• Addition We will now, using only the information provided in the 
Peano Axioms, define the operation + of addition. In what follows, we 
let a, b  N. Axiom 5 guarantees that 0  N, so we begin by defining ∈ N, x=x ∈ N, x=x
what it means to add 0. Thus, we define a+ 0 = a. To define the sum 
of any two natural numbers, we use the following recursive 
definition: a+S(b) =S(a+b).Therefore, if we want to compute 1 + 1, we 
note that 1 =S(0) and get 1 + 1 =1 +S(0) =S(1 + 0) =S(1) = 2. We can 
proceed further to compute 1 + 2. To do so, we note that 2 =S(1) and 
therefore that1 + 2 = 1 +S(1) =S(1 + 1) =S(2) = 3.Notice that this latter 
computation relied on the previous computation of 1+1 =2 and the 
fact that we defined 3 to beS(2). Similarly, the first computation of1 + 
1 relied on using the given fact that 1 + 0 = 1. Iterating this process 
enough times will generate the usual addition that we use.



Axiomatic Arithmetic

• Multiplication When we first learned multiplication in early grade 
school, it was taught by asking us to perform addition in an iterative 
manner. Similarly, axiomatic multiplication is built upon the 
previously defined axiomatic addition. As with addition, axiomatic 
multiplication is given recursively: a·0 = 0    and   a·S(b) =a+ (a·b)

• Thus, we can easily show that a·1 =a by noting that 1 =S(0) and 
therefore a·1 =a·S(0) =a+ (a·0) =a+ 0 =a. We can use this to multiply 
3·2. Of course, we know that 2 =S(1) and therefore3·2 = 3·S(1) = 3 + 
(3·1) = 3 + 3 = 6.Notice that in the last two steps of the computation, 
we use that 3·1 = 3 (which we proved above) and that 3 + 3 = 6. This 
latter statement, of course, can be shown using enough iterations of 
addition from the previous section



What can be done with FOL

• So apparently we can do basic arithmetic with 
arbitrarily large numbers.

• The question is can we compute any function 
over Natural Numbers? Can we prove all 
truths about arithmetic of natural numbers? 
The answer is no.

• For this we will revisit Semantics and 
introduce the notion of Decidability.



Semantics – the Idea of Truth

• An interpretation of a first-order language assigns a 
denotation to each non-logical symbol in that language. 
It also determines a domain of discourse that specifies 
the range of the quantifiers. The result is that each term 
is assigned an object that it represents, each predicate is 
assigned a property of objects, and each sentence is 
assigned a truth value. In this way, an interpretation 
provides semantic meaning to the terms, the predicates, 
and formulas of the language. The question is whether 
there is an effective method to do this



Decidability

• In propositional logic,   some formulae are 
tautologies—they have the property of being 
true under all interpretations.

•  There is a procedure which can be used to tell 
whether any formula is a tautology—this 
procedure is the truth-table method.

•  A formula of FOL that is true under all 
interpretations is said to be valid.



Decidability

• Now we can’t use truth tables to tell us 
whether a formula of FOL is valid.

•  Is there any other procedure that we can use, 
that will be guaranteed to tell us, in a finite 
amount of time, whether a FOL formula is, or 
is not, valid?

•  The answer is no.

•  FOL is for this reason said to be undecidable.



Provability and Logical Validity

• Each logical system comes with both a syntactic 
component, which among other things determines 
the notion of provability, and a semantic 
component, which determines the notion of logical 
validity. The logically valid formulas of a system are 
sometimes called the theorems of the system, 
especially in the context of first-order logic where 
Gödel's completeness theorem establishes the 
equivalence of semantic and syntactic consequence.



Completeness

• A set of axioms is (syntactically, or negation-) 
complete if, for any statement in the axioms' 
language, that statement or its negation is 
provable from the axioms

• semantic completeness, which means that the 
set of axioms proves all the semantic 
tautologies of the given language. In his 
completeness theorem, Gödel proved that first 
order logic is semantically complete.



GöDel’s Incompleteness Theorem

• The first incompleteness theorem states that no 
consistent system of axioms whose theorems can be 
listed by an effective procedure (i.e., an algorithm) is 
capable of proving all truths about the arithmetic of 
natural numbers. For any such consistent formal 
system, there will always be statements about natural 
numbers that are true, but that are unprovable within 
the system. The second incompleteness theorem, an 
extension of the first, shows that the system cannot 
demonstrate its own consistency. 



• The theorems are widely, but not universally, 
interpreted as showing that Hilbert's program 
to find a complete and consistent set of 
axioms for all mathematics is impossible. 



Unsolvability /Undecidabilty

• The impossibility of solving a given problem exactly 
by prescribed means. The non-existence of an 
algorithm or the impossibility of proving or 
disproving a statement within a formal system. Both 
aspects will be considered below. The non-existence 
of an algorithm for settling a given problem is often 
referred to as the unsolvability of the problem. 
Sometimes the two words "undecidable" and 
"unsolvable" are used as synonyms.



Unsolvability /Undecidabilty

• The notion of an algorithm has to be 
formalized in order to show that some 
problem is undecidable. The undecidability of 
a problem means that an algorithm is 
impossible in principle — not only that no 
algorithm is presently known. 

• Three such formalizations will be considered in 
the course, namely General Recursive 
functions, -Calculus and Turing Machines



Unsolvability /Undecidabilty

• The most common among such formalizations 
is a Turing machine. It is to be emphasized, 
however, that all suggested formalizations 
have turned out to be equivalent and, 
moreover, the existence of undecidable 
problems is independent of the formalization 
used. An argument showing this will now be 
briefly outlined. 



Unsolvability /Undecidabilty

• Consider any such formalization. For any 
algorithm A and any input word x of A, there are 
two possibilities: either A halts with x, that is, a 
terminating computation results when A is 
applied to x, or A does not halt with x. In the 
latter case one says that A loops with x. The 
halting problem consists of deciding, for an 
arbitrary pair (A,x), whether A halts or loops with 
x. This is a well known undecidable problem.



Semidecidability

• A property of a theory or logical system 
weaker than decidability is semidecidability. A 
theory is semidecidable if there is an effective 
method which, given an arbitrary formula, will 
always tell correctly when the formula is in the 
theory, but may give either a negative answer 
or no answer at all when the formula is not in 
the theory.



Semidecidability

• A logical system is semidecidable if there is an 
effective method for generating theorems 
(and only theorems) such that every theorem 
will eventually be generated. This is different 
from decidability because in a semidecidable 
system there may be no effective procedure 
for checking that a formula is not a theorem. 



Semidecidability

• For example, the set of logical validities V of 
first-order logic is semi-decidable, but not 
decidable. In this case, it is because there is no 
effective method for determining for an 
arbitrary formula A whether A is not in V. 
Similarly, the set of logical consequences of 
any recursively enumerable set of first-order 
axioms is semidecidable.



General Recursive Functions

• In 1933, Kurt Gödel, with Jacques Herbrand, 
created a formal definition of a class called 
general recursive functions. The class of 
general recursive functions is the smallest 
class of functions (possibly with more than 
one argument) which includes all constant 
functions, projections, the successor function, 
and which is closed under function 
composition, recursion, and minimization.



λ-calculus

• In 1936, Alonzo Church created a method for 
defining functions called the λ-calculus. Within 
λ-calculus, he defined an encoding of the 
natural numbers called the Church numerals. A 
function on the natural numbers is called λ-
computable if the corresponding function on 
the Church numerals can be represented by a 
term of the λ-calculus.

• Language LISP is based on λ-calculus



Turing Machine

• Also in 1936, before learning of Church's work,Alan 
Turing created a theoretical model for machines, 
now called Turing machines, that could carry out 
calculations from inputs by manipulating symbols 
on a tape. Given a suitable encoding of the natural 
numbers as sequences of symbols, a function on 
the natural numbers is called Turing computable if 
some Turing machine computes the corresponding 
function on encoded natural numbers



Church’s Thesis

• Church and Turing proved that these three formally 
defined classes of computable functions coincide: a 
function is λ-computable if and only if it is Turing 
computable, and if and only if it is general recursive. 
This has led mathematicians and computer scientists 
to believe that the concept of computability is 
accurately characterized by these three equivalent 
processes. Other formal attempts to characterize 
computability (like combinators) have subsequently 
strengthened this belief



Resources Required for Solvable Problems

• The main resources we talk about are
– Time  and

– Space 

• A problem is regarded as inherently difficult if its solution 
requires significant resources, whatever the algorithm 
used.

• Computational complexity theory focuses on classifying 
computational problems according to their resource 
usage, and relating these classes to each other. A 
computational problem is a task solved by a computer



Complexity Classes

• A complexity class is a set of problems of related complexity. 
Simpler complexity classes are defined by the following factors: 

• The type of computational problem: The most commonly used 
problems are decision problems. However, complexity classes can 
be defined based on function problems, counting problems, 
optimization problems, etc.

• The model of computation: The most common model of 
computation is the deterministic Turing machine, but many 
complexity classes are based on non-deterministic Turing 
machines, Boolean circuits, quantum Turing machines, monotone 
circuits, etc.

• The resource (or resources) that is being bounded and the bound.



Complexity Classes

• But bounding the computation time above by 
some concrete function f(n) often yields 
complexity classes that depend on the chosen 
machine model. For instance, the language {xx 
| x is any binary string} can be solved in linear 
time on a multi-tape Turing machine, but 
necessarily requires quadratic time in the 
model of single-tape Turing machines



Complexity Classes by Space 
Requirement

Complexity class Model of computation Resource constraint 

Deterministic space 

DSPACE(f(n)) 
Deterministic Turing 
machine 

Space O(f(n)) 

L Deterministic Turing 
machine 

Space O(log n) 

PSPACE Deterministic Turing 
machine 

Space O(poly(n)) 

EXPSPACE 
Deterministic Turing 
machine Space O(2poly(n)) 



What will not be discussed

• The universe is equivalent to a Turing machine; thus, 
computing non-recursive functions is physically impossible. 
This has been termed the strong Church–Turing thesis, or 
Church–Turing–Deutsch principle, and is a foundation of 
digital physics.

• The universe is not equivalent to a Turing machine (i.e., the 
laws of physics are not Turing-computable), but 
incomputable physical events are not "harnessable" for the 
construction of a hypercomputer. For example, a universe 
in which physics involves random real numbers, as opposed 
to computable reals, would fall into this category.



What will not be discussed

• The universe is a hypercomputer, and it is possible to 
build physical devices to harness this property and 
calculate non-recursive functions. For example, it is an 
open question whether all quantum mechanical events 
are Turing-computable, although it is known that rigorous 
models such as quantum Turing machines are equivalent 
to deterministic Turing machines. (They are not 
necessarily efficiently equivalent; see above.) John Lucas 
and Roger Penrose have suggested that the human mind 
might be the result of some kind of quantum-
mechanically enhanced, "non-algorithmic" computation
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