
Theory of Computation
Computable functions and Self Reference



Turing Machines

M = (Q,Σ, Γ,`,B, δ, s, t, r)

States set Q, Input alphabet Σ, Tape alphabet Γ

left marker `, blank symbol B

transition function δ

start state s, unique accept state t, unique reject state r .

Parts of the machine: Input tape, Work tape, tape-head,
Finite control



Turing Machine algorithms

In FLAT, we looked at decision problems with Turing machine
algorithms.

Problem 1: Is the input number n divisible by 2?

Problem 2: Are two given numbers n,m given as 0n#0m

coprime?

Problem 3: Is the input number n a prime number?



Problem 1: Algorithm Sketch

Is the input number n divisible by 2?

Input: 0n, otherwise reject.
Input tape looks like: ` 00 . . . 0BB . . ., with n 0′s.

Good practice to put right end marker:
` 0n a BB . . ..

Mark every alternate 0: ` 00̂00̂ . . . a BBB.
One way: Remember every alternate 0 by using states.
More general way: Copy 00 in some portion of the work tape,
mark the alternate 0 by using some sort of matching of 00
with portions of 0n.

Even: if you do not try to mark a as â. Stop after crossing a.

Go to accept state t if n is even, otherwise go to reject state r .



Problem 2: Algorithm Sketch

Are two given numbers n,m given as 0n#0m coprime?

Input: 0n#0m, otherwise reject.
Input tape looks like: ` 0n#0m a BB . . ..

Coprime: Need to determine if gcd(n,m) = 1.

Euclidean Algorithm:
gcd(n,m):
if m = 0 then return n;
else return gcd(m, n mod m).



Problem 2: Algorithm Sketch contd.

Are two given numbers n,m given as 0n#0m coprime?

From ` 0n#0m a BB . . . you need to:
Check if the symbol after the # is a: then m = 0 and
gcd(n, 0) = n.
Else, write down ` 0n mod m#0m a (preferably on the work
tape).
Then, reverse the string: You should have ` 0m#0n mod m a,
preferably on the work tape.
Continue with the Euclidean algorithm till you get an answer.

Go to accept state t if gcd(n,m) = 1, otherwise go to reject
state r .



Problem 3: Algorithm Sketch

Is the input number n a prime number?

Input ` 0nBB . . ..
With right end marker: ` 0n a BB . . ..

Algorithm for determining primes: sieve of Eratosthenes;
Write down all numbers 2, 3, . . . , n.
Take the smallest number on the list that is not crossed off.
Cross of all its multiples.
Continue till you can: if all numbers except for n has been
crossed off, then n is a prime number.

Main steps of implementation:
(i) Finding the smallest number that has not been marked off;
(ii) Finding multiples of that number.

Go to accept state t if n is prime, otherwise to reject state r .



Computable Functions

A decision problem can be thought of as a binary function
f : Σ∗ → {0, 1}.
Eg: Is the input number n divisible by 2?
f (0n) = 1 if n is even.
For any other x ∈ {0, 1}∗, f (x) = 0.

The functions that have corresponding Turing machine
algorithms are called computable functions.



More computable functions

A Turing machine can also be thought as a computer of
functions from positive integers to positive integers.

Input: If the function f has one argument, say i1 then it is
represented in unary as 0i1

Input: If the function has multiple arguments, say k arguments
{i1, i2, . . . , ik} then it is represented as 0i110i21 . . . 10ik - unary
representation of arguments separated by 1’s

Note that padding by more 1s is allowed - we only care about
the maximal blocks of consecutive 0s.

Output: if f (i1, i2, . . . , ik) = m then the output should be 0m

- unary representation of m.



Integer Computable functions

We can design the Turing machines such that all k
parameters of a function need not be defined.

We can also define the transition function δ such that
depending on the number of parameters in the input, a
different integral function (upto constantly many) is
computed: if input has one argument then f1 is computed,
two arguments then f2 is computed and so on for a constant
number of functions.



Integer Computable functions contd.

f (i1, i2, . . . , ik) is defined for all i1, i2, . . . , ik and has a Turing
machine computing it - total recursive function. Correspond
to recursive languages.

f (i1, i2, . . . , ik) not defined for all i1, i2, . . . , ik and has a
Turing machine computing it on the defined values (will loop
on the undefined values) - partial recursive function.
Correspond to recursively enumerable languages.



Total recursive functions

Try the following functions:

f (n) = 22
n

f (m, n) = m − n



Self Reference

A Turing machine can do a lot more!

Can design a TM SELF that can ignore the given input
and print out a copy of its own description.

Usually we think of a machine being produced by something
more powerful than itself - but this is contradicted if we can
construct SELF.

Similar example in programming languages: A program that
outputs a copy of itself.

Similar example in English language: Print out this sentence



Designing SELF: Auxiliary computable function

Lemma: There is a computable function q : Σ∗ → Σ∗ where, for
any string w , q(w) is the description of a Turing machine Pw that
prints out w and then halts.
Proof Sketch:

Construct a machine Mq that does the following:

Takes input w

Constructs Pw such that on any input Pw will erase that input
and write w on its worktape and halt.

Outputs < Pw >, which is the encoding of Pw .



Constructing SELF

We construct two subroutines A,B such that SELF = AB.
SELF should output encoding < SELF >=< AB >

A = P<B>. So A on any input outputs < B >. Thus
< A >=< P<B> >= q(< B >).

B on input < M > where M is a portion of a Turing Machine,
computes q(< M >) first by using Mq as a subroutine.

Then B concatenates the resultant string and < M > to make
a complete TM description.

Finally B prints this description in the worktape and halts.



Constructing SELF contd.

First A runs and prints < B > on the tape of SELF .

Then B starts. It looks at the tape of SELF and finds its
input < B >.

B calculates q(< B >) =< A > and concatenates in front of
< B > to obtain the TM description < SELF >=< AB >.

B prints this description and halts.


