Theory of Computation Recursive Function Theory

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Revisiting Integer Computable functions

- Computable functions computed by Turing Machine algorithms.
- Other direction: Every Turing Machine *M* can be thought to compute a function *f* from positive integers to positive integers where *f* is a partial recursive function.
- If for input arguments $\{i_1, i_2, \ldots, i_k\}$, the output is 0^m followed by blanks, then $f(i_1, i_2, \ldots, i_k) = m$. If the output is otherwise, then $f(i_1, i_2, \ldots, i_k)$ is undefined.
- To be more specific we denote f as $f_M^{(k)}$. If the number of arguments are clear simply f_M .

Encoding of a TM

- Can we encode a TM to be a valid input of a positive integer computable function? *integer representation* of a TM by a binary string.
- The first element of the encoding/representation is 1. (We want the encoding of the TM to represent a unique positive integer!)
- Description of a TM $M = (Q, \Sigma, \Gamma, \vdash, \delta, s, t, r)$.
- We can encode each of these elements in unary or of the form $O^{i_1}10^{i_2}\dots$
- Eg: Σ can be encoded as $0^{|\Sigma|}$. The j^{th} element is encoded as 0^{j} .

Encoding of a Turing Machine cont.

- Eg: $\delta(q_i, a) = (q_j, b, R)$ is encoded as $0^i 10^a 10^j 10^b 10^r$, where 0^r is the encoding of R. Similarly, for L.
- Each transition can be separated by 11. The entire block can be begun with 111 and ended with 111 - paddings of 1 can be allowed as input for a TM computing a function from positive integers to a positive integer; we only look at the maximal blocks of consecutive 0s.
- This *integer representation* of a TM is the binary representation of a positive integer *i*. Then *i* is called the *index* of this TM leading 1 makes the index unique.
- Function f_M can now also be denoted as f_i if i is the index of M.

Functions from integers to TMs

- The integer representation of a TM shows that we can define a function index from the set of all TMs to positive integers: map a TM to its index.
- Suppose I want a function revIndex from positive integers to the set of all TMs:
- If a positive integer has binary representation that is the integer representation of a TM then the integer is mapped to that TM.
- Any other positive integer is mapped to the trivial TM M_0 that has a single state (accept state) and on any input string over $\Sigma = \{0, 1\}$ immediately halts and accepts.
- Now a TM can be thought of as an integer and an integer can be thought of as a TM!

Intermezzo: Rice's Theorem from FLAT

- Essentially these reductions take as input a Turing Machine M (representing a language) and give as output a Turing machine M' (representing another language).
- So consider the index *i* of *M* and *j* of *M'* as before.
- Such a reduction can be thought of as a total recursive function g(i) = j. (Every input TM has a reduced instance)
- A TM computing g does one more step: convert the binary encoding of M' to its unary encoding (Definition of total recursive functions).

S_{mn} Theorem

Theorem: Let g(x, y) be a partial recursive function on two variables x, y taking positive integer values. There is a total recursive function σ on one variable such that $f_{\sigma(x)}(y) = g(x, y)$ for all x, y.

Thus, $\sigma(x)$ is the index of a TM M_x such that $f_{M_x}^{(1)}(y) = g(x, y)$ for each y.

Need to design a Total TM A that computes the total recursive function σ .

S_{mn} Theorem contd.

Proof:

- Let M be a Turing machine computing g.
- A is a TM that takes x as input (in unary) and outputs the description of M_x , which does the following.
- M_x is a TM that given y (in unary) shifts it to the right and writes $0^{\times}1$ to its left. Then the head is returned to the leftmost position.
- *M_x* then simulates *M*. (Description of *M_x* should contain the fact that it simulates *M*, *A* is not actually simulating *M*!)
- Output of A is the encoding $< M_x >$.
- So A computes the *total recursive* function σ : On taking in x it *always* outputs $\langle M_x \rangle$ and $f_{\sigma(x)}(y) = f_{M_x}(y) = g(x, y)$.

Recursion Theorem

Theorem: For any total recursive function σ on one variable taking positive integer values there exists an x_0 such that

$$f_{x_0}(x) = f_{\sigma(x_0)}(x)$$
 for all x .

Think of σ as mapping indices of TMs (partial recursive functions) into indices of TMs (partial recursive functions) - and they have a fixed point.

Fixed point of σ : Original TM function is same as modified TM function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recursive Theorem contd.

Proof:

- Consider you have access to a Universal TM that has a special tape, where it is enumerating all TMs (writing down descriptions of TMs one after another).
- Starting from 0 and going upwards, it writes down the binary string of a positive integer.
- It checks if this can be a valid integer representation of a TM M.
- If not, then on the special tape it writes down the description of trivial TM M_0 .
- Valid integer representation it writes down the integer representation of *M* onto its special tape. So the index of a non-trivial *M* can also be thought of as the index of enumeration of *M* by the UTM.

Recursive Theorem contd.

Proof: Coming back to showing a fixed point for σ ,

- For each positive integer *i* construct a TM M_i that takes in *x*, computes $f_i(i)$ and simulates the $f_i(i)$ th TM, generated by the UTM, on *x*. If this TM is non-trivial, then its index is also $f_i(i)$.
- Let M_i be the TM with index g(i). For all i, x, $f_{g(i)}(x) = f_{f_i(i)}(x)$.
- g(i) is a total recursive function (even if $f_i(i)$ is not defined) only needs the description of the UTM and instructions to find out the $f_i(i)$ th TM.

Recursive Theorem contd.

Proof contd.:

- Consider the composite function σg . It is also total recursive. Let *j* be the index of a TM computing σg , so $\sigma g = f_j$.
- Take $x_0 = g(j)$.
- $f_{x_0}(x) = f_{g(j)}(x) = f_{f_j(j)}(x)$ = $f_{\sigma(g(j))(x)}$ ($f_j = \sigma g$). = $f_{\sigma(x_0)}(x)$.
- So TM with index x_0 and TM with index $\sigma(x_0)$ compute the same function.

Application of the theorems

Let M_1, M_2, \ldots be any enumeration of all Turing machines. We show that for some *i*, M_i and M_{i+1} both compute the same function.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Application of the theorems contd.

- Define total recursive function $\sigma(i)$ as follows:
- (i) Enumerate TMs *M*₁, *M*₂,... until the one which has index *i*.
- (ii) Let TM M_j have index *i*. Enumerate one more TM M_{j+1} and $\sigma(i)$ is set to be the index for M_{j+1} .
- Recursion theorem: There is some x_0 where M_{x_0} and M_{x_0+1} define the same function of one variable.

Other Problems

- Prove that there exists $x_0 \in N$ such that for all y, $f_{x_0}(y)$ is y^2 if y is even, and $f_{x_0+1}(y)$ otherwise.
- Define any fixed point for the total recursive function
 σ: N → N defined as follows: for x ∈ N, the TM with
 description σ(x) computes the function f_{σ(x)}(y) which is 1 if
 y = 0 and f_x(y + 1) otherwise.
 Describe a fixed point for σ.
- Let $\sigma : N \to N$ be any total recursive function. Prove that σ has infinitely many fixed points i.e., there are infinitely many $w \in N$ such that $f_w(y) = f_{\sigma(w)}(y)$ for all y.