
Theory of Computation
Recursive Function Theory



Revisiting Integer Computable functions

Computable functions - computed by Turing Machine
algorithms.

Other direction: Every Turing Machine M can be thought to
compute a function f from positive integers to positive
integers - where f is a partial recursive function.

If for input arguments {i1, i2, . . . , ik}, the output is 0m

followed by blanks, then f (i1, i2, . . . , ik) = m. If the output is
otherwise, then f (i1, i2, . . . , ik) is undefined.

To be more specific we denote f as f
(k)
M . If the number of

arguments are clear - simply fM .



Encoding of a TM

Can we encode a TM to be a valid input of a positive integer
computable function? - integer representation of a TM by a
binary string.

The first element of the encoding/representation is 1. (We
want the encoding of the TM to represent a unique positive
integer!)

Description of a TM M = (Q,Σ, Γ,`, δ, s, t, r).

We can encode each of these elements in unary or of the form
O i110i2 . . ..

Eg: Σ can be encoded as 0|Σ|. The j th element is encoded as
0j .



Encoding of a Turing Machine cont.

Eg: δ(qi , a) = (qj , b,R) is encoded as 0i10a10j10b10r , where
0r is the encoding of R. Similarly, for L.

Each transition can be separated by 11. The entire block can
be begun with 111 and ended with 111 - paddings of 1 can be
allowed as input for a TM computing a function from positive
integers to a positive integer; we only look at the maximal
blocks of consecutive 0s.

This integer representation of a TM is the binary
representation of a positive integer i . Then i is called the
index of this TM - leading 1 makes the index unique.

Function fM can now also be denoted as fi if i is the index of
M.



Functions from integers to TMs

The integer representation of a TM shows that we can define
a function index from the set of all TMs to positive integers:
map a TM to its index.

Suppose I want a function revIndex from positive integers to
the set of all TMs:

If a positive integer has binary representation that is the
integer representation of a TM then the integer is mapped to
that TM.

Any other positive integer is mapped to the trivial TM M0

that has a single state (accept state) and on any input string
over Σ = {0, 1} immediately halts and accepts.

Now a TM can be thought of as an integer and an integer can
be thought of as a TM!



Intermezzo: Rice’s Theorem from FLAT

Essentially these reductions take as input a Turing Machine M
(representing a language) and give as output a Turing
machine M ′ (representing another language).

So consider the index i of M and j of M ′ as before.

Such a reduction can be thought of as a total recursive
function g(i) = j . (Every input TM has a reduced instance)

A TM computing g does one more step: convert the binary
encoding of M ′ to its unary encoding (Definition of total
recursive functions).



Smn Theorem

Theorem: Let g(x , y) be a partial recursive function on two
variables x , y taking positive integer values. There is a total
recursive function σ on one variable such that fσ(x)(y) = g(x , y)
for all x , y .

Thus, σ(x) is the index of a TM Mx such that f
(1)
Mx

(y) = g(x , y)
for each y .
Need to design a Total TM A that computes the total recursive
function σ.



Smn Theorem contd.

Proof:

Let M be a Turing machine computing g .

A is a TM that takes x as input (in unary) and outputs the
description of Mx , which does the following.

Mx is a TM that given y (in unary) shifts it to the right and
writes 0x1 to its left. Then the head is returned to the
leftmost position.

Mx then simulates M. (Description of Mx should contain the
fact that it simulates M, A is not actually simulating M!)

Output of A is the encoding < Mx >.

So A computes the total recursive function σ: On taking in x
it always outputs < Mx > and fσ(x)(y) = fMx (y) = g(x , y).



Recursion Theorem

Theorem: For any total recursive function σ on one variable taking
positive integer values there exists an x0 such that
fx0(x) = fσ(x0)(x) for all x .
Think of σ as mapping indices of TMs (partial recursive functions)
into indices of TMs (partial recursive functions) - and they have a
fixed point.
Fixed point of σ: Original TM function is same as modified TM
function.



Recursive Theorem contd.

Proof:

Consider you have access to a Universal TM that has a special
tape, where it is enumerating all TMs (writing down
descriptions of TMs one after another).

Starting from 0 and going upwards, it writes down the binary
string of a positive integer.

It checks if this can be a valid integer representation of a TM
M.

If not, then on the special tape it writes down the description
of trivial TM M0.

Valid integer representation - it writes down the integer
representation of M onto its special tape. So the index of a
non-trivial M can also be thought of as the index of
enumeration of M by the UTM.



Recursive Theorem contd.

Proof: Coming back to showing a fixed point for σ,

For each positive integer i construct a TM Mi that takes in x ,
computes fi (i) and simulates the fi (i)th TM, generated by the
UTM, on x . If this TM is non-trivial, then its index is also
fi (i).

Let Mi be the TM with index g(i). For all i , x ,
fg(i)(x) = ffi (i)(x).

g(i) is a total recursive function (even if fi (i) is not defined) -
only needs the description of the UTM and instructions to
find out the fi (i)th TM.



Recursive Theorem contd.

Proof contd.:

Consider the composite function σg . It is also total recursive.
Let j be the index of a TM computing σg , so σg = fj .

Take x0 = g(j).

fx0(x) = fg(j)(x) = ffj (j)(x)
= fσ(g(j))(x) (fj = σg).
= fσ(x0)(x).

So TM with index x0 and TM with index σ(x0) compute the
same function.



Application of the theorems

Let M1,M2, . . . be any enumeration of all Turing machines. We
show that for some i , Mi and Mi+1 both compute the same
function.



Application of the theorems contd.

Define total recursive function σ(i) as follows:

(i) Enumerate TMs M1,M2, . . . until the one which has index
i .

(ii) Let TM Mj have index i . Enumerate one more TM Mj+1

and σ(i) is set to be the index for Mj+1.

Recursion theorem: There is some x0 where Mx0 and Mx0+1

define the same function of one variable.



Other Problems

Prove that there exists x0 ∈ N such that for all y ,
fx0(y) is y2 if y is even, and fx0+1(y) otherwise.

Define any fixed point for the total recursive function
σ : N → N defined as follows: for x ∈ N, the TM with
description σ(x) computes the function fσ(x)(y) which is 1 if
y = 0 and fx(y + 1) otherwise.
Describe a fixed point for σ.

Let σ : N → N be any total recursive function. Prove that σ
has infinitely many fixed points i.e., there are infinitely many
w ∈ N such that fw (y) = fσ(w)(y) for all y .


