
Theory of Computation:
Space complexity and PSPACE



Space constructible functions

S : N→ N where there is a TM that on input x computes
S(|x |) by using O(S(|x |)) read/write cells.

Intuition: The machine “knows” the space bound it is
operating under.

S(n) > log(n) because we need to be able to remember which
cell of the input tape is currently being read.

S(n) could be much smaller than n as this does not conflict
designing algorithms that read the entire input and use
sublinear space: counters are an example.

Examples of space constructible functions: log n, n, 2n, all the
space bounding functions we will see.



Space-bounded computation

Let S : N→ N and L ⊆ {0, 1}∗. Then L ∈ SPACE (S(n)) if
there is a constant c and a TM M deciding L such that on
any input of length n at most c .S(n) cells on M’s work tapes
are ever visited by M’s tape head during its computation.

L ∈ NSPACE (S(n)) if there is an NDTM M deciding L that
never uses more than c .S(n) nonblank tape locations on
length n inputs, no matter the sequence of nondeterministic
choices – on every branch total space used is c .S(n).



Time and Space connections

DTIME (S(n)) ⊆ SPACE (S(n)): at one time step at most one
cell can be accessed.

SPACE (S(n)) machine: Can compute 2S(n)!

So far: DTIME (S(n)) ⊆ SPACE (S(n)) ⊆ NSPACE (S(n)).



NSPACE (S(n)) ⊆ DTIME (2O(S(n)))

Configuration Graph GM,x for a NDTM M and an input x :
vertices represent configurations;
Directed edges from a configuration C1 to configuration C2 if
the transition function allows M to go from C1 to C2 in the
following step.

If M is a space S(n) NDTM , then every configuration can
use at most S(n) non-blank cells on the work tape.



NSPACE (S(n)) ⊆ DTIME (2O(S(n)))

Assumption: It is possible to assume that an NDTM has at
most 2 possible transitions from any given configuration by
modifying the transition function

How can you do this? Think of the transition tree; suppose
you are at a vertex v where more than 2 transitions are
possible, then this vertex has a subset T ′ of more than 2
children.
Can you add more states so that you can replace the subtree
on v ∪ T ′ with a binary subtree having v as its root and
vertices corresponding to T ′ as its leaves?

This means each vertex in GM,x has at most 2 directed edges
going out of it.



NSPACE (S(n)) ⊆ DTIME (2O(S(n)))

Modify M further to erase all its work tape contents before
halting: This makes M have exactly one configuration Ct for
accepting, where M halts and outputs 1.

M accepts input x if and only if there is a directed path from
Cs (start configuration) to Ct (accepting configuration) in
GM,x .



NSPACE (S(n)) ⊆ DTIME (2O(S(n)))

Every vertex in GM,x can be described using cS(n) bits (c
only depends on M’s description) and GM,x has at most 2cS(n)

vertices:

A configuration is completely described by a string of the form
αqβ where αβ are the tape contents, the tape head is on the
cell where β starts and the current state is q. This string is at
most cS(n) bits long.

Thus, the number of configurations is at most 2cS(n) = the
number of vertices in GM,x .



NSPACE (S(n)) ⊆ DTIME (2O(S(n)))

Enumerate over all possible configurations and construct the
graph GM,x in 2O(S(n)) time. Check whether there is a
directed path from Cs to Ct n GM,x using the BFS algorithm.



Space complexity classes

PSPACE =
⋃

c>0 SPACE (nc)

NPSPACE =
⋃

c>0NSPACE (nc)

L = SPACE (log n)

NL = NSPACE (log n)



PSPACE

3− SAT ∈ PSPACE : Use linear space to cycle through all
assignments and determine if there is a satisfying assignment.

NP ⊆ PSPACE : Use the same space to enumerate all possible
certificates and determine if there is a certificate for the input
belonging to the language.



Space Hierarchy Theorem

If f , g are space constructible functions satisfying f (n) = o(g(n))
then
SPACE (f (n)) ( SPACE (g(n))

Diagonalization similar to the Time Hierarchy Theorem.

We show that SPACE (n) ( SPACE (n1.1) and all other pairs
have similar arguments.

UTM: Can design a UTM U where the space required to
simulate a TM M on an input x is a constant factor of the
space needed by M itself on x .



Space Hierarchy Theorem

Diagonalization machine M:

On input x , run U for at most 2|x |
1.1

steps to simulate Mx on
x .

If U tries to use more than n1.1 cells then reject.

If U does not halt within 2|x |
1.1

steps it means that Mx loops
on x . M will output 1.

If U outputs some bit b then M outputs 1− b.



Space Hierarchy Theorem

So M halts within 2n
1.1

time and uses at most n1.1 space.

L is the language accepted by M. We show that
L /∈ SPACE (n).

By contradiction, let N be a machine that uses space cn. We
can modify N so that on any input x if N runs for 2|x | steps
and does not halt, then it goes to the reject state r as it must
have entered a loop.



Space Hierarchy Theorem

U takes at most c ′c |x | space to simulate N on any input x .

There is some n0 such that n1.1 > c ′cn. Let x be a
representation of N whose length is at least n0.

U will obtain an output b on Mx = N within space n1.1 and
time 2n

1.1
but by definition of M, M and Mx = N do not

agree on x ’s membership in L.



PSPACE-completeness

A language L is PSPACE-hard if for every language L′ in
PSPACE, L′ ≤p L.

Moreover, if L belongs to PSPACE, then L is called
PSPACE-complete.

If we show that a PSPACE-complete problem is in P, then it
would mean PSPACE ⊆ P =⇒ PSPACE = P
As we know NP ⊆ PSPACE , this would also mean P = NP.



Quantified Boolean Formula

QBF: of the form Q1x1Q2x2 . . .Qnxnφ(x1, x2, . . . , xn) where
each Qi ∈ {∃, ∀}, the xi s are from {0, 1} and φ is an
unquantified Boolean formula.

All variables of φ are bound by a quantifier, so a QBF is
always either true or false.

TQBF: set of quantified Boolean formulas that are true.



TQBF is PSPACE-complete

Proof Sketch:

ψ = Q1x1Q2x2 . . .Qnxnφ(x1, x2, . . . , xn), where size of φ is m.
We consider a general form where some of the variables take
constant values and all others are quantified.

TQBF is in PSPACE: Suppose Q1 = ∃; check if either x1 = 1
or x1 = 0 makes the rest of the formula true.
Suppose Q1 = ∀; check if both x1 = 1 or x1 = 0 makes the
rest of the formula true.
Recursively solve for the rest of the formula.



TQBF is PSPACE-complete

Writing down the formula when a few variables have been
assigned values takes O(m) space.

The amount of space for checking for different partial
assignments can be reused.

Recursion for space used: sn,m = sn−1,m + O(m)
So, sn,m = O(nm).



TQBF is PSPACE-complete

Proof Sketch:

ψ = Q1x1Q2x2 . . .Qnxnφ(x1, x2, . . . , xn), where size of φ is m.

TQBF is PSPACE-hard: Take any language L in PSPACE. Let
M be a machine that decides L in S(n) space for input
x ∈ {0, 1}n.

This means that the configuration graph GM,x has
N = 2O(S(n)) vertices.

A QBF is constructed of size O(S(n)2) that is true iff M
accepts x .

This QBF tries to capture the path from Cs to Ct of GM,x .



TQBF is PSPACE-complete

Proof Sketch:

We want φCs ,Ct ,i = A QBF that is true iff there is a path from
Cs to Ct of length i . Note that i ≤ N.

Base case: It is possible to create an unquantified Boolean
formula corresponding to an pair of configurations C and C ′

where there is a directed edge from C to C ′. Denote by
φC ,C ′,1.

Now we will try to give an inductive definition of a QBF for
paths from configuration C to C ′ such that all variables
except C and C ′ are quantified and plugging in the value of C
and C ′ will be exactly the answer of whether such a path
exists or not.

So for C = Cs and C ′ = Ct , the corresponding formula is
what we want.



TQBF is PSPACE-complete

First attempt at inductive definition:
φCs ,Ct ,i = ∃C [φCs ,C ,i/2 ∧ φC ,Ct ,i/2].
If we try to define like this the QBF will be of size N which is
too large for the allowed reduction time.

Another way: φCs ,Ct ,i = (∃C )(∀C1)(∀C2)[((C1 = Cs) ∧ (C2 =
C )) ∨ ((C1 = C ) ∧ (C2 = Ct)) =⇒ φC1,C2,i/2].
Similar definitions for all pairs C ,C ′ of configurations.
Recursion for sizeφ·,·,i = sizeφ·,·,i−1 + O(logN) = O(S(n)2).



TQBF is NPSPACE-complete

It can also be shown that the same proof works even when we
are working on languages of NPSPACE. Any language of
NPSPACE can also be reduced to TQBF in polynomial time.

This implies that PSPACE = NPSPACE.



Savitch’s Theorem

For any space constructible S : N→ N with S(n) ≥ log n,
NSPACE (S(n)) ⊆ SPACE (S(n)2).
Much more structure than simply saying PSPACE = NPSPACE.



Savitch’s Theorem: Proof

Let L ∈ NSPACE (S(n)) be decided by M such that for every
x ∈ {0, 1}n, the configuration graph GM,x has at most
N = 2O(S(n)) vertices.

x ∈ L iff there is a directed path in GM,x from Cs to Ct .

Recursive procedure REACH(u,v,i): Returns YES if there is a
path from u to v of length at most 2i ; NO otherwise.

Path from u to v of length at most 2i iff there is a vertex z
with an at most 2i−1 length path from u to z and an at most
2i−1 length path from z to v .



Savitch’s Theorem: Proof

In O(logN) space, REACH goes through all possible z ’s and
returns YES iff it finds a z where REACH(u,z,i-1) = YES and
REACH(z,v,i-1) = YES.

Two recursive calls, but same space can be used.

Recursion for space usage: sN,i = sN,i−1 + O(logN).
So sN,logM = O(log2N) = O(S(n)2).



Savitch’s Theorem: Corollary

NL ⊆ L2 = SPACE (log2(n)).


